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Abstract

To explore gene-environment interactions, based on temporal gene expression information, we analyzed gene and
treatment information intensively and inferred interaction networks accordingly. The main idea is that gene expression
reflects the response of genes to environmental factors, assuming that variations of gene expression occur under different
conditions. Then we classified experimental conditions into several subgroups based on the similarity of temporal gene
expression profiles. This procedure is useful because it allows us to combine diverse gene expression data as they become
available, and, especially, allowing us to lay the regulatory relationships on a concrete biological basis. By estimating the
activation points, we can visualize the gene behavior, and obtain a consensus gene activation order, and hence describe
conditional regulatory relationships. The estimation of activation points and building of synthetic genetic networks may
result in important new insights in the ongoing endeavor to understand the complex network of gene regulation.
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Introduction

Current high throughput gene expression techniques, such as

oligonucleotide and cDNA microarray, SAGE (series analysis gene

expression), promoter array and RNA-seq [1,2,3,4] make it

possible to quickly obtain vast amount of time series data in all

kinds of organisms under various conditions. Gene expression can

be measured simultaneously in a genome-wide manner. Temporal

gene expressions under varying environmental conditions have, for

instance, been measured during the cell cycle of the yeast

Saccharomyces cerevisiae and Bacillus subtilis [5,6,7]. The massively

abundant data prove to be invaluable for the possibility of

determining the underlying various regulatory relationships

among genes and their derivates whereas the inference of genetic

interactions remains to be one of the most challenging tasks of

modern functional genomics [8,9,10,11,12,13].

The biological networks could in principle be divided into

several types. The metabolic network is used to denote the network

of proteins that synthesize and breakdown cellular molecules. It

represents the enzymatic processes within the cell to transform

nutrients into energy or into other molecules, i.e. biosynthesis.

Protein interaction networks describe communication and signal-

ing networks where the basic reaction is between two proteins or

more. The genetic regulatory network is used to represent the

general interaction of genes, gene products, and small molecules

(i.e. from the DNA level, to the mRNA level, to the protein level).

It describes the pathway of gene expression regulation as well as

decisions used to turn genes on/off. Deciphering interaction

networks is an important task in the post-genomics era.

To build genetic networks, one of the hardest problems is the

dimensionality issue, which is the exponential number of potential

connections among genes [14,15]. Current solutions include

clustering co-regulated genes via unsupervised analysis

[16,17,18,19]. The computing methods involve choosing robust

mathematical formalisms for inferring the causal connections

between genes etc [20,21,22,23]. Bayesian methods [24] are

excellent approaches to infer relationship between genes. They

rely on prior information concerning genes, however, and it is

difficult to analyze gene expression at the whole genome level due

to the number of unknown genes. High throughput gene

expression analysis involves many operations and at a not-

insignificant cost, consequently there are not many datasets that

have measured gene expression levels at a large number of time

points. As a consequence, we believe that the current genetic

network models generated based on few points provide limited

information. Therefore, integrating diverse data types and

exploring new ways to construct genetic networks are required.

In this paper, to explore the interaction of gene and environmental

factors, we assume that gene expression is a comprehensive process

of gene and treatments. Because of the interaction, we can classify

all experimental conditions into different subgroups based on the

similarity of temporal gene expression profiles. Theoretically, these

genes within each subgroup showing similar behaviors may share

some regulatory mechanism and regulatory network. Finally, by
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combining all of the information, we estimated a consensus gene

activation order within each subgroup. We illustrated our strategy

with an example of a 31 gene set in Pseudomonas aeruginosa, which

was expressed in 72 conditions and measured across 48 time

points.

Results

The variation of gene expression profile
The large data set was from a unique gene expression

experiment of the 31 promoter-reporter set in Pseudomonas

aeruginosa, tested in 72 conditions, each with 48–60 time points.

We first checked the expression profiles of the 31 genes in one

condition as shown in Figure 1. We then used the aprA promoter-

reporter as an example to show the variation in gene expression

profiles. The figure shows the expression profile variations of aprA

in different experimental conditions (Figure 2). From Figure 1 and

2, we can see not only the different behaviors of different genes,

but profile differences even for each individual gene under

different conditions with the maximum positions shifted among

conditions. The profile types increase with condition number.

