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ABSTRACT Here, we report three new Acidiphilium genomes, reclassified existing
Acidiphilium species, and performed the first comparative genomic analysis on Acid-
iphilium in an attempt to address the metabolic potential, ecological functions, and
evolutionary history of the genus Acidiphilium. In the genomes of Acidiphilium, we
found an abundant repertoire of horizontally transferred genes (HTGs) contributing
to environmental adaption and metabolic expansion, including genes conferring
photosynthesis (puf, puh), CO2 assimilation (rbc), capacity for methane metabolism
(mmo, mdh, frm), nitrogen source utilization (nar, cyn, hmp), sulfur compound utiliza-
tion (sox, psr, sqr), and multiple metal and osmotic stress resistance capacities (czc,
cop, ect). Additionally, the predicted donors of horizontal gene transfer were present
in a cooccurrence network of Acidiphilium. Genome-scale positive selection analysis
revealed that 15 genes contained adaptive mutations, most of which were multi-
functional and played critical roles in the survival of extreme conditions. We pro-
posed that Acidiphilium originated in mild conditions and adapted to extreme envi-
ronments such as acidic mineral sites after the acquisition of many essential
functions.

IMPORTANCE Extremophiles, organisms that thrive in extreme environments, are
key models for research on biological adaption. They can provide hints for the origin
and evolution of life, as well as improve the understanding of biogeochemical cy-
cling of elements. Extremely acidophilic bacteria such as Acidiphilium are widespread
in acid mine drainage (AMD) systems, but the metabolic potential, ecological func-
tions, and evolutionary history of this genus are still ambiguous. Here, we se-
quenced the genomes of three new Acidiphilium strains and performed comparative
genomic analysis on this extremely acidophilic bacterial genus. We found in the ge-
nomes of Acidiphilium an abundant repertoire of horizontally transferred genes
(HTGs) contributing to environmental adaption and metabolic ability expansion, as
indicated by phylogenetic reconstruction and gene context comparison. This study
has advanced our understanding of microbial evolution and biogeochemical cycling
in extreme niches.

KEYWORDS acid mine drainage, evolution, horizontal gene transfer, comparative
genomics, Acidiphilium

Prokaryotes occupy almost all environmental niches and have dominated the ma-
jority of Earth’s evolutionary history. Extremophiles that thrive in extreme environ-

ments represent a key research field in many disciplines, ranging from the adaption to
extreme conditions to the cycling of elements in biogeochemistry. Extremophiles also
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have important implications for the research on the origin of life and the search for life
on other planets (1, 2). Acid mine drainage (AMD), characterized by extreme acidity and
high concentrations of metals and sulfate, represents an extreme ecological condition
and a major global challenge (3). The primary microbial taxa in AMD include Acid-
iphilium, Acidisphaera, Acidithiobacillus, and Leptospirillum (4). The biological factors that
contribute to the formation of this hyperacidic environment as well as the adaptive
mechanisms of the organisms inhabiting it are hot topics in current research (3, 5). The
genus Acidiphilium belongs to the family Acetobacteraceae, class Rhodospirillales, and
appears frequently in AMD environments (6, 7). Members of this genus are Gram-
negative, photosynthetic, aerobic and facultative anaerobic, metal-respiring, acidophilic
heterotrophs (8–10). They grow at pH 1.5 to 7.5, are able to utilize a wide range of
organic and inorganic substrates, and synthesize poly-�-hydroxybutyrate (PHB) for
carbon storage (11–13). Acidiphilium can also resist multiple harmful stressors such as
toxic metals (e.g., Cd, Ni, Cr) and osmotic pressure (14–16). There has also been
increased interest in the application of Acidiphilium spp. for microbial fuel cells (MFCs)
(17), as well as in metal mobilization from minerals or waste both in pure culture
and in coculture (18–20). Nevertheless, little is known about whether there are diver-
gences in the functional potential and niche partitioning among Acidiphilium-affiliated
species. In addition, the evolutionary history of many notable properties such as
carbon assimilation and metal resistance in Acidiphilium is still elusive. Acidiphilium is
one of only four genera in the family Acetobacteraceae found in acidic mineral sites,
with the other three genera being Acidicaldus, Acidisphaera, and Acidocella (21–24).
Evolutionary drivers such as horizontal gene transfer (HGT) and selection pressure
might have played their parts in the adaptive evolution of Acidiphilium that survives in
harsh acidic mineral conditions. However, their relative contributions are still ambigu-
ous. Horizontal gene transfer refers to the acquisition of genetic elements from distant
lineages for genetic and phenotypic innovations, a process contributing significantly to
evolution within challenging environments and during global geologic and/or climatic
events (25, 26). Positive selection, on the other hand, mediating survival fitness by
adaptive mutations, has also been an indispensable driving force in microbial evolution,
and recent investigations have shifted from testing selection on individual genes to the
entire genomes (27–30).

To assess the differences in metabolic capacity and niche adaption potential among
Acidiphilium species, and to unravel the evolutionary history of many fundamental
genetic properties of Acidiphilium, we performed whole-genome sequencing of three
novel strains of Acidiphilium isolated from two different AMD sites. Comparative
genome analysis was carried out, focusing on understanding the roles of evolutionary
processes in shaping the genomes of Acidiphilium. For this purpose, we conducted a
detailed comparison of Acidiphilium species. We performed ancestral genomic recon-
struction, cooccurrence analysis, and extensive phylogenetic analyses and explored the
genomic arrangements of pathways of interest. We also focused on discovering genes
under positive selection.

