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Human activity recognition using magnetic
induction-based motion signals and deep
recurrent neural networks
Negar Golestani1✉ & Mahta Moghaddam 1

Recognizing human physical activities using wireless sensor networks has attracted sig-

nificant research interest due to its broad range of applications, such as healthcare, rehabi-

litation, athletics, and senior monitoring. There are critical challenges inherent in designing a

sensor-based activity recognition system operating in and around a lossy medium such as the

human body to gain a trade-off among power consumption, cost, computational complexity,

and accuracy. We introduce an innovative wireless system based on magnetic induction for

human activity recognition to tackle these challenges and constraints. The magnetic induction

system is integrated with machine learning techniques to detect a wide range of human

motions. This approach is successfully evaluated using synthesized datasets, laboratory

measurements, and deep recurrent neural networks.
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Human activity recognition (HAR) aims to provide infor-
mation on human physical activity and to detect simple
or complex actions in a real-world setting. It allows

computer systems to assist users with their tasks and to improve
the quality of life in areas such as senior care, rehabilitation, daily
life-logging, personal fitness, and assistance for people with cog-
nitive disorders1–6. Two main approaches for deployment of
HAR systems are external and wearable sensors7. In the external
approach, the monitoring devices are set at fixed points, and users
are expected to interact with them8. The vision-based technique,
for example, is one of the well-known external methods that has
been extensively studied for human activity analysis9,10. However,
it faces many challenges in terms of coverage, accuracy, privacy,
and cost. It requires infrastructure support, such as the installa-
tion of video cameras in surveillance areas, which is usually
costly. Additionally, cameras cannot capture any data if the user
performs out of their reach11,12. In the second approach, on-body
sensors, such as accelerometers, gyroscopes, and magnetometers,
are used to translate human motion into signal patterns for
activity recognition13–15. Recent advances in embedded sensor
technology have made it feasible to monitor the user’s activity
using smart devices. Several research studies have reported the
use of smartwatches and smartphones in human activity mon-
itoring, and have presented a satisfactory performance16–19.
Although these devices provide a privacy-aware alternative
solution that overcomes many disadvantages of the external
approach, they still might not be able to address the requirements
of a diverse range of applications. A single wearable cannot cover
the entire body and therefore fails to obtain adequate information
about the mobility of all body segments20–22. For example,
inertial sensors embedded in a smartwatch cannot capture the
movement of legs, which restricts the capability of the system in
classifying activities. Additionally, in systems relying on data from
a single device, variations in position can have a significant effect
on the performance or lead to the failure of the monitoring
system20,23,24.

Wireless body area network (WBAN) consisting of wearable
devices operating around the human body can tackle these
problems21,25. In WBANs, sensors are spatially distributed over
the human body and collect data from the user. Then data are
transmitted wirelessly to a central processing unit for detection.
This approach can provide comprehensive information on the
mobility of body segments and potentially improve system
accuracy. However, WBAN design is challenging as many con-
straining, and often conflicting, requirements have to be taken
into account26–28. For example, the system has to be inexpensive,
accessible to the general public, and meet ergonomic constraints
and health requirements. It has to operate under proper guide-
lines limiting the power exposure to the user since the energy
absorption may lead to temperature elevation in biological tissues.
To ensure users’ safety, it has to satisfy specific absorption ratio
(SAR) constraints, while providing a reliable wireless link29.
Moreover, the system should guarantee the security and privacy
of the user’s data. Wearable devices must be small and light-
weight, which puts a restriction on the battery size and longevity.
On the other hand, frequent battery recharging may not be
practical for sensor networks with multiple sensors in applica-
tions such as senior monitoring7. Due to the limitation of energy
resources, the power management has become a critical issue in
designing a WBAN. Since wireless communication consumes a
considerable portion of the energy30, numerous studies have
proposed and investigated low-power solutions31–34. The con-
ventional state-of-the-art wireless sensor networks working in the
vicinity of the human body adopt radio-wave propagation for
signal transmission. This technique is susceptible to the char-
acteristics of the environment, and its signal experiences a high

attenuation around a lossy medium, such as the human body. It
results in higher power consumption, shorter battery life, and
lower reliability33,35,36. Moreover, radio-wave propagation tech-
nologies are prone to interference with adjacent communication
links since most of them, such as Bluetooth, operate at the busy
2.4 GHz, the industrial, scientific, and medical (ISM) band37,38.
They also have potential security problems as their signal cannot
be stopped from propagating into free-space. Therefore it can be
intercepted even distant from the transmitter39.