Figure 3 shows the fluctuations of the mean, maximum and

minimum for the aprA reporter at each time point for all

conditions. The results clearly show the expression profiles and

levels are condition-specific; they should be classified into several

subgroups based on the conditions. An attempt of building a

comprehensive genetic network in all conditions is clearly

unpractical even though the expression profiles of some genes do

not change as dramatically in different treatment conditions as

aprA. Alternative approaches need to be taken.

The constructed interaction networks with network
motifs

To avoid conflicting gene connections in different experimental

conditions and obtain the most popular genetic networks, we

clustered all 72 conditions via clustering analysis based on the gene

expression profiles (each gene has more than 1400 expression

measurements). We used clustering result to guide the formation of

environmental condition subgroups, based on the assumption that

the condition-dependent expression profiles in each subgroup are

similar, and that the genes in each cluster share similar expression

pattern and regulatory mechanism. We calculated the transit

relationship matrix of the each condition, identified the transit

relationship with reference construct pMS402, and then obtained

an inferred genetic network for each subgroup.

The five constructed interaction networks are shown in Figure 4.

The direction of transit relationship is shown by the clockwise turn

of the connecting line, and the thickness and color of each

connection are proportional to its popularity and strength in the

Figure 1. Expression Profiles of the 31 Genes in One Condition.
doi:10.1371/journal.pone.0035993.g001
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subgroup. The deepest red indicates the strongest positive

relationship, otherwise, the dark blue give us the most negative

relationship. In the network A-E in Figure 4, we can easily identify

the most popular regulation relationships via the thickness and

color; for example, migA and pilT in the network A, gene rnr and

fliC in the network B, hemo, aprA and plcH in the network D, are the

most popular positive transit relationships; while gene adh and exoT

in the network A, adh and migA in network B and C, pcvA and rhlR

in network D and toxA, gacA, and PA4350 are the most popular

negative relationship in the condition clusters. We also find the

transitions are absolutely condition-specific, with the changing of

the condition, the direction and strength of the interaction

relationship among genes are modified, for example, the

relationship between pKD203 and flhA in the network A and B

is dramatically changed, a mild positive relationship in network A

and a negative relationship in network B.

The connections among genes in network A–E (Figure 4) are

neither uniformly distributed nor random, similar to that observed

with genetic regulatory network motifs [27,28]. There are a lot of

short paths between two genes and highly clustered connections,

and several genes have more connections than others. Most of the

short paths between two genes are conservative network motifs;

these network motifs are very clear in the network architectures.

The most popular network motif is analogous a single input

module (SIM), i.e., a gene regulates simultaneously several genes;

it exists in every network, for example, in network B, gene gacA has

positive regulation relationship with gene pvcA and negative

association with exoS. The second popular network motif is

analogous to dense overlapping regulons (DOR), a set of genes

combinatorially control another set of genes, for example in

network F, gene gacA and rhlI (pKD202) coordinately regulate gene

toxA,. The third common motif is analogous to the feed-forward

loop in network B, gene rpoS has a mild negative connection with

gene plcH, but plcH has a little stronger negatively feed-back on

gene rpoS; such a loop is a common motif connection in network B.

Pattern Matching in Temporal Gene Expression Data
We were also interested in the general pattern matching issue in

the temporal dataset. Given an arbitrary set of multivariate

temporal data, how can similar patterns be located together? Here

we used a novel pattern matching methodology on unsupervised

learning and multivariate statistical techniques (KRZANOWSKI

1979). We obtained an original similarity matrix from the PCA

similarity analysis, as shown in Figure 5A; the deep red on

diagonal is similarity of 1, itself, then the redder the color, the

higher the similarity. The reorganized similarity matrix based on

clustering analysis is shown in Figure 5B. It illustrates the quality of

cluster analysis: the clearer the block, the better the cluster

analysis. It is worth noting that the PCA similarity analysis is not

only for evaluating the quality of cluster analysis, but also for

unknown pattern mapping. For example, the expression pattern in

the complex media of sputum extracts looks most like minimal

media growth conditions (Figure 6). The clustering analysis of the

expression data for the 72 conditions can yield groups of

Figure 2. The aprA gene expression profiles in 72 conditions and 60 time points.
doi:10.1371/journal.pone.0035993.g002
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conditions with similar expression profiles, which can be used for

pattern mapping of unknown condition based on expression

pattern mapping.

