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Somatic cell nuclear transfer (SCNT) enables terminally differentiated somatic cells to gain totipotency. Many species are
successfully cloned up to date, including nonhuman primate. With this technology, not only the protection of endangered
animals but also human therapeutics is going to be a reality. However, the low efficiency of the SCNT-mediated reprogramming
and the defects of extraembryonic tissues as well as abnormalities of cloned individuals limit the application of reproductive
cloning on animals. Also, due to the scarcity of human oocytes, low efficiency of blastocyst development and embryonic stem
cell line derivation from nuclear transfer embryo (ntESCs), it is far away from the application of this technology on human
therapeutics to date. In recent years, multiple epigenetic barriers are reported, which gives us clues to improve reprogramming
efficiency. Here, we reviewed the reprogramming process and reprogramming defects of several important epigenetic marks and
highlighted epigenetic barriers that may lead to the aberrant reprogramming. Finally, we give our insights into improving the
efficiency and quality of SCNT-mediated reprogramming.

1. Introduction

Somatic cell nuclear transfer (SCNT), first demonstrated by
Gurdon in 1962 [1], is a technology to form reconstructed
embryos by injecting donor nucleus into enucleated oocytes
and generate cloned animals. The success of SCNT makes
the transition from terminally differentiated cells to totipo-
tent cells a reality [2]. It has been about two decades that
the first cloned mammal, “Dolly,” the sheep, was born [3].
Since then, investigations on SCNT and cloned animals
boomed, and different species were successfully cloned by
various donor cell types [4–6]. In 2018, the first nonhuman
primate species has been cloned by using fetal fibroblasts as
donor cells [7]. Besides animal cloning, SCNT technology is
widely used to acquire nuclear transfer embryonic stem cells
(ntESCs), which is called therapeutic cloning [8–10]. The
derivation of human ntESCs, which was first achieved at

2013 [11] and further improved in the following years [12–
14], implies SCNT technology holds great application pros-
pects in human therapeutics.

Although successful, low efficiency (Table 1) as well as
defects in extraembryonic tissues and cloned individuals in
many species impedes the application of SCNT technology,
which has been fully reviewed [4, 15, 16]. SCNT embryos
are often arrested at the early stages of preimplantation
development. For the most used animal model, mouse,
SCNT embryos are usually arrested at 2-cell and 4-cell stages
[17, 18]. Even if the embryos develop to blastocyst stage,
postimplantation defects and abnormal placentas, like
enlarged placenta, were still observed [19]. Only about 1-
2% of reconstructed embryos enable to develop to term [4,
20]. For other species, the highest cloning efficiency was
demonstrated in bovine, which is about 5-20%, still much
lower than that of IVF (about 40-60%) [20]. Even after born,

Hindawi
Stem Cells International
Volume 2021, Article ID 6681337, 13 pages
https://doi.org/10.1155/2021/6681337

https://orcid.org/0000-0002-0527-7530
https://orcid.org/0000-0003-1041-3928
https://orcid.org/0000-0001-6622-9316
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6681337


T
a
bl
e
1:
C
lo
ni
ng

effi
ci
en
cy

of
in
ne
r-
sp
ec
ie
s
SC

N
T
-m

ed
ia
te
d
re
pr
og
ra
m
m
in
g.

Sp
ec
ie
s

D
on

or
ce
ll
ty
pe

T
ot
al

oo
cy
te
s

R
ec
on

st
ru
ct
ed

oo
cy
te
s

C
le
av
ed

em
br
yo
/r
at
e

B
la
st
oc
ys
t

nu
m
be
r/
ra
te
of

cl
ea
ve
d
em

br
yo

T
ra
ns
fe
rr
ed

em
br
yo

nu
m
be
r

B
ir
th

pu
ps

B
ir
th

ra
te
of

cl
ea
ve
d

em
br
yo

B
ir
th

ra
te
of

tr
an
sf
er
re
d

em
br
yo

R
ef
er
en
ce
s

Sh
ee
p

A
du

lt
m
am

m
ar
y

ep
it
he
liu

m
—

27
7

24
7

29
29

1
0.
40
%

3.
45
%

[3
]

C
ow

Fe
ta
lfi

br
ob
la
st
s

(t
ra
ns
ge
ni
c)