We introduce the magnetic induction-based HAR (MI-HAR)
system that effectively detects physical movements by magnetic
induction (MI) signals. This system represents the motion of
human body parts via variations in the MI signals transmitted
from transmitter to the receiver during physical action, instead of
spatial data measured by the inertial sensors. This approach can
overcome several problems associated with conventional sensor-
based HAR systems, such as eliminating the need for an extra
wireless module, reducing power consumption, and the required
bandwidth by combining data collection and wireless signal
transmission steps. Moreover, it has other features that are
inherited from the MI-based communication system. Here we
verify the capability of the proposed method in identifying human
actions. We first synthesize MI motion data corresponding to
several physical activities. Then we apply machine learning-based
classifiers and deep recurrent neural networks to classify human
movements. The results indicate that the MI signals are infor-
mative descriptors for the motion of human body parts.

Results
System principle. The MI-based communication system is a
short-range wireless physical layer that transmits signals by cou-
pling non-propagating magnetic field between the wire coils rather
than radiating as conventional methods. The main component of
each node is a coil, which is lightweight, portable, inexpensive,
simple, and can be worn as accessories such as belts, wristbands,
and jewelry33,40. The manufacturing cost of an MI module is
approximately less than $20, while a Bluetooth IMU costs more
than $100 (refs. 41–43). The MI coils have a small radiation
resistance, which means that the energy propagated to the far-field
is negligible. As a result, multipath fading is not an issue, and the
MI system can offer a much better quality of service (QoS)
compared to Bluetooth-type systems33,44,45. The non-propagating
magnetic field produced by the coils falls off proportional to r−3

instead of r−1 for radiating fields at a transmission distance
r. Although the rapid decay limits the coverage range, it can be
favorable in short-range applications such as WBANs46. It allows
the signal to remain in a ‘bubble’ around the coil, which provides a
personalized space for the user. It also minimizes the leakage
outside the targeted coverage range, reduces interference, increases
security, and enables bandwidth reuse44,47. One of the main
notable advantages of the MI system is that it works well in lossy
dielectric media, such as the human body48. In these environ-
ments, the MI system experiences much less energy absorption
compared to conventional radio-wave propagation technologies49.
It results in lower SAR for applications working around the
human body. Due to smaller path loss, the MI system can transmit
a signal with much less power for the same range. This system can
be up to six times more efficient in terms of battery power
compared to other short-range communication systems (e.g.,
Bluetooth)47. This characteristic enables a large variety of novel
and demanding applications in harsh environments such as
underwater monitoring of scuba divers39,49,50.

The signal generated by an MI coil attenuates as a function of
frequency, channel medium, coils’ geometry, location, and
alignment (see Methods section)33. The non-propagating
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magnetic field is mainly affected by the permeability of the
medium, which is close to the air for non-ferrous materials. The
MI channel condition remains constant even in an inhomoge-
neous lossy medium, such as around the human body33,49. For
the frequency of up to 30MHz, the dimension of the human body
is relatively small compared to the wavelength, which makes the
propagation and scattering effects insignificant33. The immunity
of signal in this frequency range to the environment makes the
forward voltage gain, S21, of the MI system only a function of
coils’ locations and alignments for a predefined coil geometry and
operating frequency. The gain varies by changing the distance
and alignment between the MI coils, and therefore, relative
motion between the MI coils yields patterns in the received MI
signal. This unique characteristic of the MI system is the
fundamental principle of the proposed MI-HAR system.

System framework. The activity recognition process steps are
different depending on the application. The framework used in
this paper has two main stages: data acquisition and detection.
For the first stage, an MI-based communication system is
employed, which enables the integration of sensing and wireless
data transfer into a single step. The user wears the receiver (RX)
coil, for example, as a belt around the waist, and transmitter (TX)
coils can be placed around the other skeleton bones, such as
wrists, arms, and legs. The human body bones are spatially
translated and oriented during a physical activity, which changes
the relative location and alignment of the MI coils around them.
Collecting the received MI signals transmitted from the coils
enclosing skeleton bones can model the relative motion of human
bones to represent motion. Since the spatial variations of skeleton
bones over time are discriminative descriptors of human
actions51, the vector of samples observed by the MI coils over
time can be considered as the set of inputs for the activity
detection algorithm. Increasing the number of coils around the
skeleton bones results in a broader set of input data. It conse-
quently enhances the accuracy of the MI-HAR system in
detecting the relative motion of body parts. In the next step, a
classification method is applied to the MI motion data for
detecting human action.