The Determination of Gene Activation Order
To understand the mechanism of gene expression and gene

activation order, we estimated the gene turning-on and turning-off

time points via the least square method, i.e., the half positions of

the prior & subsequent of the maximum, as shown in the Figure 7.

The visualization tool, as shown in Figure 8, reads and parses the

gene expression data into an easily accessible array. The data

given were 31 genes in 72 conditions; the green bars and red bars

represent the gene turned on and turned off positions, respectively.

We were able to sort all the data based on such information and

obtain the gene order of turning off and turning on in different

networks as shown in Table 1. From the analysis we find that some

genes always had the same activity order; they were clearly

expressed in stable patterns. For example, gene lasI, rhlI, PA4350,

and znuA were in quite stable order which was not influenced by

different treatment conditions, which is in agreement with the fact

that lasI and rhlI are in a hierarchic order in the bacterium.

Discussion

The main purpose of exploring gene-environmental interaction

is to provide indications about regulation mechanisms of the genes

in response of environmental changes. The abundance of genome

sequences and high throughput gene expression data is providing

input for reverse engineering of genetic networks

[29,30,31,32,33,34,35]. The critical issue is how to use all kinds

of information which include both genome and gene expression

information to infer the relationships between genes and their

activities. The strategy presented here offers new capability of

extracting fundamental interaction network from expression data,

and identifying the most popular regulatory relationships and gene

activity order.

The most powerful feature of our strategy is the intensive

temporal gene expression profile information. Because gene

expression varies with the conditions, the process of building an

interaction network is a difficult one. We assume that there should

be a virtual network in the cell process, the connection among

genes should be stable no matter observable or not. Diverse

experimental conditions may enhance or repress transcription

from DNA to mRNA, and lead to the changes in mRNA levels in

different experimental conditions. In the past, many gene

regulatory studies involved only a limited number of genes in

some given conditions. It is difficult to infer genetic regulatory

networks or predict connections among genes when using

Bayesian theory and advanced data mining method for large

and diverse prior information or expression data. Here, our key

step is to cluster all conditions into several subgroups, where each

of the genes in the sub-cluster set has similar expression profile and

thus may share a common biochemical regulatory mechanism.

Hence, the synthetic regulatory networks built are for specific

condition clusters. The most popular connections indicate the

fundamental regulatory relationship in each specific condition

Figure 3. The fluctuation of standard deviation of aprA gene in different conditions and time series.
doi:10.1371/journal.pone.0035993.g003
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subgroup. The main advantages of the method are simplifying the

data by grouping and potentially avoiding the confliction of

regulatory relationship in information combination.

Setting a reference gene is the second feature of our strategy.

The threshold of genetic connections is a critical issue; it is related

to the confidence and quality of the genetic regulatory network. In

our research, pMS402 should not have any regulatory relation-

ships with other genes. We used it as a control, and only picked up

genes with stronger coefficients than that of pMS402. This

procedure set a biological basis for the relationship matrix in each

network. In future research, a statistical significance testing

method will be provided for the regulations. In the predicted

interaction networks, we also observed motifs analogous to the

feed forward loop, single input module (SIM) and dense

overlapping regulons (DOR) [27,36]. The network motifs are

important for allowing multiple steady states of gene expression

rates, and maintaining homeostasis of gene expression rates. Gene

networks incorporated with loops, modules and regulons can

readily produce oscillations and even more complex behaviors,

such as quasiperiodic or chaotic variations in gene transcription

rates [37].

The measuring of the turning on and turning off points via

the half of maximum expression is another merit of the analysis

strategy. Our strategy estimates the two time points, and pools

all gene expression data in all conditions. It reveals pronounced

gene activation asymmetries, which emphasizes that gene

expression during growth of bacteria is overall a strongly

constrained and ordered process, and exposes the activation

order of stable genes and environmental sensitive genes. The

expression time courses analysis could reveal physiology state

transitions in response to different environmental conditions if

we have many conditions and enough time point measure-

ments.