—
27
6

—
33
/-

28
4

—
14
.2
9%

[1
13
]

C
ow

O
vi
du

ct
al
ce
lls

15
0

88
77

20
/2
5.
97
%

4
3

3.
90
%

75
%

[1
14
]

C
ow

A
du

lt
cu
m
ul
us

99
37

31
18
/5
8.
06
%

6
5

16
.1
3%

83
.3
3%

[1
14
]

M
ou

se
A
du

lt
cu
m
ul
us

ce
lls

—
13
6

45
—

45
(t
ra
ns
fe
rr
ed

w
it
h

2-
ce
ll
em

br
yo
s)

7
(t
w
o
di
ed

at
da
y
6-
7)

15
.5
6%

15
.5
6%

[1
15
]

G
oa
t

Fe
ta
lfi

br
ob
la
st
s

(t
ra
ns
ge
ni
c)

—
13
8

48
—

47
(t
ra
ns
fe
rr
ed

w
it
h

cl
ea
ve
d
em

br
yo
s)

1
2.
13
%

2.
08
%

[1
16
]

P
ig

Fe
ta
lfi

br
ob
la
st
s

21
0

18
8

11
0

—
11
0
(2
-
an
d
8-
ce
ll

st
ag
e
em

br
yo
s
w
er
e

tr
an
sf
er
re
d)

1
0.
91
%

0.
91
%

[1
17
]

P
ig

G
ra
nu

lo
sa

ce
lls

24
5

74
—

—
72

5
—

6.
94
%

[1
18
]

R
ab
bi
t

A
du

lt
tr
an
sg
en
ic

cu
m
ul
us

ce
lls

—
77
5

—
—

37
1
(t
ra
ns
fe
rr
ed

w
it
h

4-
ce
ll
st
ag
e
em

br
yo
s)

6
—

1.
62
%

[1
19
]

C
at

(F
el
is

do
m
es
ti
cu
s)

A
du

lt
cu
m
ul
us

ce
lls

—
—

—
—

3
1

—
33
.3
%

[1
20
]

M
ul
e

Fe
ta
lfi

br
ob
la
st
s

12
0

11
3

—
—

11
3
(t
ra
ns
fe
rr
ed

at
di
ff
er
en
t
da
ys
)

1
—

0.
88
%

[1
21
]

H
o r
se

A
du

lt
sk
in

fi
br
ob
la
st
s

—
84
1

75
3

22
/2
.9
2%

22
1

0.
13
%

4.
55
%

[1
22
]

R
at

Fe
ta
lfi

br
ob
la
st
s

—
—

12
9

—
12
9
(t
ra
ns
fe
rr
ed

w
it
h

2-
ce
ll
st
ag
e
em

br
yo
s)

2
1.
55
%

1.
55
%

[1
23
]

D
og

A
du

lt
sk
in

fi
br
ob
la
st
s

—
—

10
95

—
10
95

(t
ra
ns
fe
rr
ed

w
it
h
cl
ea
ve
d

em
br
yo
s)

2
0.
18
%

0.
18
%

[1
24
]

Fe
rr
et

A
du

lt
cu
m
ul
us

ce
lls

—
48
7

—
—

37
5
(t
ra
ns
fe
rr
ed

im
m
ed
ia
te
ly
af
te
r

ac
ti
va
ti
on

)
2

—
0.
53
%

[1
25
]

B
uff

al
o

Fe
ta
lfi

br
ob
la
st
s

&
ad
ul
t

gr
an
ul
os
a
ce
lls

—
—

—
42
/1
1.
04
-3
1.
39
%

42
5
(o
ne

di
ed

20
m
in

af
te
r

bi
rt
h
&
1
di
ed

on
da
y
14

af
te
r
bi
rt
h)

—
11
.9
%

[1
26
]

C
am

el
A
du

lt
cu
m
ul
us

ce
lls

75
58

—
-/
(6
3:
88

±
8:
66
)

26
1

—
3.
85
%

[1
27
]

C
yn
om

ol
gu
s

m
on

ke
y

Fe
ta
lfi

br
ob
la
st

12
7

10
9

79
—

79
(t
ra
ns
fe
rr
ed

w
it
h

2-
ce
ll
st
ag
e
em

br
yo
s)