MI system setup. The MI transceivers adopted in the experi-
ments consist of a coil and L-reversed impedance matching
network52. The matching network is used to maximize the
transmission efficiency of the overall system52. The coils are
identical, air-cored, single layer copper with 5 cm radius, 10
AWG wire diameter, and the user can wear them as accessories.
The coil’s radius can change depending on the size of the body
part that they are designed to be placed around. The source and
load impedances are 50Ω, and the resonance frequency is
13.56MHz. As the operating frequency is lower than 30MHz, the
human body effect is neglected33, and the effect of the back-
ground medium is considered to be the same as that of air. The
reversed L-matching networks consist of a series inductor of
5380 nH and a parallel capacitor of 600 pF.

Synthetic MI motion data. In this study, we have synthesized MI
motion data to evaluate the proposed MI-HAR system capability
in motion detection. The circuit model of the MI system (see
Methods section) is used to calculate the forward voltage gain,
which is the scaled version of the received MI signal. As the
pattern is the same, we used the generated voltage gain patterns of
the system as the input features for the detection algorithm.
Figure 1 shows the measured and simulated forward voltage gain
of two coils during their movement. Since the distance and
misalignment between two coils are required as inputs for the

model, their location and alignment are captured using video
object tracking (see Methods section). Results show that the
simulated signal is consistent with the measured data, which is an
indication of a valid model for generating time-series MI data.
We have performed experiments for 20 different motions that
involve both geo-translation and misalignment of coils. The
average normalized root-mean-squared error (NRMSE) of the
synthesized and measured S21 for these experiments is less than
10.3%. The reported NRSME not only takes into account model
error but also includes the error associated with the motion
tracking algorithm using video and vector network analyzer
(VNA) measurements.

To synthesize MI motion data during different human actions,
we considered a receiver and eight transmitter coils around the
torso, hands, arms, legs, and thighs, respectively (see Methods
section). For spatial translation and rotation of human body
bones, 3D motion capture (MoCap) datasets are employed. Each
pair of markers placed at the joints can define a bone. Hence, the
location and alignment of MI coils placed around the body parts
can be derived and provided as inputs to the model for
synthesizing the corresponding MI motion data. Two publicly
available experimental datasets: Biological Motion Library
(BML)53 with 4 activities and Berkeley Multimodal Human
Action Database (MHAD)54 with 11 activities are used here. A
brief description of these datasets is presented in the Methods
section. The generated synthetic forward voltage gain of the MI
transceivers corresponds to these datasets is presented in Fig. 2. A
point to consider is that we have extended the single-transmitter/
single-receiver model to a multi-transmitter/single-receiver sce-
nario, assuming the interferences such as cross-coupling between
coils are negligible, because the interference mitigation techniques
such as time-division multiplexing55 or frequency splitting56 can
be applied to reduce or ideally eliminate interference between
inductive systems. Moreover, interference protocols (e.g., RFID
interference protocols) can control communication between
transceivers while preventing their interference with one other.
Therefore, the model can provide a reasonably accurate estimation
of multi-coil system performance.

Performance. Tracking the motion of body parts during physical
activity is critical in characterizing an individual’s movement, and
collecting data that provide a more accurate representation of
these motions results in better activity detection. The MI signals
express a strong relationship with the geo-translation of body
segments since the system gain is directly affected by distance and
misalignment between coils. Distributing more coils around the
human body provides comprehensive information about the
user’s body movements and results in a better distinction between
similar actions. We used the MHAD dataset to compare the
capability of the MI signal and accelerometer data in estimating
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Fig. 1 Measured vs synthetic magnetic induction (MI) data. The measured
and simulated voltage gain of two MI coils during arbitrary movement, such
that both relative alignment and location of coils vary.
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the location of a body part during physical activity. The accel-
erometer is considered here as a benchmark because it is the most
frequently used wearable sensor modality for human activity
monitoring. Six markers placed close to the accelerometers are
considered as target points. Then the similarity between the 3D
location of each target point and data of its corresponding
accelerometer and MI transceiver is calculated. We used R2 as the
similarity metric, and the average values over the whole dataset
are presented in Fig. 3. The results show that, on average, the MI
signal has a stronger relationship with the 3D location of markers
compared to the accelerometer data. This characteristic can be
useful not only in classifying human activities but also in
reconstructing the motion trajectories of body segments. Many

studies have adopted IMUs to reconstruct the trajectories of
movements for motion analysis in different applications. Exam-
ples include handwritten digit recognition57, monitoring trunk
kinematics during standing up to sitting down58, and tracking
the motion of body parts on patients who have been affected
by neurological conditions for rehabilitation purposes59. In
inertial sensor-based recognition systems, the velocity and posi-
tions are computed indirectly by the integration over sensor
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Fig. 2 Synthetic magnetic induction (MI) motion data. The forward voltage gain S21 between the receiver (RX) and transmitters (TX1–TX8) are generated
using the proposed MI model and the human motion data captured for different activities in two datasets: a Biological Motion Library (BML) and b Berkeley
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Fig. 3 Average R2 between XYZ of each target point and data of its
corresponding accelerometer and magnetic induction (MI) transceiver.
The R2 reports the similarity between two sets of data by a number
between zero and one, where a higher number shows a stronger
relationship between two datasets.