Overall, our computational framework adopts the principal idea

that the gene expression level is the outcome of genetic regulations

under specific experimental conditions, which allows classifying all

experimental conditions into different subgroups based on their

expression profiles, and combing more diverse gene expression

data sets. The pattern matching methodology is generally

applicable to a wide variety of pattern matching problems,

including abnormal gene expression analysis, unknown pattern

mapping and evaluation of temporal gene expression data. In

addition, the estimation of activation points provides a new tool to

understand the complex network of gene regulation.

Materials and Methods

Gene expression data
Promoter-reporter (luxCDABE) fusions for selected P. aeruginosa

genes previously constructed [25,26] were used in this study.

Figure 4. The networks of the five subgroups. The thickness and color of line indicate the popularity in each comprehensive genetic network.
The direction of transit is clockwise.
doi:10.1371/journal.pone.0035993.g004
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These genes are currently known virulence factors and genes that

are associated with pathogenicity in P. aeruginosa. Reporters used

in this study are listed in Table 2. Briefly, the promoter regions of

selected P. aeruginosa virulence factors were amplified by PCR

using oligonucleotide primers synthesized according to the PAO1

genome data and PAO1 chromosomal DNA as the template. The

PCR amplified promoter regions were then cloned into the XhoI-

BamHI sites of pMS402 and transformed into PAO1 by

electroporation. PCR, DNA manipulation and transformation

were performed following general procedures. The promoterless

luxCDABE operon in pMS402 enables the activity of the

promoter fused upstream of the operon to be measured as

counts per second (cps) of light production in a Victor2 Multilabel

Counter.

Initial cultures were grown in M9 minimal medium supple-

mented with casamino acid (0.1%), and glucose (0.5%) with

trimethoprim added at 200 mg/ml. Overnight cultures of the

reporter strains were diluted 1:200 in a 96-well microtiter plate

and the promoter activity of the virulence factors in different

conditions was measured every 30 minutes for 24 hours. Bacterial

growth was monitored at the same time by measuring the optical

density at 620 nm (OD620) in the Victor2 Multilabel Counter. All

the expression assays were carried out at least twice. Growth

conditions examined are listed in Table 3. These conditions

include different growth media that are frequently used in the

microbiology laboratories and conditions containing factors found

in P. aeruginosa infection sites e.g. sputum extract from cystic

fibrosis patients.

Figure 5. Pattern matching of temporal data. A. This is an original similarity matrix from PCA similarity analysis, the deep red on diagonal is
similarity of itself, the similarity is 1. B. This is the reorganized similarity matrix based on clustering analysis.
doi:10.1371/journal.pone.0035993.g005
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Gene expression level model
In gene expression analysis, we assume that any gene expression

level is a comprehensive result of gene effects and environmental

effects. The simple formula is as follows:

Y~GzEzG|Eze: ð1Þ

Here, Y is the column vector of expression level measurements of

m genes in a specific treatment m|n matrix if there are n

measurements at n time points; G is the gene effect. The effects

could be single gene effects, or interaction effects among multiple

genes, or a complicated genetic regulatory network for a set of

genes or whole genes in a genome. The effects indicate the inner

biochemical and physiological mechanisms; E is the environmen-

tal effect, it represents effects of different experimental treatments;

e is a random error.

Clustering analysis of gene expression with different
conditions

The large scale data consisted of gene expression measurements

in 72 conditions over 48 time points, all measurements were

corrected with OD value, and normalized in each condition. The

Figure 6. The mapping of unknown condition based on pattern matching of expression. For example, the expression pattern in the
complex media of sputum extracts looks most like minimal media growth conditions. The clustering analysis of the expression data for the 72
conditions can yield groups of conditions with similar expression profiles, which can be used for pattern mapping of unknown condition based on
expression pattern mapping.
doi:10.1371/journal.pone.0035993.g006

Figure 7. The expression profile of the rpoS gene. The turn point
is the half position from lift maximum, the turn off point is the half
position from the right maximum.
doi:10.1371/journal.pone.0035993.g007
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distance between two clusters is defined by

DKL~
1

NK NL

X
i[K

X
j[L

d xi,xj

� �
:

If d x,yð Þ~ x{yj j2, then

DKL~ xK{xLk k2
z

WK

NK

z
WL

NL

:

The combinational formula is

DJM~
NK DJKzNLDJLð Þ

NM

:

Figure 8. The visualization tool with Visual Basic. The red bar indicates the gene turning off point, the green bar indicates the gene turning on
point. The gene order by genes and conditions can obtained via sorting the data with turn on and turn off options.
doi:10.1371/journal.pone.0035993.g008

Table 1. The Gene Activation Order in the Networks.