RESULTS
Genomic features and reclassification of Acidiphilium. Three Acidiphilium ge-

nomes (AccI, AccII, and ZJSH63) were sequenced, resulting in a complete genome of
strain AccI (a single chromosome and seven plasmids) and high-quality drafts of strains
AccII and ZJSH63, according to the MISAG standards (31). The characteristics of these
genomes and the other publicly available genomes of Acidiphilium spp. used in this
study are shown in Table 1. The visualization of strain AccI chromosome (applying
colors based on clusters of orthologous group [COG] classes) and comparative analysis
of our three genomes were performed (see Fig. S1 at https://doi.org/10.6084/m9
.figshare.12892016.v1). The genome size of Acidiphilium was about 4 Mbp. Although
strains AccI and AccII were isolated from the same site, strain AccI shared more gene
families with strain ZJSH63 than AccII. Strain AccII contained the most unique gene
families among our three strains. COG annotations showed that AccII contained more
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unique genes with adaptive functions than ZJSH63 and AccI, especially those related to
COG category L (replication, recombination, and repair) and COG N (cell motility).
State-of-the-art whole-genome average nucleotide identity (ANI) analysis (32) classified
all Acidiphilium genomes into four clades (species) based on an ANI cutoff of 95% (see
Fig. S2 at https://doi.org/10.6084/m9.figshare.12892016.v1). We found some disagree-
ment between our ANI results and previous nomenclatures of the Acidiphilium strains
(mainly based on 16S rRNA sequences) in GenBank/JGI-IMG databases (33–35). For
example, our ANI results showed that strains of Acidiphilium cryptum and Acidiphilium
multivorum, as well as Acidiphilium angustum and Acidiphilium rubrum, should be
classified as the same species (ANI � 95%). The major problem with previous species
classification, based on 16S rRNA gene sequencing, was the low resolution, as shown
by the low bootstrap values of the phylogenetic tree constructed with 16S rRNA
sequences (see Fig. S3B at https://doi.org/10.6084/m9.figshare.12892016.v1). This short-
age might be overcome by ANI analysis (32). Thus, the genomes of Acidiphilium spp.
were thereafter referred to as clades I to IV according to their new classification based
on ANI (Table 1; see Fig. S2 at https://doi.org/10.6084/m9.figshare.12892016.v1). Strain
CAG727 (GCA_000437515.1) was determined not to be a member of Acidiphilium, given
that it was phylogenetically distant from other Acidiphilium strains (see Fig. S2 and S3
at https://doi.org/10.6084/m9.figshare.12892016.v1), and was therefore excluded from
further analyses. The clustering of Acidiphilium strains based on ANI values was mostly
congruent with their geographic locations. For example, strains of clades I, II, and III
were isolated from North America, while strains of clade IV were isolated from Europe
and East Asia (see Fig. S2 at https://doi.org/10.6084/m9.figshare.12892016.v1). Whole-
genome synteny analysis of all available complete sequences of Acidiphilium (strains
AccI, JF-5, and AIU301, which belong to the same clade) showed that nine conserved
locally colinear blocks (LCBs) were present in these strains, but they differed in their
order of arrangement and similarity (see Fig. S4A in https://doi.org/10.6084/m9.figshare
.12892016.v1). A similarity-based whole-genome comparison of Acidiphilium spp. with
strain AccI as the reference showed that many genomic regions were not common to
all isolates, many of which harbored hypothetical proteins and mobile genetic elements
(see Fig. S5 at https://doi.org/10.6084/m9.figshare.12892016.v1).

Core genome and pangenome of Acidiphilium. Twelve genomes of the genus
Acidiphilium, with estimated completeness over 97.0%, were carefully chosen for
further pangenome analysis and genomic content reconstruction. The phylogenetic
trees based on the concatenated alignment of 133 core genes inferred with neighbor-
joining (NJ) methods were congruent with that based on whole-genome sequences
(Fig. 1A; see Fig. S3A at https://doi.org/10.6084/m9.figshare.12892016.v1). The pange-
nome of the 12 Acidiphilium strains possessed 8,845 gene families, while the core
genome possessed 1,422 gene families accounting for only 16.1% of the pangenome
(Fig. 1C). Core and pangenome analyses of the 12 Acidiphilium genomes revealed
an ‘‘open’’ pangenome fitted into a power-law regression function [Ps (n) �

3,533.18n0.375395], while the core genome was fitted into an exponential regression [Fc

(n) � 2,725.11e �0.073314n] (Fig. 1A). The open pangenome suggested that species have
undergone considerable gene exchanging to extend their functional profiles (36).
Functional COG annotation revealed that the core genome had a higher proportion of
genes classified in COG categories J (translation, ribosomal structure, and biogenesis),
C (energy production and conversion), O (posttranslational modification, protein turn-
over, chaperones), F (nucleotide transport and metabolism), and H (coenzyme transport
and metabolism), all associated with basic biological functions. The accessory
genome and strain-specific genes were biased toward COG categories G (carbohydrate
transport and metabolism), L (replication, recombination, and repair), P (inorganic ion
transport and metabolism), and N (cell motility) (Fig. 1D), which were probably related
to the adaption of Acidiphilium to oligotrophic, metal-laden, and acidic environments
that often cause DNA damage. Gene ontology (GO) enrichment analyses produced
similar results (see Table S1 in the supplemental material). Detailed metabolic recon-
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FIG 1 (A) The evolutionary timeline of Acidiphilium was estimated (left) using RelTime on top of the rooted NJ tree based on the concatenated
alignment of 133 core genes. Ancestral genome content reconstruction of Acidiphilium was performed with Count software, and the color depth
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struction of Acidiphilium was also performed; the core/specific metabolic features are
shown in Fig. 2 using different colors, and pathways containing predicted horizontally
transferred genes are marked with black rectangles.