Table 1 Performance summary.

Classifier Overall
accuracy

Average
precision

Average
recall

F1 score

BML
SVM 83.5% 85.4% 83.5% 0.84
KNN 79.4% 80.0% 79.4% 0.8
Decision Trees 77.3% 77.1% 77.1% 0.77
Random Forest 86.6% 86.5% 86.5% 0.86
Logistic
regression

83.5% 86.2% 83.6% 0.85

Deep LSTM 87.0% 86.7% 87.0% 0.87
MHAD

SVM 96.4% 96.6% 96.4% 0.96
KNN 90.3% 91.1% 90.3% 0.91
Decision Trees 81.2% 82.3% 81.2% 0.82
Random Forest 90.9% 91.8% 90.9% 0.91
Logistic
regression

90.9% 91.3% 90.9% 0.91

Deep LSTM 98.9% 98.9% 98.9% 0.99

The result of classification models using generated synthetic magnetic induction (MI) motion
data of different datasets.
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measurements. It makes the estimation errors caused by the
intrinsic noise/drift grow unbounded with time. For example, the
average displacement error of Xsens IMU after 1 min is about
152 m59. On the other hand, the MI motion signal is directly
affected by the location and orientation of coils. As a result, the
trajectory reconstruction using MI signals does not require inte-
gration over measured data, which removes the problem of the
cumulative error.

To assess the performance of the proposed MI-HAR system in
recognizing human activities, we implemented deep recurrent
neural networks (RNNs) based on long short-term memory
(LSTM) units due to their strong performance in human activity
detection, and their capability in learning complex representa-
tions of the motion data60,61. We compared the results of this
method with several commonly used classifiers for activity
detection using generated synthetic MI motion data. Table 1
summarizes the performance results of LSTM with methods
including support vector machines (SVM), K-nearest neighbors
(KNN), decision trees (DT), random forests (RF), and logistic
regression (LR). The confusion matrix of each classification
method on BML and MHAD datasets are also presented in Figs. 4
and 5, respectively. The results are compared to other previously
introduced methods using different modalities for activity
detection. We employed accuracy as an evaluation metric for
comparison, as datasets used in this paper are balanced and have
an equal number of samples for each activity. The results
presented in ref. 62 show that SVM and Multi-Task Conditional
Restricted Boltzmann Machines (MT-CRBMs) classifiers have
achieved an accuracy of 41.3% and 54.5% using BML motion
capture data, respectively. For the MHAD dataset63, has reported
an accuracy of 98% by applying SVM on accelerometer data. The
random forest classifier has also achieved an accuracy of 96% and
68.2% using MHAD motion capture and audio data64. The
accuracy of LSTM using camera RGB image for human activity
classification is stated as 92.4%65. Our results indicate that the
deep LSTM model with optimum hyperparameters outperforms
other classifiers by a considerable margin on the generated
synthetic MI motion data. The recurrent neural networks can
capture sequential and time dependencies between input data that

results in a strong performance. The LSTM cells let the model
capture even longer dependencies compared to vanilla cells. A
deep architecture with an optimal number of layers enables the
neural network to extract useful discriminative features from the
set of input data and to improve the performance of the model. It
should be noted that the datasets used in this paper are diverse,
which proves the classifier models are valid for a broad range of
activity recognition tasks. Moreover, the actions recorded in the
BML dataset, including knocking, lifting, and throwing, are very
similar as only one hand is moving. The same movement of
human body parts in these activities makes it difficult to
distinguish and categorize them. Despite these challenges, the
deep LSTM model has achieved high accuracy, and it indicates
that the recurrent model is capable of classifying human actions
by using MI motion signals.