Network Status Activation Order (from left to right)

A Turn-on algD, adh, znuA, xcpR/toxA, pKD201/pKD202/pMS404, rhlA, D203, fliC, exoS, exoT

Turn-off RpoS, xcpR, migA, znuA, xcpR, pKD201/pKD202/pKD203, rhlA, rhlR, plcH, pMS404, phzA1/phzA2

B Turn-on pKD201, pKD203/pKD202, znuA, rpoS/rnr, xcpR, exoS, phzA1/phzA2,

Turn-off phzA1/xcpR, pKD201/pKD202/pKD203, rpoS/rnr, phzA1/phzA2, hemo, exoY, exoS.

C Turn-on Adh/aprA, exoY, toxA/xcpR/rpoS, pKD201/pKD202/pKD203, plcH, pilG, phzA1/phzA2, lasR, znuA, rnr

Turn-off plcH, rhlA/rhlR/toxA, pKD202/pKD201, exoS/lasR, rpoS, algD, phzA1/PhzA2, migA, pMS404, znuA, aprA, pKD203,

D Turn-on pKD202, pKD201, znuA, pKD203,

Turn-off PlcH, rpoS, pKD201, pKD202, pKD203, rnr, xcpR, toxA, algD, lasA, pilT

E Turn-on pMS404, rhlR, toxA

Turn-off pMS404, znuA, lasR, phzA1

doi:10.1371/journal.pone.0035993.t001
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In average linkage the distance between two clusters is the average

distance between pairs of observations, one in each cluster.

Average linkage tends to join clusters with small variances, and is

slightly biased toward producing clusters with the same variance.

Analysis methods
We deal with gene expression data from m genes over n time

points t1, . . . ,tn. The data are represented in an m|n array Y,

and we assume that the gene expression levels at time tiz1 are

determined by the expression levels at time ti via the functional

Y : ,nz1ð Þ~f W � X : ,nð ÞzB :ð Þð Þ
Xk

i~1

f W � X : ,nð ÞzB :ð Þð Þ,

Y : ,nz1ð Þ~f W � Y : ,nð Þzbð Þ,i~1, . . . ,n{1

where W is an m|m matrix, b is a m|1 vector, f is some

nonlinear switching function (for example a sigmoid centered at 0)

which acts on each element of the m|1 vector W � Y : ið Þzb to

produce the m|1 vector Y : ,iz1ð Þ The notation used here has

the following meaning: if A is an array, then A : ,ið Þ denotes the ith

column of A.

Equation above can be partially inverted to give

W � Y : ,nð Þzb~f {1 Y : ,iz1ð Þð Þ i~1, . . . , n{1,

and we are trying to use these equation to determine the matrix W

and the vector b. To do this most conveniently, we group the

equations together, writing: Yout~ Y : ,2ð Þ . . . . . .j jY : nð Þ½ � and

Yin~ Y : ,1ð Þ . . . . . .j jY : n{1ð Þ½ � (note that these are m| n{1ð Þ
arrays). We also write

~WW~ W jb½ � and ~YYin~
Yin

1T

h i

where 1T is a row of n-1 ones. Then ~WW � ~YYin~f {1 Youtð Þ, and we

Table 2. The list of the gene reporters used in this study.