MGEs and CRISPR-Cas systems. Mobile genetic elements (MGEs), such as insertion
sequences, transposases, genomic islands (GIs), plasmids, and phages, are known
signals of HGT events, and the number of MGEs correlates positively with the frequency
of HGT (37). MGEs in the genomes of Acidiphilium were identified in this study
(Table S2). The average number of transposon sequences per genome was 307, with A.
multivorum AIU301 harboring the greatest number (841). Members of the ISAli7,

FIG 1 Legend (Continued)
represents the numbers of reconstructed gain, loss, expansion, and contraction events of each lineage. Data of asteroid impacts, solar luminosity,
and fluctuations in atmospheric oxygen and carbon dioxide concentrations are displayed synchronously with divergence times in the form of time
panels (left). A stack bar diagram (right) shows the number of genes shared by all strains (i.e., the core genome), the number of genes shared by
partial strains (i.e., the accessory genome), and the number of strain-specific genes (i.e., the unique gene) in the tested strains. (B) Stack bar chart
showing functional proportions of Acidiphilium gene families undergoing gain, loss, expansion, and contraction events as based on COG classes. (C)
Mathematical modeling of the pangenome and core genome of Acidiphilium. (D) Bar chart showing functional proportions (based on COG categories)
of different parts of the Acidiphilium pangenome (i.e., core, accessory, unique). Detailed descriptions of the COG categories are provided in Text S1
in the supplemental material.
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FIG 2 Overview of metabolic potentials in Acidiphilium as predicted from genome annotation; core/specific metabolic features are shown with different colors,
and pathways containing predicted horizontally transferred genes are marked with black rectangles.
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ISGalb1, ISMex27, ISAan1, and ISAcr4 families were most common. The average number
of sequences located in GIs per genome was 527, with Acidiphilium sp. strain ZJSH63
containing the most (1,055). The average number of prophages and/or prophage
remnants per genome was 23, with Acidiphilium sp. strain AccII harboring the most (58,
with a total size of 69.9 kb). The number of plasmids in Acidiphilium could reach eight
(A. cryptum JF-5 and A. multivorum AIU301). The functional gene profiles of plasmids
from these three completely sequenced strains were also compared (see Fig. S4B to D
at https://doi.org/10.6084/m9.figshare.12892016.v1). Approximately 66 gene families
were shared among plasmids from these three strains, and certain degrees of collinear-
ity were observed. COG L (replication, recombination, and repair) functions were
enriched in the plasmid genomes. Type I-C/E/V and II-C CRISPR-Cas systems were also
found in Acidiphilium spp., with Acidiphilium sp. strain PM containing the most CRISPR-
Cas-related genes or spacers (38). The abundant MGEs present in genomes of Acid-
iphilium indicated that HGT might have contributed significantly to the genomic
evolution of Acidiphilium species during niche adaption, while the CRISPR-Cas system
would also help protect the genomes of Acidiphilium by eliminating harmful genomic
intrusion events, balancing genomic stability and functional investments (39). A recent
study also revealed that spacer sequences of the CRISPR-Cas system could not only
specify the targets of Cas nucleases but also facilitate HGT (40).

Evolutionary analyses of Acidiphilium. The evolutionary timeline of Acidiphilium

was also estimated on the rooted core gene tree (Fig. 1A). Overall, gene families
undergoing gain events outnumbered those undergoing loss events by approximately
three times (6,319 versus 2,231), and gene families undergoing expansion events
outnumbered those undergoing contraction events by approximately 20 times (1,173
versus 55) in the genomes of Acidiphilium. Our analyses suggested that there has been
an ongoing increase in genomic content throughout the evolutionary history of this
genus, from an estimated 2,026 gene families in the common ancestor to over 3,000
gene families. Predicted gain events of over 400 gene families occurred at nodes 3, 4,
6, and 9, accounting for approximately 14% to 25% of gene families at the correspond-
ing nodes. Of all gene families undergoing gain events, about half encoded hypothet-
ical proteins. A considerable proportion of gain events were related to COG category G
(carbohydrate transport and metabolism, 6.1%) and COG category E (amino acid
transport and metabolism, 5.0%), and a notable proportion of gene families undergoing
expansion events were also related to COG categories G (carbohydrate transport and
metabolism, 8.0%), E (amino acid transport and metabolism, 7.2%), C (energy produc-
tion and conversion, 7.2%), K (transcription, 7.0%), and L (replication, recombination,
and repair, 7.0%) (Fig. 1B). It seems that the COG categories involved are carbohydrate
metabolism and transport as well as amino acid metabolism and transport, which
reflect the adaptive strategies of Acidiphilium, including the expansion of metabolic
abilities to utilize a variety of potential nutrients, while the acquisition of efficient repair
mechanisms is in response to damage of biological molecules possibly caused by harsh
environments such as AMD sites. This was in line with previous work which showed that
larger genomes preferentially accumulated genes associated with metabolism, regula-
tion, and energy conversion (41). We also found that 8.3% of gene families undergoing
loss events belonged to COG category J (translation, ribosomal structure, and biogen-
esis) and that 12.7% of gene families undergoing contraction events belonged to COG
category X (mobilome: prophages, transposons) (Fig. 1B), which were probably related
to a holistic adjustment toward a more efficient operational and survival mode of these
heterotrophs. The most recent common ancestor (MRCA) of Acidiphilium spp. was
estimated to have emerged around 60.3 million years ago (Mya) (Fig. 1A, left), not long
after a recorded strong asteroid impact, which we postulated to be one of the possible
courses of significant changes to the Earth’s atmosphere, since it coincided with a
decrease in atmospheric O2 and increase in atmospheric CO2.