Discussion
HAR is a powerful technology with a wide range of applications
such as healthcare, rehabilitation, sports training, and senior
monitoring. We proposed a new wearable-based HAR system
using MI for motion capture and wireless signal transmission.
This method can tackle existing issues with conventional HAR
systems in various aspects, including power consumption, the
complexity of implementation, and cost. It can also provide a
suitable infrastructure for new applications working in harsh
environments, such as underwater. The proposed system is a new
sensing approach for capturing human motions, which can also
be integrated with other monitoring modalities to provide a more
comprehensive HAR system.

To show the capability of the MI-HAR system in detecting
human movements, we generated synthetic MI motion data
received from MI transmitters around the user’s body during
different activities by the MI system model. As mentioned before,
the model used for synthesizing MI motion data does not con-
sider cross-coupling between transmitter coils. However, this
cross-coupling is not necessarily destructive and can even provide
further information regarding the location and alignment of all
coils relative to each other. In this scenario, each received signal is
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Fig. 5 Confusion matrix for the validation set corresponding to the Berkeley Multimodal Human Action Database (MHAD). The results correspond to
a support vector machines (SVM), b K-nearest neighbors (KNN), c decision trees (DT), d random forests (RF), e logistic regression (LR), and f deep long
short-term memory (LSTM) recurrent neural network (RNN) classifiers. The rows and columns represent the percentage of true activity labels and the
predicted activity labels, respectively.
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not only a function of the transmitter and receiver coils but also
the arrangement of all other coils affects it. Therefore, the
movement of even a single body part results in a different signal
pattern and can make the system more accurate in detecting
actions similar to each other. In the future, we plan to build a
realistic deployment-ready prototype of the MI system for cap-
turing MI motion signals during various human activities. Such a
system would allow us to perform experiments on real-world MI
motion data to demonstrate the accuracy of our method and
study the effect of cross-coupling interference on the MI-HAR
system. The proposed system can also be integrated with other
modalities and monitoring techniques to provide a more com-
prehensive system for human motion tracking.

We employed several commonly used machine leaning-based
classifiers and deep recurrent neural networks for the detection
step. We empirically evaluated the proposed MI-HAR system by
conducting experiments on the generated synthetic MI motion
dataset and discussed the outcomes in detail. Experimental results
reveal that the proposed deep LSTM model shows outstanding
performance compared to other approaches. One of the benefits
of using the deep recurrent neural network for sequence classi-
fication is that it can support multiple parallel temporal input
data from different sensor modalities such as MI sensors, accel-
erometers, and gyroscopes. The model can learn complex features
directly from raw data and map them to activities. It removes the
need for manual feature engineering by experts while it achieves a
comparable performance to models with the feature handcrafting
step. Besides, the neural network model enables an interactive
learning system when the user provides training data even after
the initial training step. It allows the user to fine-tune a pre-
trained neural network model with their personal data. However,
the neural network complexity should be assessed where models
have to be implemented in embedded systems with limited pro-
cessing capability. It highlights the importance of trade-off
between computational cost and detection accuracy to ensure
real-time feedback.

Methods
Theoretic circuit modeling of the MI system. The MI system consisting of two
coils can be modeled as a two-port network shown in Fig. 6. Coils are attached to
impedance matching networks, called input and output matching networks, to
maximize the transmission efficiency of the overall system52. The closed-form
expressions of these circuit parameters are reported in ref. 33 to facilitate perfor-
mance analysis of the MI-based communication system around the human body.
The model is validated by simulations and measurements performed for various
coils in different locations and alignments relative to each other33. The average
error of all experiments compared with the simulated signal attenuation results is
lower than 10% in the frequency range below 30MHz. The more advanced version
of the expressions without any simplification is also calculated and reported in this
work.

Assume that the transmitter coil with number of turns NTX, area STX, and
current ITX is centered at CTX, and its surface normal is bnTX. The receiver coil with
number of turns NRX and area SRX is centered at CRX, and its surface normal is bnRX.
The mutual inductance between the coils in a linear, homogeneous, isotropic
background medium with permeability μ and complex propagation constant γ can
be calculated from M ¼ μNTX

ITX

R
SRX

HTX:dSRX
33,66. By using the exact expressions for

the magnetic field generated by the TX coil HTX and applying a procedure similar to
ref. 33, one can derive the mutual inductance without any simplification as follows:

M ¼ μ NTX NTX STX
4 π

Z 2π

ϕ0¼0

Z aRX

ρ0¼0
ρdϕdρ

�ρ2 cos α� ρ sinϕ ð1þ cos2αÞðcrx:byÞ
�
� ρ sinϕ sin α cos αðcrx:bzÞ � 2ρ cosϕ cos αðcrx:bxÞ
� cos αðcrx:bxÞ2 � cos αðcrx:byÞ2 � sinαðcrx:byÞðcrx:bzÞ