2
2.
53
%

2.
53
%

[7
]

2 Stem Cells International



abnormalities may still exist, for example, large offspring syn-
drome, failure of the immune system, and respiratory disor-
ders [19, 20]. Although abnormal phenotypes exist, cloned
animals are mostly fertile and the offspring show normal
phenotypes [21–23]. Therefore, the abnormalities are largely
caused by epigenetic reprogramming defects rather than
genetic mutations. Indeed, it has been reported that aberrant
reprogramming and epigenetic memories inherited from
donor cells are barriers that impede reprogramming [17,
18, 24–27]. Therefore, understanding of epigenetic repro-
gramming process is essential for prompting the improve-
ment of SCNT technology.

Up to date, great efforts have been made to improve clon-
ing efficiency. However, due to the limitation of methodology
and the scarcity of the required materials, especially 1-cell
and 2-cell stage embryos, the progress went slowly. While
with the development and improvement of low input high
throughput sequencing technology, higher resolution of
genome-wide epigenetic modification landscapes in SCNT
embryos were detected, and our understanding of epigenetic
reprogramming becomes clearer [18, 24, 26, 28, 29].

In this review, we will summarize our current knowledge
on epigenetic reprogramming, mainly on DNA methylation,
histone modifications, histone variants, X chromosome inac-
tivation (XCI), chromatin accessibility, and 3D chromatin
structures during SCNT embryo development and recent
progress on elevating cloning efficiency and quality. Focusing
on how to overcome reprogramming barriers to facilitate
SCNT reprogramming and further improve reproductive as
well as therapeutic cloning.

2. DNA Methylation

DNA methylation (5-methylcytosine, 5mC) is an epigenetic
mark that occurs at cytosine residues in the CpG dinucleo-
tide, generally regarded as associated with transcriptional
silencing [30]. About 60-80% of the CpG sites in the mam-
malian genome are modified by 5mC [31]. DNMT3A and
DNMT3B are two methyltransferases essential for de novo
DNA methylation, and DNMT1 is responsible for its main-
tenance during embryogenesis [32–34]. DNA demethylation
is triggered by ten-eleven translocation (TET) protein-
mediated oxidation from 5mC to 5-hydroxymethylcytosine
(5hmC) followed by thymine DNA glycosylase- (TDG-)
mediated base excision repair [35–37]. In mouse, both
maternal and paternal alleles undergo demethylation
through active and/or passive manner after fertilization
and finally reached the lowest level at the blastocyst stage
[38, 39]. It has been reported that knockout of Dnmt3a
and Dnmt3b leads to mouse infertility [32, 40], and deletion
of Tet3 causes an increased frequency of developmental fail-
ure in embryos [41], suggesting that optimized DNA meth-
ylation pattern is essential for normal development. Thus, a
DNA methylation pattern that resembled that of fertilized
embryos may be a permissive state for SCNT embryo
development.

2.1. DNA Methylation Is Globally Reprogrammed during
SCNT Embryo Development. Given that somatic donor cells

usually possess high DNA methylation levels [31], SCNT
embryos must undergo global demethylation to reprogram
the DNAmethylation pattern of somatic cells to that of fertil-
ized embryos. After activation, oocyte-stored TET3 immedi-
ately incorporated into pseudopronucleus (PPN) of the
reconstructed embryo to catalyze conversion from 5mC to
5hmC, which implies active demethylation during SCNT
embryo development [42], bearing resemblance with normal
embryo development [42, 43]. Whole-genome bisulfite
sequencing (WGBS) of mouse SCNT blastocysts revealed a
very low DNA methylation level (15.6%) similar to that of
IVF blastocysts (19.1%) [25]. Considering the high methyla-
tion level of the donor mouse embryonic fibroblast (MEF)
cells (78%) used in the study, the result indicates successful
global reprogramming of DNA methylation state. But this
demethylation has not completed when the mouse SCNT
embryos developed to the late 1 cell stage [28]. Our lab ana-
lyzed DNA methylation levels of SCNT embryos by using an
embryo biopsy system along with single-cell reduced repre-
sentation bisulfite sequencing (RRBS), and the results
showed that at 2- and 4-cell stage, the SCNT samples
possessed generally higher methylation level than the corre-
sponding fertilized embryos [18], suggesting global demeth-
ylation in SCNT embryos may require several rounds of
replication delusion.