We extracted HGT events predicted with the IMG Annotation Pipeline (Table S3).
Results showed that a notable set of genes were identified as being acquired via HGT,
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accounting for up to 18.9% of genes among tested Acidiphilium genomes, indicating
the chimeric nature of these genomes. Cross-order HGT events from Rhizobiales were
the most frequent, accounting for �32% of total HGT events, followed by cross-class
HGT events from Gammaproteobacteria (�16%) and Betaproteobacteria (�11%) and
cross-order HGT events from Rhodobacterales (�7%) and Sphingomonadales (�6%). A
considerable proportion (�4%) of genes were derived via cross-class HGT from the
typical AMD autotroph Acidithiobacillia (Fig. 3). The above-mentioned HGT donors were
almost all consistently present together with Acidiphilium in the cooccurrence network
based on 16S rRNA gene amplicon data sets generated from AMD samples (Fig. 4). In
the cooccurrence network, Acidiphilium accounted for 0.2% of the nodes, while the HGT
donors occupied 0.3 to 22.4% of the nodes. Furthermore, most of these HGT donors
were present in the first-neighbor network of Acidiphilium. Function annotations of
putative horizontally transferred genes (HTGs) based on COG classes showed that these

other
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proportions of the HGT functions derived from respective donors based on COG classes. Detailed descriptions of the COG categories are provided in Text S1
in the supplemental material.
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FIG 4 Cooccurrence network based on correlation analysis of 16S rRNA amplicon sequencing data sets of AMD samples (n � 205). Each node denotes a
microbial OTU at a 97% cutoff. The first neighbors of Acidiphilium nodes (highlighted by a red rectangle) were selected using the tool “first neighbors of selected
nodes” in Cytoscape.
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genes were biased toward COG categories E (amino acid transport and metabolism), K
(transcription), C (energy production and conversion), and G (carbohydrate transport
and metabolism), which are associated with metabolic and energy production pro-
cesses, COG categories L (replication, recombination, and repair) and V (defense
mechanisms), all associated with defense and repair mechanism, COG category X
(mobilome: prophages, transposons), involved in the mobilization of genome frag-
ments, and COG category M (cell wall/membrane/envelope biogenesis), related to
enhanced cellular barriers against external disturbance. COG category N (cell motility)
was found to account for up to 37% of Rhodobacterales-derived HGT (Fig. 3), which
might facilitate Acidiphilium to swim away from harmful environments and/or toward
nutrients. We further performed detailed analyses of gene synteny and phylogeny for
examination and quantification of the cumulative impact of HGT on Acidiphilium
evolution.

Environmental stress adaption. Acidiphilium was predicted to originate at a time
when the O2 concentration present in the atmosphere reached its peak (22.7%) (Fig. 1A,
left). As Acidiphilium evolved, the atmospheric O2 concentration decreased to about
20.6% in a consistent manner. In contrast, solar luminosity gradually increased to
current levels (100 L), and the atmospheric CO2 concentrations first increased by
approximately 0.1%, followed by a decrease of about 0.05% (Fig. 1A, left). The bd-type
oxidase encoded by cydAB for oxygen-reducing energy production was present in all
clades of Acidiphilium but was not uniform with gene synteny and discrepancy of
phylogeny compared with the species tree (see Fig. S3, S6, and S7 at https://doi.org/
10.6084/m9.figshare.12892016.v1). This suggested that independent HGT events con-
tributed to the acquisitions of cydAB after the speciation of clades I and II but before the
divergence of clades III and IV. The acquisitions of cydAB genes were probably in
adaption to decreasing atmospheric O2 concentrations, considering the high affinity of
bd-type oxidase even at low O2 concentrations (42). Additionally, cytochrome bo3-type
ubiquinol oxidase (CyoABCD), which facilitates growth at low pH and low O2 concen-
trations (43), was found in Acidiphilium clades I and IV, which were probably acquired
from species sharing a habitat with Acidiphilium, such as Acidithiobacillus, Acidihalobac-
ter, and Acidiferrobacter species (see Fig. S8 at https://doi.org/10.6084/m9.figshare
.12892016.v1). The nuo gene cluster in Acidiphilium that encodes NADH:ubiquinone
oxidoreductase (complex I), and functions preferentially under aerobic conditions
(44–46), was also HGT derived (see Fig. S9 at https://doi.org/10.6084/m9.figshare
.12892016.v1). These acquisitions might explain the facultative anaerobic ability of
Acidiphilium. The HGT-derived Calvin cycle-related gene cluster prk-rbcLS-cbbX was
present in clades II and IV of Acidiphilium (see Fig. S10 to S14 at https://doi.org/10
.6084/m9.figshare.12892016.v1), which might help Acidiphilium overcome oligotrophic
AMD conditions through CO2 assimilation. Carbon monoxide dehydrogenase HTGs
(CoxLMS) were detected in clades III and IV (see Fig. S15 and S16 at https://doi.org/10
.6084/m9.figshare.12892016.v1). This suggested that Acidiphilium might utilize CO that
was present in mine areas (47) as an energy supplement and source of CO2, since the
atmospheric CO2 concentration dropped to a lower level upon the diversification of
Acidiphilium (Fig. 1A, left). Photosystem II-type photosynthetic reaction centers (Puf-
BALMC and PuhA) were found in all clades of Acidiphilium, probably transferred to
Acidiphilium after the speciation of clade III (see Fig. S17 to S19 at https://doi.org/10
.6084/m9.figshare.12892016.v1), coinciding with the acquisition of gene clusters prk-
rbcLS-cbbX and coxLMS. Ni/Fe hydrogenase HTGs were detected only in clade IV (see
Fig. S20 at https://doi.org/10.6084/m9.figshare.12892016.v1). AMD sites that Acid-
iphilium inhabits are hyperosmotic and rich in various metals due to the corrosion of
minerals by sulfuric acid and chemoautotrophic microbes (48). We discovered a set of
HGT-derived heavy metal resistance genes as well as osmotic pressure resistance genes
in the genomes of Acidiphilium (see Fig. S21 to S46 at https://doi.org/10.6084/m9
.figshare.12892016.v1). For example, apcA (49), arsH (50), which encodes an NADPH-
dependent metal-reducing cytochrome/protein, merA, encoding mercuric reductase,
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chrA, encoding a chromate transporter, and arsRCB, which confers arsenic resistance,
were present in all clades of Acidiphilium. It was notable that two of our strains, AccI and
AccII, harbored more copies of ferric ion-reducing apcA genes (49) than strain ZJSH63,
probably due to the higher ferric ion concentration in the sites that AccI and AccII
inhabited. HGT-derived toxic divalent cation (e.g., cadmium, zinc, cobalt, and copper)
resistance genes czcABC, czcD, copA, and mco and regulatory genes czrRS were also
present in all clades of Acidiphilium, while HGT-derived Cu homeostasis genes copCD
(51) were detected only in some strains of clade IV. Chelation of metals with polyphos-
phate (polyP) is also an effective metal resistance mechanism of acidophiles (52).
HGT-derived alkaline phosphatases (Alp), which release phosphate groups from various
compounds, and phosphate import systems encoded by pstSACB and pitA were present
in all clades of Acidiphilium. Compatible solute uptake and biosynthesis as well as
potassium uptake are known as common strategies to counteract osmotic stress (53,
54). The HGT-derived biosynthetic pathway of the compatible solute hydroxyectoine
conferred by the gene cluster ectRABCD-ask (55) was detected in the genomes of clades
III and IV. HGT-derived kdpABCDE, which confer resistance to osmotic stress by uptake
of K�, were present in all clades of Acidiphilium, likely acquired via individual HGT.
HGT-derived gene cluster proXWV-betBA-soxBDAG, involved in the uptake and biosyn-
thesis of glycine betaine, is present in all clades of Acidiphilium except for clade I. This
gene cluster was likely gained before diversification of clades III and IV but after
speciation of clade II. A standalone HTG, betC, also involved in glycine betaine synthesis,
was present only in clades III and IV. Motility and chemotaxis conferred by flagellar and
sensing proteins might help microbes swim away from harmful environments and
toward favorable chemicals or other nutrients. We found operons involved in flagellar
biosynthesis such as flg, flh, and fli located in identified genomic islands (GIs) (Ta-
ble S2C), and the HGT-derived chemotaxis operon cheDYBRWAYX was also found in all
clades of Acidiphilium.