�
:

Rf1þ γr þ γ2r2

r5
e�γrg

þ cosαðcrx:bzÞ2 � sinαðcrx:bzÞðcrx:byÞ
�

� ρ sinϕsin2αðcrx:byÞ þ ρ sinϕ cos α sin αðcrx:bzÞ
�
:

Rf1þ γr
r5

e�γrg�;

ð1Þ

where r is the distance between the origin and the observation point and can be
defined in the cylindrical coordinates as follows:

r ¼ rðρ;ϕÞ
¼ ρ2 þ ðcrx:bxÞ2 þ ðcrx:byÞ2 þ ðcrx:bzÞ2
�
þ 2ρ sinϕ ½cos αðcrx:byÞ þ sinαðcrx:bzÞ�
þ 2ρ cosϕðcrx:bxÞ�1=2;

ð2Þ

The parameters used in the above expressions are calculated from location and
alignment of TX/RX coils as follows:

α ¼ tan�1 � bnrx:bybnrx:bz
� �

; ð3Þ

bnrx ¼ RzðθzÞ RyðθyÞ RxðθxÞ bnRX; ð4Þ

Crx ¼ RzðθzÞ RyðθyÞ RxðθxÞðCRX � CTXÞ; ð5Þ

θx ¼ tan�1 bnTX:by
bnTX:bz
� �

; ð6Þ

θy ¼ tan�1 � bnTX:bxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbnTX:byÞ2 þ ðbnTX:bzÞ2

q
0
B@

1
CA; ð7Þ

θz ¼ tan�1 ðbnRX:bxÞ½ðbnTX:byÞ2 þ ðbnTX:bzÞ2�
ðbnRX:byÞðbnTX:bzÞ � ðbnTX:byÞðbnRX:bzÞ

 

� ðbnTX:bxÞ½ðbnTX:byÞ2ðbnRX:byÞ � ðbnTX:bzÞðbnRX:bzÞ�
ðbnRX:byÞðbnTX:bzÞ � ðbnTX:byÞðbnRX:bzÞ

!
;

ð8Þ

where Rx(θx), Ry(θy), Rz(θz) are rotation matrices that rotate vectors by an angle
θx, θy, θz about the x-, y-, or z-axis using the right-hand rule.

The self-inductance and resistance, which comprises DC resistivity, skin depth
δw, and proximity effects, of a coil with radius a, length b, number of turns N,
circular cross-section wire, core-material permeability μ, wire diameter ϕw, and
wire resistivity of ρw can be expressed as follows33,67:

L ¼ μ a N2 log
8 a
b

� 1
2
þ b2

32 a2
log

8 a
b

þ 1
4

� ��

� b4

1024 a4
log

8 a
b

� 2
3

� �
þ 10 b6

131072 a6
log

8 a
b

� 109
120

� �

� 35 b8

4194304 a8
log

8 a
b

� 431
420

� ��
;

ð9Þ

R ¼
2 a N ρw

δw ðϕw�δwÞ if ϕw < δw
8 a N ρw

ϕ2w
if ϕw ≥ δw

8<
: : ð10Þ

There are multiple parameters for analyzing and determining the performance of a
two-port network. As the proposed MI-based communication system is a cascaded
connection of two-port networks, the ABCD parameters are the best candidate. These
parameters, which are also known as transmission, chain, or cascade parameters, relate
the input current and voltage at port-1 to the output. The ABCD parameters of the MI
system are equivalent to the product of ABCD matrices corresponding to the input
matching network, the MI system, and the output matching network, accordingly68.

MI system

ZS

RTX
LTX-M LRX-M RRX

M

Input
matching
network

Output
matching
network

ZL

Zin
MI coils

Zout

Fig. 6 Equivalent two-port network model of magnetic induction (MI)
system. The model is integrated with input and output matching networks,
and M, LTX, RTX, LRX, and RRX are the mutual inductance between coils,
inductance, and resistance of transmitter and receiver coils, respectively.
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The scattering matrix S is another set of two-port parameters defined in terms of
incident and reflected waves at ports. One of the matrix elements is forward voltage
gain S21, which shows the voltage of the network at port two divided by the voltage at
port-1. Converting the ABCD parameters to S-parameters, the forward voltage gain of
the MI system can be determined as follows68:

S21 ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRfZSg RfZLg
p

A ZL þ Bþ C ZS ZL þ D ZS
; ð11Þ

where A, B, C, D are the ABCD parameters of the overall MI system including the MI
coils and the matching circuits.