Gene Function PA number

lasI (pKD201) AHL synthase PA1432

lasR AHL dependent transcriptional regulator PA1430

rhlI (pKD202) AHL synthase (rhlL) PA3476

rhlR AHL dependent transcriptional regulator PA3477

lasA protease (staphylolytic protease preproenzyme LasA) PA1871

lasB (pMS404) Elastase PA3724

aprA alkaline protease (alkaline metalloproteinase precursor) PA1249

xcpP xcp secretion pathway (differient orientation from xcpR) PA3104

xcpR xcp (general secretion pathway protein E) PA3103

rhlA rhaminolipid (rhamnosyltransferase chain A) PA3479

rpoS stationary phase sigma PA3622

gacA transcriptional activator,response regulator PA2586

pilT Type IV pili (twitching motility protein PilT, pilT I followed by pilU) PA0395

pilG Type IV fimbrial (Part of the pilGHIJKL gene cluster) PA0408

algD alginate (GDP-mannose 6-dehydrogenase AlgD), first of 18-kb alginate operon. PA3540

plcH hemolytic phopholipaseC (hemolysin) precursor PA0844

toxA exotoxinA PA1148

exoS exoenzymeS (ADP-ribosyltransferase) PA3841

exoT exoenzymeT (99% similar to ADP-ribosyltransferase (exoenzyme 53)) PA0044

exoY adenylate cyclase PA2191

PhzA1 pyocyanin synthesis (phenazine synthesis cluster) PA4210

PhzA2 pyocyanin synthesis (phenazine synthesis cluster,first gene) PA1899

pvcA pyoverdine biosynthesis protein PvcA, first of four ORF cluster PA2254

hem putative hemagglutinins (43% identity to B. pertussis) PA0041

rnr exoribonuclease RNase R (virulence protein VacB) class2 PA4937

adh probable adhesion protein PA2407

znuA probable adhesion PA5498

fliC flagellin PA1092

flhA flagellar biosynthesis protein PA1452

migA probable glycosyl transferase (mucin-inducible gene) PA0705

oprH PhoP/Q and low Mg2+ inducible outer membrane protein H1 precursor PA1178

PA4350 (pKD203) Putative hemolysin PA4350

doi:10.1371/journal.pone.0035993.t002

Gene-Environmental Interactions
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want to solve this system for ~WW . This is done (in a least-squares

sense if the system is over or under-determined) by using the

pseudoinverse of ~YYin.

The thresholds of transit relationship matrix
Because pMS402 contains the promoterless luxCDABE operon,

we set pMS402 as a reference. Theoretically, it does not have any

relationships with other genes. To avoid meaningless regulation

associations among the gene set, we took the absolute value of the

coefficients of the gene pMS402 among the relationship matrix to

be the threshold in each condition. If coefficients among two genes

in the transit relationship matrix are greater than the threshold,

the coefficient is positive, and is given the value 1, indicating

positive transit relation, otherwise it is given the value 21,

representing a negative transit relationship; any coefficient less

than the threshold is given the value 0, representing no regulatory

associations between the two genes.

Pattern similarity analysis
Assuming that two data sets contain the same n variables but

not necessarily the same number of measurements, for each data

set we consider a principal component analysis (PCA) model

containing k principal components (PC). The PC number, k, is

chosen such that k principal components explain at least 95% of

Table 3. The environmental conditions tested.

Condition number Condition code Description Condition number Condition code Description