2.2. Aberrant DNA Methylation Reprogramming in SCNT
Embryos. Although successful global demethylation in blas-
tocyst, aberrant DNA methylation patterns can be detected
in SCNT embryos, even after implantation [5, 44, 45]. In
mouse 4-cell stage SCNT embryos, especially arrested sam-
ples, the averaged methylation levels on gene body regions
were significantly increased, resembling the trend of donor
cells [18]. Similarly, cloned, but not fertilized, bovine morula
possesses highly methylated nuclei in all blastomeres that
resembled those of the fibroblast donor cells [44].

RRBS on 1 cell stage mouse SCNT embryos uncovered
more than 20 genes, along with long interspersed elements
(LINEs) and long terminal repeats (LTRs) defined as
demethylation-resistant regions [28]. Nevertheless, by using
ultralow-input WGBS, Gao et al. found that the persistently
methylated differentially methylated regions (pDMRs) were
moderately similar in arrest and normally developed NT
embryos and were more frequently inherited from cleaved
embryos to blastocyst stage, which reflects their functional
irrelevance in the arrest of SCNT reprogramming [24]. Fur-
thermore, they identified wide-spread regions that were aber-
rantly remethylated in SCNT embryos compared to the IVF
counterparts, called remethylated differentially methylated
regions (rDMRs), which are twice in arrested samples as
many as in normally developed NT embryos (Figure 1).
These rDMRs lead to misexpression of genes and retrotran-
sposons important for zygotic genome activation (ZGA).
Reduction of inappropriate DNA methylation rescued the
developmental arrest at cleavage stages and facilitated pro-
ceeding to blastocyst development, increasing the blastocyst
rate to 48.2% (compared to control of 39.5%) [24]. In conclu-
sion, excessive DNA remethylation is a potent barrier that
limits the full-term development of SCNT embryos, but the
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Figure 1: Epigenetic reprogramming of DNA methylation and histone modifications during mouse SCNT embryo development. DNA
methylation: somatic donor cells usually possess high DNA methylation levels. After activation, the reconstructed embryos undergo global
DNA demethylation although this demethylation has not been completed at the late 1 cell stage of SCNT embryos and requires several
rounds of replication delusion. However, there is an aberrant remethylation in arrested 4 cell stage SCNT embryos and reduction of the
inappropriate DNA methylation rescued the developmental arrest. H3K9me3: during SCNT embryo development, some zygotic genome
activation (ZGA) genes and reprogramming resistant regions (RRRs) harbor donor cell-inherited H3K9me3 mark, which may be the
cause of reprogramming failure. Removal of donor-inherited H3K9me3 either by ectopic expressing Kdm4b/d (H3K9me3-specific
demethylases) or knockdown of Suv39h1/2 (H3K9 methyltransferases) can help the embryo overcoming the reprogramming defects.
H3K27me3: loss of H3K27me3-mediated imprinting leads to defects of extraembryonic tissues of SCNT embryos, such as large placenta
phenotype. Although overexpression of H3K27me3-specific demethylase KDM6A elevated blastocyst developmental rate but not full-term
development, both knock out of H3K27me3-imprinted genes and knockdown KDM6B can help SCNT embryos undergo successful
reprogramming. H3K4me3: donor-inherited H3K4me3 is defined as an epigenetic barrier of SCNT reprogramming. H3K4me3
demethylation by Kdm5b overexpression is an important step to overcome reprogramming failure. H3K9ac: during SCNT development,
aberrant H3K9ac regions impair ZGA. TSA treatment and Dux overexpression can correct the aberrant H3K9ac signal and help the
embryos achieve successful reprogramming.
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role of somatic-inherited DNA methylation still needs fur-
ther proven, after all, an optimized DNAmethylation pattern
that resembled that of fertilized embryos is essential for
SCNT reprogramming.