Metabolic potential expansion through HGT. Many parts of the sulfur, nitrogen,
and carbon metabolic pathways in Acidiphilium were also acquired through HGT. The
Sox multienzyme complex (encoded by soxCDXYZAB and the regulatory soxH and soxR
genes), which oxidizes thiosulfate to sulfate (56), was present in all clades of Acid-
iphilium and was likely derived via independent HGT events in clade I, clade II, and the
MRCA of clades III and IV (see Fig. S47 and S48 at https://doi.org/10.6084/m9.figshare
.12892016.v1). HTG sqr, encoding sulfide:quinone oxidoreductase, was found in clades
III and IV (see Fig. S49 at https://doi.org/10.6084/m9.figshare.12892016.v1). HGT-
derived polysulfide reductase (PsrABC) was found in clade IV, while thiosulfate sul-
furtransferase (Tst) was detected only in clades II and IV (see Fig. S50 to S52 at
https://doi.org/10.6084/m9.figshare.12892016.v1). Homologues of Sdo1 in Acidithioba-
cillus caldus MTH-04 (A5904_0421), a new sulfur dioxygenase associated with tetrathio-
nate oxidation (57), were detected in all clades of Acidiphilium except clade II, likely
acquired after the diversification of clades III and IV (see Fig. S53 and S54 at https://
doi.org/10.6084/m9.figshare.12892016.v1). Thiosulfate dehydrogenase/tetrathionate
reductase (encoded by tsdA), which mediates the flow of electrons into respiratory or
photosynthetic electron chains (58), was also detected in Acidiphilium outside clade I
(see Fig. S55 at https://doi.org/10.6084/m9.figshare.12892016.v1), which was likely
acquired after the emergence of clade III (see Fig. S56 at https://doi.org/10.6084/m9
.figshare.12892016.v1). Reversible assimilatory sulfate reduction (conferred by cysND
and cysJHI), found in all clades of Acidiphilium, was inferred to be acquired before
diversification of clades III and IV but after the speciation of clade II (see Fig. S57 to S59
at https://doi.org/10.6084/m9.figshare.12892016.v1). Nitrogen metabolism enzymes for
nitrate/nitrite transporter (NarK), dissimilatory nitrate reductase (NarGHJI), nitric oxide
dioxygenases (Hmp), cyanate lyase (CynS), hydroxylamine reductase (Hcp), assimilatory
nitrate reductase (NasA), and nitrite reductase (NirBD) were all derived via HGT.
However, they were only sparsely present in Acidiphilium (mostly clade IV) (see Fig. S60
to S64 at https://doi.org/10.6084/m9.figshare.12892016.v1).
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Abundant HTGs involved in carbon metabolism were also detected, including those
coding for a complete methane catabolic pathway and many key genes involved in
hydrocarbon utilization. An HGT-derived methane catabolism pathway (conferred by
genes mmoXCYB, fdhA, mdh, gfa, frmA, and frmB) was found in almost all clades of
Acidiphilium (see Fig. S65 to S70 at https://doi.org/10.6084/m9.figshare.12892016.v1).
Soluble methane monooxygenase (sMMO) converts methane to methanol, which could
be further converted to formaldehyde by methanol dehydrogenase (Mdh). Formalde-
hyde is eventually converted to CO2 via enzymes encoded by gfa, frmA, and frmB (59,
60). Multiple genes related to glycolysis and gluconeogenesis (fba, fbp, GNL), the
pentose phosphate pathway (tkt, tal, pgd, rpe, G6PD, prsA, and xfp), the Entner-
Doudoroff pathway (gdh, ddgk, and pglD), methylglyoxal metabolism (megR), tricarbox-
ylic acid cycle or glyoxylate bypass (fumC, mdh, mdh, mls, icl), acetogenesis (spxB, pta,
PDHA1, actP), and the previously mentioned prk-rbcLS-cbbX involved in the Calvin cycle
were proposed to have been acquired via HGT (see Fig. S71 to S92 at https://doi.org/
10.6084/m9.figshare.12892016.v1). In addition, the rha operon, involved in metabolism
of L-rhamnose, was present in the genomes of clades II and IV, likely acquired by HGT
(see Fig. S93 at https://doi.org/10.6084/m9.figshare.12892016.v1). For sugar alcohol
metabolism, genes involved in the metabolism of erythritol and inositol were found
only in clades II and IV. The HGT-derived cluster iolBDC-inoKEF-iolIG1HEG2G3, conferring
inositol catabolic ability, was detected in clade IV, while a similar but differently
arranged gene cluster, iolDEG1G2-inoEKF-iolBCG3, was detected in clade II (see Fig. S94
at https://doi.org/10.6084/m9.figshare.12892016.v1). In addition, the ery operon, in-
volved in erythritol utilization, was presented in clades II and IV of Acidiphilium, likely
acquired via cross-order HGT (see Fig. S95 at https://doi.org/10.6084/m9.figshare
.12892016.v1).