1 C1T1 M9 medium (-Tp) 37 C2T13 THY medium

2 C1T2 with PAO spent culture 38 C2T14 stavation M9+0.05%gluc

3 C1T3 BHI medium 39 C2T15 co-culture with P1 isolate

4 C1T4 LB medium 40 C2T16 co-culture with E3 isolate

5 C1T5 M9+0.05% CAA 41 C2T17 with 1% PAO biofilm effluent

6 C1T6 1% H2O 42 C2T18 with subinhibitory Gm

7 C1T7 control 1 43 C2T19 with 10 uM AI-2

8 C1T8 with 2.5% methanol 44 C2T20 with supernatant of PAO+gram

9 C1T9 control 2 45 C2T21 with supernatant of PAO

10 C1T10 M9+1% BHI 46 C2T22 with supernatant of PAO

11 C1T11 M9 with 1% AHL C4 47 C2T23 TSBDC+400 ug/ml EDDA

12 C1T12 control 3 48 C2T24 with AI-2

13 C1T13 LB medium 49 C3T1 co-culture with isolate N18(-Tp)

14 C1T14 M9 with 0.5% Gluc 50 C3T2 co-culture with isolate P11

15 C1T15 control 4 51 C3T3 1/4 diluted LB

16 C1T16 M9+1% Gluc 52 C3T4 1/4diluted THY

17 C1T17 1/4 diluted THY 53 C3T5 1/4 diluted BHI

18 C1T18 control 5 54 C3T6 with AI-2 analog #18

19 C1T19 control 6 55 C3T7 co-culture with isolate N18

20 C1T20 1/4 diluted THY 56 C3T8 with sputum extract and tobromycin

21 C1T21 1/4 dilute THY 57 C3T9 with subinhibitory Gm

22 C1T22 1/4 diluted BHI 58 C3T10 M9 with 5% gluc and CAA

23 C1T23 TSBDC medium 59 C3T11 1%(40% CAN

24 C1T24 PBS buffer 10% 60 C3T12 M9+CAA+Gluc+Tmp

25 C2T1 co-culture with isolate
D4(-Tp)

61 C3T13 1/4 diluted THY

26 C2T2 co-culture with isolate P1 62 C3T14 250 mM NaCI

27 C2T3 1/4 diluted BHI 63 C3T15 co-culture with isolate P11

28 C2T4 THY medium 64 C3T16 co-culture with isolate 9-2-8

29 C2T5 THY medium 65 C3T17 with supernatant of PAO+CF G+ve isolate

30 C2T6 with 25uM AI-2 66 C3T18 with Cm 2 ug/ml

31 C2T7 co-culture with isolate D4 67 C3T19 5 uM AI-2 diluted in water

32 C2T8 with 1% sputum extract 68 C3T20 with supernatant of PAO 50%

33 C2T9 with subinhibitory
tobramycin

69 C3T21 with supernatant of PAO+CF G+ve isolate

34 C2T10 1% D4 supernatant 70 C3T22 with supernatant of PAO

35 C2T11 1% AHL C4 71 C3T23 with supernatant of PAO and G+ve isolate

36 C2T12 with 2.5% sputum extract 72 C3T24 0.25 mM Boric acid

doi:10.1371/journal.pone.0035993.t003
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the total variance of each data sets. The similarity between the two

data sets is measured by comparing their principal components,

defining as a single number. Let be the PC number describing at

least 95% of the variance in data set S, and let as the PC number

in data set H, which also describe 95% of its variance. If

k~ max (kS,kH ), it ensures that k principal components explain

95% of the variance in each data set. The PCA similarity factor

compares can be calculated from the angels between principal

components:

SPCA~
1

k

Xk

i~1

Xk

j~1

cos2hij

where hij is the angle between the principal component i in data set

S and principal component i in data set H. The similarity factor

can also be expressed as

SPCA~
trace(LT MMT L)

k
:

here, L and M contain the k most significant principal components

for S and H.

Visualization of gene turning-on and turning-off position
To describe gene effects mechanisms in regulatory networks, we

defined expression prior to the maximum as the turning on

section, with the half position of the maximum being the gene

turning on point. Expression subsequent to the maximum is the

gene turning off section, with the half position of the maximum

being the gene turning off point. We estimated the two positions

via the least squares method. This visualization program reads and

parses the gene expression data into an easily accessible array, and

was created using Visual Basic. The data given were 31 genes in

72 conditions for 48 time points. When the gene was turned on

there would be a 1, when the gene was turned off there would be a

21 and the rest of the time points would be zero. The screen was

divided into 40 sections, where each section represented a

particular condition. The section is divided into 60 different

areas. When the gene was turned on, a green bar would be placed

in one of these 60 areas, and when the gene was turned off a red

bar would be placed into one of these areas. It was not unusual for

a gene to be on before the experiment or on after the experiment

was done, and in this case the appropriate bar was removed. The

program also allowed you to limit the number of conditions that

was displayed at any one time. For ease of viewing the upper limit

was 40 conditions, and for ease of coding, the lower limit was put

at 5. The display can be sorted four ways. The first is by the order

of activation in one condition, or sorting by which gene was on

first. The second is by which gene turned off first in a particular

condition. The third is sorting the conditions based upon which

one turned on a specific gene first. The last is sorting the

conditions based upon which condition turned off a specific gene

first.
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