3. Histone Modifications

In eukaryotic cells, the basic functional unit of chromatin is
the nucleosome, containing ~147 bp genomic DNA wrapped
around a core histone octamer. Covalent histone modifica-
tions, such as acetylation, methylation, ubiquitination, and
phosphorylation, are major epigenetic marks that regulate
transcription [46–48]. Successful reprogramming of SCNT
embryos should include reprogramming of histone modifica-
tion patterns from somatic donor cells to those of normal
embryos. Here, we will discuss the roles of several major his-
tone modifications, including trimethylation at the 9th lysine
residue of histone H3 (H3K9me3), trimethylation at the 27th

lysine residue of histone H3 (H3K27me3), trimethylation at
the 4th lysine residue of histone H3 (H3K4me3), and histone
acetylation on SCNT reprogramming.

3.1. Aberrant H3K9me3 Reprogramming Impairs
Preimplantation Development. H3K9me3 has been shown
to play important roles in heterochromatin formation and
repression of gene expression in various types of cells, includ-
ing preimplantation embryos [7, 49]. In 2014, Matoba and
colleagues identified 222 reprogramming resistant regions
(RRRs) that failed to be activated in SCNT 2-cell embryos
compared to IVF 2-cell embryos. Interestingly, these RRRs
are enriched for H3K9me3 in somatic cells [17]. Removal
of this epigenetic mark either through ectopic expression of
Kdm4d (an H3K9me3-specific demethylase) in oocytes or
knockdown of Suv39h1 and Suv39h2 (two H3K9 methyl-
transferases) in donor MEF cells not only attenuated the
ZGA defect but also improved the reprogramming efficiency
of SCNT embryos [17]. Further investigations by Liu et al.
identified 7248 genes resisted donor-liked H3K9me3 signal
at promoters in 2-cell stage SCNT embryos. Removal of the
H3K9me3 mark inherited from donor cells by injecting
Kdm4b helped the SCNT embryos go over 2-cell arrest and
finally significantly elevated the potential of ntESC deriva-
tion, blastocyst rate, and even birth rate [18] (Figure 1). In
bovine, KDM4D and KDM4E function as regulators that
help SCNT embryos to break through H3K9me3 barriers
[50]. Moreover, the expression of H3K9me3 demethylase
Kdm4d/4a could reduce H3K9me3 level and significantly
improve the efficiency of human SCNT blastocyst and ntESC
cell line formation [13]. And the use of Kdm4d combined
with histone deacetylase inhibitor (HDACi) trichostatin A
(TSA) treatment successfully generated cloned cynomolgus
(Macaca fascicularis) monkeys by using adult cumulus cells
as donor cells [7], although the positive effect of TSA treat-
ment might be functionally linked to H3K9me3 removal in
mouse due to unchanged development potential by TSA
treatment with Kdm4d-mRNA-injected mouse SCNT
embryos [17]. The results above imply a conserved barrier
of H3K9me3 inherited from donor cells during SCNT
reprogramming in mammalian species.

Although the use of Kdm4d in SCNT results in an
implantation rate comparable with that of IVF, only less than
15% of the implanted SCNT embryos develop to term, and
abnormal large placentae are still observed in Kdm4d-
injected SCNT embryos [17]. Additionally, Kdm4A addition
was not able to enhance the in vivo long-term development
capacity of porcine SCNT embryo [51], indicating
H3K9me3 may mainly impede preimplantation develop-
ment of SCNT embryos and other barriers may affect post-
implantation development.

3.2. H3K27me3 Reprogramming Defects Are Obstacles in Pre-
and Postimplantation SCNT Embryos. H3K27me3 is an
epigenetic regulator widely known as a transcription repres-
sor [52, 53]. During mouse preimplantation development,
H3K27me3 is rapidly lost at both maternal and paternal
alleles followed by dynamic especially when lineage specifica-
tion of inner cell mass (ICM) and trophectoderm (TE) [54,
55]. Lots of studies have elucidated the critical role of
H3K27me3 during both pre- and postimplantation embryo
development [54, 56–59].