Multiple genes involved in the biodegradation and metabolism of aromatic com-
pounds showed patchy distribution throughout the genus Acidiphilium. Many were
gained via HGT (see Fig. S96 to S103 at https://doi.org/10.6084/m9.figshare.12892016
.v1), including genes fadA, fadB, fadD (n-phenylalkanoic acid degradation), gene cluster
catFIJ (chloroaromatic degradation), gene cluster benABCD-catBCA (benzoate degrada-
tion), and genes pcaGH, pcaB, pcaC, pcaD, pcaT, pcaQ, and pcaIJ (beta-ketoadipate
pathway), together with pobA and pcaK (hydroxybenzoate degradation), iqoAB (n-
heterocyclic aromatic compound degradation), and fahA and faaH (styrene degrada-
tion).

Positive selection analyses. Genome-scale positive selection analyses were ex-
haustively performed on all 21 genomes of Acidiphilium in this study in order to expand
the input data set. The complete genome of Acidiphilium sp. AccI was used as the
anchor genome. Results showed that 15 genes were identified as being under positive
selection, including Ap_37 (exoribonuclease), Ap_279 (acyl coenzyme A [acyl-CoA]
dehydrogenase), Ap_346 (H�/Cl� exchange transporter), Ap_374 (membrane compo-
nent of nitrite reductase), Ap_696 (hypothetical protein), Ap_835 (N-acetyltransferase),
Ap_1029 (hypothetical protein), Ap_1038 (Holliday junction resolvase), Ap_1473 (3-
hydroxy acid dehydrogenase), Ap_1766 (hypothetical protein), Ap_1855 (asparagine
synthetase), Ap_2034 (transposase), Ap_2355 (pyridoxine/pyridoxamine 5=-phosphate
oxidase), Ap_2619 (cysteine synthase), and Ap_2636 (thioredoxin) (Table S4).