Measurement. The forward voltage gain of two coils is measured for 30 s via a
VNA with 1800 points resolution. The corresponding synthetic S21 is also gener-
ated by using the system model for comparison. All parameters of the model are
predefined based on the MI system setup except the distance and misalignment
between coils, which are variable during the movement. Hence, two coils are
labeled with red markers and placed in front of a green screen. The motion of coils
is captured via an iPhone’s built-in camera with 30 fps, and the videos are pro-
cessed offline to extract markers, their center, and alignment, as shown in Fig. 7.
Since only one camera is used, without loss of generality, coils only move in 2D
such that the camera can capture their motion. The extracted pixel-wise movement
of coils is then converted to the spatial translation using a predefined length
‘calibration label’. The ratio of the calibration label’s length to its size extracted
from video provides a meter to pixel ratio. As the camera is fixed during the
experiment, this ratio remains constant for all frames of the video. The recorded
distance between coils covers up to 60 cm range. The generated synthetic MI data
are synchronized with measured data by minimizing the NRMSE. The code used to
track coils and calculate the forward voltage gain of the system based on the circuit
model reported in this work is implemented in MATLAB.

Simulation. Figure 8a depicts the location of coils considered around the human
body for generating synthetic MI motion data. The location of markers required to
track coils motion is also displayed in Fig. 8b. Assuming that the coils are located at
the midpoint of bones, we can calculate their center by averaging the location of
corresponding paired markers. For example, Fig. 8c shows the right leg, its cor-
responding transmitter coil, and markers. The center of the transmitter coil TX8

can be calculated as cTX8
¼ ðM14 þM15Þ=2. The coils are around the human

bones, which indicates that the alignment of the line passing through the markers is
the same as the surface normal of its corresponding coil. Therefore, the surface
normal of the transmitter TX8 can be written as n̂TX8

¼ ðM15 �M14Þ=jM15�M14j.
The code used to calculate the forward voltage gain of the system based on the
circuit model reported in this work is implemented in MATLAB.

Datasets of human activities. The experimental datasets considered in this work
contain diverse movement data to verify the applicability of MI-HAR in detecting a
wide range of activities. The BML dataset53 contains a full-body movement dataset
for walking, knocking, lifting, and throwing performed by 15 male and 15 female
actors in a neutral, angry, happy, and sad style. The dataset is balanced and has the
same number of records performed by actors for each action. The total number of
samples is 1028, with a sampling rate of 60 Hz. For walking action, the data are
captured for 30 s of walking in a triangle turning rightward (clockwise), and
turning leftward (counterclockwise). For the knocking, lifting, and throwing
actions, five repetitions of a single action unit are obtained for each data record,
which is approximately 20 s in duration. The MHAD dataset54 contains the data
for jumping, jumping jacks, bending, punching, waving two hands, waving one
hand, clapping, throwing, sit down/stand up, sit down, stand up. The number of
records for each action is the same, and each action is performed by seven male and
five female subjects, yielding about 659 data sequences. Except for sitting down,
stand up, and throwing, all records include five repetitions of a single action. The
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Y:543

X:972
Y:756

X:933
Y:993

a b

Fig. 7 Measurements. a Schematic representation of measurement setup. b The camera frame sample after video processing for object tracking and
extracting red and blue markers attached to coils and the fixed-length calibration label, respectively.
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Fig. 8 Magnetic induction (MI)-based communication system. a Location of MI transceivers (TXi, RX) on the human body and the laboratory version of
an MI transceiver. b Location of markers (Mj) on the body. The marker pairs of (2,9), (3,4), (4,5), (10,11), (11,12), (6,7), (7,8), (13,14), (14,15) define two
ends of the torso, left arm, left hand, left thigh, left leg, right arm, right hand, right thigh, and right leg, respectively. Consequently, these pairs can be utilized
to calculate the location of coils (CTXi

, CRX) and their alignment (bnTXi
, bnRX). c The center and alignment of a bone and its corresponding coil can be

calculated using markers locations.
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approximate recording length of activities varies from 2 to 15 s. The dataset con-
sists of data from four microphones with a sampling rate of 48 kHz; six accel-
erometers fixed on wrists, hips, and ankles with a sampling rate of 30 Hz, the
optical motion capture system with a sampling rate of 480 Hz, cameras with a
sampling rate of 22 Hz, and depth sensors with a sampling rate of 30 Hz. In our
experiments, we used the down-sampled MoCap data to 60 Hz.