Aberrant H3K27me3 reprogramming may be a barrier of
SCNT embryo development in various species [25, 60, 61].
Okae et al. identified three DNA methylation-independent
imprinted genes Gab1, Sfmbt2, and Slc38a4 showed loss of
imprinting in all cloned mouse embryos [62], which might
be involved in placentomegaly of cloned mouse when consid-
ering their important roles in placental development [63, 64].
Further studies found 76 genes with paternal allele-specific
DNase I hypersensitive sites (DHSs) that are devoid of
DNA methylation but harbor maternal allele-specific
H3K27me3 [65]. Interestingly, all the three genes above are
included in the 76 genes, which rise the suspect that the
defect of H3K27me3 mediated imprinting may cause the
abnormality of SCNT placentae. Indeed, many groups
proved that loss of H3K27me3-imprinting in SCNT embryos
disrupts mouse postimplantation development, and this
defect can be detected earliest in blastocyst stage embryos
up to now [25, 66, 67]. However, whether this defect exists
more earlier in SCNT embryos requires further exploration
[68]. A recent study found that the majority of H3K27me3-
mediated imprinting regions are located to solo ERVK LTR
repeats, which act as imprinted transcription initiation sites
for noncoding RNAs and chimeric mRNA in extraembryonic
tissues [69]. It is possible that the defects of H3K27me3 repro-
gramming are relevant to aberrant expression of transposable
elementduring SCNTembryodevelopment.Although restore
the normal paternal expression of H3K27me3-imprinting
genes (Sfmbt2, Gab1, and Slc38a4) in SCNT placentae by
maternal knockout unchanged the enlarged placentae state
[66], both correcting the expression of clustered miRNAs
within the Sfmbt2 gene and quadruple monoallelic deletion
of Sfmbt2, Jade1, Gab1, and Smoc1 ameliorates the placental
phenotype, especially Sfmbt2 [66, 67].

Apart from the impact of loss of H3K27me3-imprinting
on SCNT postimplantation, another group demonstrated
H3K27me3 as an obstacle of SCNT preimplantation develop-
ment. Overexpression of the H3K27me3-specific demethy-
lase KDM6A significantly increased the SCNT blastocyst
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formation rate but did not improve the rate of full-term
development, implies lack of KDM6A may be not the reason
for loss of H3K27me3-dependent imprinting, at least in
mouse. Contrastingly, knockdown of KDM6B not only facil-
itated ZGA and improved the blastocyst formation rate but
also increased birth rate and ntESC establishment efficiency
[68] (Figure 1). Collectively, both deposition on specific
regions (like H3K27me3-imprinting genes) and appropriate
removal of H3K27me3 are important for successful SCNT
reprogramming although underlaid mechanisms are still
unknown.

3.3. Somatic Inherited H3K4me3 Is a Potent Barrier of
SCNT-Mediated Reprogramming. H3K4me3 is usually asso-
ciated with transcriptional activation. Many groups have
depicted the pattern of H3K4me3 during preimplantation
in mouse [54, 70, 71]. Both appropriate removal of nonca-
nonical H3K4me3 by Kdm5b in oocyte and establishment
of canonical and broad H3K4me3 in preimplantation
embryos are essential for normal mouse development [54,
70]. Unlike the well-described H3K4me3 pattern in normal
mouse preimplantation embryos, studies about the whole
H3K4me3 pattern during SCNT reprogramming have not
been reported until now.

In 2016, we found that Kdm5b failed to be activated in 4-
cell-arrest SCNT embryos. Injection of si-Kdm5b in MII
oocytes largely reduced the rate of high-quality blastocyst
development, and overexpression of Kdm5b helped the
SCNT embryos to pass 4-cell arrest and significantly
increased blastocyst formation rate and quality. What is
more, the gene expression levels of NT 4-cell embryos were
largely rescued by the overexpression ofKdm5b [18]. Consid-
ering the role of Kdm5b as H3K4me3 demethylase and the
function of H3K4me3 on transcription initiation, it is possi-
ble that H3K4me3 mark with donor-specific signature may
be a barrier of SCNT reprogramming (Figure 1). This point
has been proved in Xenopus, human, and bovine SCNT
embryos that donor-inherited H3K4me3 acts as an epige-
netic barrier impacts SCNT reprogramming [72, 73].
H3K4me3 demethylation by Kdm5b overexpression not only
attenuated ON-memory genes (genes highly expressed in
donor cells and SCNT embryos but not IVF embryos) but
also improved cloning efficiency. The results indicate that
removal of the donor-specific H3K4me3 mark may effi-
ciently reprogram the SCNT embryos but much more further
investigations about roles of H3K4me3 during SCNT-
mediated reprogramming need to be performed.