DISCUSSION

In this study, we present a detailed analysis of the metabolic capabilities and
evolutionary history of the genus Acidiphilium. Abundant HGT events were found to
contribute substantially to the genomic contents of Acidiphilium, providing this genus
with unprecedented elasticity to counteract harsh conditions such as those found in
AMD. HGT may also have had a great impact on the diversity of Acidiphilium gene
repertoires. Genome size dynamics (“Why are some genomes really big and others
quite small?”) and the occurrence of horizontal gene transfer (“Why does lateral transfer
occur in so many species and how?”) were listed as two world-class scientific questions
that awaited answers by the editorial of the journal Science entitled “So much more to
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know” (61), and we believe that the present study might provide some clues for these
questions. Our results showed that the genome size of Acidiphilium was relatively large
(�4 Mbp), with overwhelming gene family gains predicted across its evolution. This is
in sharp comparison with its endosymbiotic Acetobacteraceae relative (genome size of
�2 Mbp) that underwent genome reduction (62, 63). Microbes tend to evolve relatively
large genomes with higher nutrient uptake and metabolic potential as a means to
compensate for fluctuating and inhospitable environments (64–66). This theory could
be applied to Acidiphilium spp. that inhabit hyperacidic, metal-laden, nutrient-depleted
AMD environments, which are quite different from the stable environments (with
plentiful easy-to-metabolize resources) in which their endosymbiotic Acetobacteraceae
relatives dwell (67). The gene repertoire of microbes might evolve rapidly, with HGT
being a major source of gene acquisitions in microbial genomes, and a number of
genomic analyses have shown that microorganisms adopted new a “lifestyle” via HGT
in the colonization of new niches (68). In addition, HGT occurs mainly in the form of
horizontal operon transfer (HOT) (69), since many functional modules require a con-
tiguous gene cluster, as exemplified by the acquisition of the photosynthetic operon in
Rhodobacteraceae (70). Consistent with this, our results showed that HGT of functional
genes (cluster) might have conferred to Acidiphilium better environmental adaptations
as well as the expansion of a wide range of metabolic abilities. For example, the
coincided acquisitions of the photosystem II-type photosynthetic reaction center (RC),
Calvin cycle enzymes, and carbon monoxide dehydrogenases might have conferred
adaptive benefits to Acidiphilium by taking advantage of the high CO levels (�50 ppm)
in mining areas as an energy source (47, 71) and the increasing solar luminosity for
enhanced CO2 assimilation and/or energy production (72). The methane (CH4), metal
sulfides, hydrogen (H2), and hydrogen sulfide (H2S) that are present in mining areas (47,
73) are also potential energy sources for Acidiphilium. Hydrogen (H2) might be formed
in AMD areas through the acid dissolution of metals and minerals, and Ni/Fe hydro-
genases might exploit this as an electron donor to support chemolithotrophic growth
(74). Correspondingly, Acidiphilium acquired a nearly complete repertoire of methane
and sulfur metabolic genes, as well as genes encoding Ni/Fe hydrogenase. Evidence of
expression of the above-mentioned pathways has been shown in a Rhodospirillales
relative (75). This evidence together with previously observed related phenotypes of
Acidiphilium (see the introduction) suggests that these HGT-derived genes may also be
functional in Acidiphilium. Numerous HGT-derived resistance genes for AMD adaption
were present in Acidiphilium, similar to other AMD inhabitants (76, 77), reflecting
diverse strategies of Acidiphilium to avert the deleterious effects of toxic metals and
osmotic pressure in AMD environments. The acquired metabolic capacity of organic
compounds and hydrocarbon in Acidiphilium suggested a mutualistic interaction of
autotrophic acidophiles in AMD. For instance, metabolotoxic organic byproducts ex-
creted by autotrophs (e.g., Acidithiobacillus) might be utilized by chemoorganotrophs
(e.g., Acidiphilium), a process that in turn might stimulate the metabolic processes of
the autotrophs (78–80). AMD microbial communities tend to form biofilms on mineral
substrates for better metabolic cooperation and enhanced resistance against harsh
environments (80–82). The microbes in biofilms are usually active, and the high
community density, with increased proximity of microbes encapsulated in biofilm,
might create more numerous opportunities for the efficient occurrence of HGT. In
addition, MGEs, such as plasmids, might contribute to the development, stabilization,
and expansion of biofilm (83–85). Consistent with this, our results showed that the
predicted donors of HGT were also present in the cooccurrence network of Acidiphilium.
Cooccurrence networks in microbial communities may provide hints for ecological
interactions between species, on which HGT might have an influence (86, 87). Positive
selection was also found to be an important driving force for adaptive evolution of
Acidiphilium. Genes can be changed by positive selection for fixation of beneficial
variants in a population/species over time if they increase survival fitness, which might
help fine-tune gene expression in adaption to changing environmental conditions
(27–30). Those genes under positive selection in Acidiphilium were prone to play key
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multifunctional roles, of which even small adaptive changes in their coding sequences
might influence multiple pathways, bringing considerable benefits for survival of
microbes during evolution in response to changing global conditions and shifting of
niches. For example, the positively selected gene (PSG) cysK (Ap_2619, encoding
cysteine synthase) might perform functions related to sulfide utilization, tellurite resis-
tance, and growth inhibition (88–90); the PSG pdxH (Ap_2355), encoding pyridoxine/
pyridoxamine 5=-phosphate oxidase, might act as a potent quencher of reactive oxygen
intermediates and as an essential cofactor in amino acid metabolism (91, 92); and,
finally, the PSG trxA (Ap_2636) encodes thioredoxin, a small redox protein that may play
important roles in electron transfer, transcriptional regulation, immune response, and
oxidative stress defense (93–96). However, further experiments are required to confirm
their actual functions in Acidiphilium. The genus Acidiphilium is one of only four genera
in the family Acetobacteraceae reported to colonize metal-rich AMD sites thus far, with
the other genera of Acetobacteraceae found primarily in more moderate environments
such as vinegar production environments and breweries (38, 97, 98). We suggest that
the ancestor of Acidiphilium may have originated in mild or moderate conditions but
then adapted to extreme environments, such as AMD niches, with the help of HGT and
probable positive selection on the genes, similar to what has been found in acidophilic
archaeal lineages such as Thermoplasmatales and Sulfolobales, which seemed to have
evolved independently from moderately acidophilic ancestors (99). It is foreseeable that
as more Acidiphilium strains are isolated and sequenced, the panorama of Acidiphilium
evolution will gradually unfold before us.

Conclusions. Extremophiles that thrive in extremely acidic environments are re-
search model organisms for microbial adaption and evolution. In this study, we
provided evidence that Acidiphilium is characterized by a complex lifestyle granted by
HGT. By way of gene acquisitions, Acidiphilium has greatly expanded its genetic
diversity, resulting in functional divergence. Acidiphilium has acquired multiple abilities
via HGT, such as photosynthesis, CO2 assimilation, metal resistance, and organic
compound metabolism, which would facilitate beneficial interactions with cohabitant
autotrophs. In addition, the predicted donors of HGT were present in the cooccurrence
network of Acidiphilium. Positive selection on new mutations was also an important
driving force in the evolution of Acidiphilium. We further proposed that microorganisms
originating under mild conditions can adapt to extreme environments such as AMD
sites after the acquisition of multiple adaptive functions. Taken together, this study has
shed light on the ecological roles and evolutionary scenario of Acidiphilium and is a
good example of research on the adaption and evolution of extremophiles.

MATERIALS AND METHODS
DNA extraction, genome sequencing, and assembly. Strains AccI and AccII were isolated from an

acid mine drainage (AMD) water sample obtained in the Mangzi mining area (formed by oxidizing
dissolution of pyrite, characterized by a high ferric ion concentration), Yunnan Province, China (long
103.5, lat 23.3, altitude 1,847 m). Strain ZJSH63 was isolated from an AMD water sample obtained in the
heap leaching area for copper ore in the Zijinshan Gold and Copper Mine, Fujian Province (lat 25.2, long
116.4, altitude 282.6 m), China. Genomic DNA of strains AccI, AccII, and ZJSH63 were extracted using the
Qiagen genomic DNA extraction kit (Qiagen, Hilden, Germany) in accordance with the manufacturer’s
instructions. After the DNA sample passed quality testing, the large fragments were subjected to agarose
recovery using a BluePippin automatic nucleic acid recovery instrument (SAGE Science). The DNA was
damaged and repaired; after purification, the DNA fragments were end repaired and linked with adenine.
After a purification and ligation reaction, Qubit was used to accurately quantify the constructed DNA
library by following official protocol (http://cshprotocols.cshlp.org/content/2017/6/pdb.prot094730). The
DNA library was subjected to the PacBio Sequel platform for sequencing at Guangdong Magigene
Biotechnology Co. Ltd. (Guangzhou, China). After sequencing, SMRT Link v5.1.0 (https://www.pacb.com/
support/software-downloads/) was utilized for correction and assembly.