Data preprocessing. In our experiments, we have used the magnitude of MI
signals as input for the classifiers. Data samples are processed before fetching into
the classification models. The processing methods are implemented using Python
3.6. For data cleaning, the missing values are substituted with previous non-missing
values, and a 5-point quadratic (order 4) polynomial Savitzky-Golay filter is
applied for denoising. Then the baseline offset is removed from time-series data. In
the MHAD dataset, 3% of the signals are removed from the end of each data
sample as the reported experiments show improvement in the accuracy63.

Classification. The classifier models are implemented using Python 3.6. They are
trained and evaluated on the generated synthetic motion datasets of eight bones
using the leave-one-subject-out cross-validation (LOSO-CV) method. For the
experiments on the BML and MHAD dataset, respectively, six and two subjects are
used for validation and the rest for training.

Machine learning-based classifiers: The machine learning-based classifiers are
implemented using python library Sklearn69. The multi-class models are non-linear
SVM with a polynomial kernel, KNN, decision trees, random forests, and logistic
regression. We used the bag-of-words (BoW) representation to characterize the
time-series data with different lengths. First, the synthetic MI motion data are
divided into fixed-length segments of 1 second using the sliding window technique
with 0.8 second overlap. Attributes are then computed for the time domain,
frequency domain, and time-frequency domain of each window segment.
Frequency domain and time-frequency domain representations of the signal are
calculated by the fast Fourier transform (FFT), and single-level discrete Wavelet
transform (DWT) based on the Daubechies2 wavelet filter, respectively. The
attributes considered here are extremes, mean, median, standard deviation, lower
quartile, upper quartile, skewness, kurtosis, and the correlation between each pair
of signals. As each action is associated with eight data samples, the resulting feature
vector for each segment is generated by the concentration of eight feature sets.
Features are also scaled using the min-max scaling method to bound values in the
range of 0–1. The scaling makes the weight of all features equal in the process of
classification. Next, the feature vectors from the training data are clustered using k-
means clustering to define a codebook that contains the cluster centers, which are
called codewords. Then, each window segment is assigned the closest codeword,
and a time-series is represented as a histogram of codewords. The bag-of-words
representations of synthetic MI motion data are used as inputs for the machine
learning-based classification models. In our experiments, we quantized the training
data of BML and MHAD datasets to 100 and 20 codewords, respectively.

Recurrent neural network: A schematic diagram of the neural network structure
is summarized in Fig. 9. The deep LSTM model is implemented in the TensorFlow
framework. We used the mean cross-entropy between the ground truth labels and
the predicted class membership probability vector as the loss function, and the
network parameters are updated by minimizing this loss function. The model is
trained using batch gradient descent with the RMSprop updating rule. In each
epoch of training, the entire training set is passed through the neural network
model to update the model with an exponentially decaying learning rate. The

dropout regularization technique is also applied to all nodes in the network to
avoid overfitting. The dropout keep-probability determines the probability of
keeping a node during training. After each epoch, the performance of the model is
evaluated on the validation set. We evaluated the influence of several
hyperparameters related to the network architecture and learning process using
grid-search. These hyperparameters and their range of values explored for tuning
during training are: number of layers in the range of {1, 2,3, 5, 10}, number of units
in the range of {5, 10, 15, 20, 30, 40, 50}, keep probability in the range of {0.2, 0.5,
0.8, 1}, optimizer decay rate in the range of {0.8, 0.85, 0.9, 0.95, 0.98}, optimizer
momentum in the range of {0, 10−3, 10−2, 10−1}, initial learning rate in the range
of {10−3, 10−2, 10−1}, exponential decay rate in the range of {0.85, 0.9, 0.95, 0.98},
and exponential decay step in the range of {50, 100, 200, 300}. We implemented a
five-layer network with 20 and 40 units for BML and MHAD datasets, respectively.
Both datasets are trained with the optimizer decay rate of 0.95, the initial learning
rate of 0.01, the exponential decay rate of 0.98, exponential decay step of 100, and
keep the probability of 0.8.

Data availability
The data that support the findings of this study can be reproduced using the codes
developed in this work and are also available on Figshare (https://doi.org/10.6084/m9.
figshare.c.4844517). The raw data that our synthetic MI motion data were derived from
are available in the public domain: BML dataset (http://paco.psy.gla.ac.uk); MHAD
dataset (http://tele-immersion.citris-uc.org/berkeley_mhad).

Code availability
Computer code supporting the findings of this study are available on GitHub:
synthesizing MI data (https://github.com/negargolestani/Synthesize_MI_data); Activity
detection (https://github.com/negargolestani/Activity_Detection).
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