ANI and whole-genome alignments. JSpecies v1.2.1 was used to calculate average nucleotide
identity (ANI) based on the BLASTN algorithm with default parameters (100). BLASTN-based whole-
genome comparison of Acidiphilium strains (completeness � 97%) was performed and represented with
BRIG-0.95 (101). We utilized Circos (102) for construction and visualization of the multiple genome
alignments of strains with completely sequenced genomes, including AccI, JF-5, and AIU301.

Pangenome analyses and gene family evolution analyses of Acidiphilium. A summary of features
for the Acidiphilium genomes involved in this study are listed in Table 1. BUSCO (103) was used to
estimate the completeness of each genome against its bacterial core gene set. Gene family clustering of
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12 Acidiphilium genomes (completeness � 97%) together with UniProt search, GO Slim annotation, and
GO enrichment analyses (default cutoff P value, 0.05) was performed via OrthoVenn2 (104) with default
parameters. The BPGA pipeline (105) was used to perform model extrapolations of the Acidiphilium
pangenome/core genome by applying default parameters. We applied COUNT (106) under the Wagner
parsimony algorithm for ancestor genome size estimation and for detecting the gain, loss, expansion,
and contraction events of gene families with the penalty ratio set to 1.

Phylogenic analyses and divergence time estimation. Phylogenetic trees based on 133 concat-
enated core genes and 16S rRNA gene sequences of Acidiphilium were constructed with the neighbor-
joining (NJ) method using MEGA-X (107) with 1,000 bootstrap replicates. A chronogram for Acidiphilium
species with branch lengths reflecting divergence times was inferred on the core gene tree of Acid-
iphilium using the RelTime method (108) implemented in MEGA-X with the JTT matrix-based model as
described previously (109). The TimeTree reference data (110) that integrated data of asteroid impacts
(Earth Impact Database, http://www.impact-structures.com/database-of-earth-impact-structures/), solar
luminosity (111), and fluctuations in atmospheric O2 (112) and CO2 (113–116) amount were displayed
synchronously with divergence times in the form of time panels. Phylogenetic trees based on protein
sequences of functional genes were constructed using PhyML (117) with the maximum likelihood (ML)
method and 1,000 bootstrap replicates, followed by visualization with iTOL (118). Sequences were
aligned with Muscle (119) and trimmed with Gblocks (120) before tree construction.

Genome annotation and horizontally transferred gene prediction. We applied RAST (121), KEGG
(122), and COG (123) databases (BLASTP cutoff, E value � 10�5) for genome annotation. We also
extracted information of putative horizontally transferred genes from IMG Annotation results. Genome
neighbor (context) visualizations were conducted with the EFI-GNT tool (124). Identification of putative
horizontally transferred genes (HTGs) in the genomes of Acidiphilium was performed via the Integrated
Microbial Genomes (IMG) system (125), which defined genes as being putative lateral transfers by the
following principle: genes that have their best BLAST hits (best bit scores) or �90% of the best hits
outside the taxonomic lineage of the genome (i.e., to genomes from another phylum, class, etc.) but with
lower-scoring hits or no hits within the lineage.

Prediction of mobile genetic elements. We applied the ISfinder (126) to predict and classify
insertion sequences (IS) and transposases within Acidiphilium genomes with BLASTP (cutoff E value,
1e�5). IslandViewer 4 (127) was used to detect putative genomic islands (GIs) distributed within
Acidiphilium genomes. PHASTER (128) was applied to detect prophage and prophage remnant sequences
within Acidiphilium genomes. We also applied CRISPRCasFinder (129) for detection of CRISPRs and Cas
within Acidiphilium genomes.

Construction of cooccurrence network. To identify the associations between Acidiphilium and
other microbes in AMD environments, 16S rRNA amplicon sequencing data sets of AMD samples
(n � 205) were collected from the Sequence Read Archive (SRA) database (see Table S5 in the supple-
mental material). The QIIME (130) pipeline was applied to analyze these data sets. Sequences were
clustered into operational taxonomic units (OTUs) at the 97% similarity level with the “closed reference
OTU picking” strategy against the QIIME formatted Greengenes v.13.8 reference database (http://
greengenes.lbl.gov). Rare OTUs, with fewer than five occurrences, were removed before network
construction. The cooccurrence network was constructed using CoNet (131), which was implemented in
Cytoscape v.3.6.1 based on the OTU occurrence frequency. Pairwise scores between OTUs were calcu-
lated using Spearman rank correlations applying a threshold rho of �0.6 and a P value of �0.01. The
cooccurrence network was visualized with Organic layout in Cytoscape v. 3.6.1 (132).

Genome-wide detection of positively selected genes. We used the PosiGene pipeline (133) for
genome-wide detection of positively selected genes in the above-mentioned strains of Acidiphilium spp.,
in which Acidiphilium sp. AccI was used as the anchor species, reference, and target species. Genes were
considered under positive selection if the branch-wide test resulted in false discovery rates (FDR) of
�0.05 and adjusted P values of �0.05.

Data availability. The genome sequences of Acidiphilium strains AccI, AccII, and ZJSH63 have been
deposited in the JGI IMG-ER database under ER Genome IDs 2824045439, 2824049744, and 2828882166,
respectively.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
TEXT S1, DOCX file, 0.01 MB.
TABLE S1, XLSX file, 0.02 MB.
TABLE S2, XLSX file, 0.5 MB.
TABLE S3, XLSX file, 0.04 MB.
TABLE S4, DOCX file, 0.01 MB.
TABLE S5, XLSX file, 0.01 MB.
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