3.4. Aberrant Histone Acetylation Impairs the SCNT
Efficiency. Histone acetylation usually occurs on the lysine
residues of core histones and marks both promoters and
enhancers. Acetylation has the potential to loosen nucleo-
some configuration and increase chromatin accessibility
for transcription factors [74]. During ZGA, the persistent
accessible enhancers are marked by H3K27ac and charac-
terized by distal H3K4me3 deposition in human early
embryos, while the poised enhancers are likely to be acti-
vated in later development by remarked H3K27ac in a
tissue-specific manner [75]. In early zebrafish embryos,

widespread H3K27ac deposition is found to be required
for gene activation [76]. This indicates that histone acety-
lation reprogramming is another critical step for early
embryo development.

When somatic cell nuclei are injected into the enucle-
ated MII oocytes, the acetylated lysine residues are quickly
deacetylated and then reacetylated after activation. The
reestablishment of histone acetylation is essential for
zygotic gene activation in cloned embryos [77]. However,
several acetylation marks on histones, such as H4K8ac
and H4K12ac, are persisted in the genome during SCNT,
which may be responsible for the low cloning efficiency.
On the other hand, histone deacetylase inhibitors (HDACi),
which can improve histone acetylation and the success rate
of cloning significantly, have been widely used during
SCNT [78]. Recently, our group generated the genome-
wide H3K9ac map during SCNT development and found
the aberrant acetylated regions impair the zygotic gene acti-
vation. TSA treatment and Dux overexpression can correct
the aberrant H3K9ac signal [79] (Figure 1). These suggest
the reestablishment of histone acetylation is also a neces-
sary part of epigenetic reprogramming. It should be noted
that HDACi treatment can also improve nascent mRNA
production [80] and gene expression [81] during SCNT
embryo development, so the mechanism of HDACi treat-
ment improves cloning efficiency still deserve further
investigation.

4. Histone Variants

Aside from the canonical histones, histone variants endow
chromatin critical functions, and their roles in oocyte-
mediated reprogramming have been reviewed elsewhere
[82–85]. The mammalian sperm genome is packaged into
highly condensed chromatin consisting primarily of prot-
amine but 5-15% residual histones. After fertilization, the
paternal genome undergoes dramatic chromatin remodeling,
and maternally stored histones, such as H3.3 (coded by
H3f3a and H3f3b), are incorporated into the sperm nucleus
as early as 1 h after fertilization [85]. And the incorporation
is essential for the activation of the paternal genome and pre-
implantation development during embryogenesis [86].

Although the somatic cell genome is packaged by his-
tones rather than protamine, global chromatin remodeling
was still observed [85, 87]. After activation, donor cell-
derived histone H3 variants H3.1, H3.2, and H3.3, as well
as H2A, H2A.Z, and microH2A, were rapidly eliminated
from the chromatin [87, 88]. All the three oocyte-stored
H3 variants, H2A.X, and oocyte-specific H1 variant,
H1FOO, were incorporated into the donor genome within
minutes of nuclear transfer [87, 89, 90]. Knockdown of
histone variant H3.3 in mouse oocytes results in compro-
mised reprogramming and downregulation of key pluripo-
tent genes, and this compromised reprogramming was
rescued by injecting exogenous H3.3 mRNA, but not
H3.2 mRNA into oocytes [85], revealing a critical role of
optimized chromatin variants incorporation in normal
SCNT reprogramming.

6 Stem Cells International



5. X Chromosome Inactivation (XCI)

XCI is a remarkable event during normal embryogenesis
[62, 91]. X chromosome is inactivated during spermato-
genesis. During mouse embryogenesis, the paternal X
chromosome is reactivated at the 2-cell stage. After that,
the paternal X chromosome will be silenced again through
an imprinted manner and persisted in extraembryonic lin-
eages. In contrast, the paternal X chromosome is reacti-
vated in the epiblast in the late blastocyst, then, the X
chromosome from maternal or paternal genomes is ran-
domly inactivated during embryo development [92–94].
The precise regulation of dynamic activity of the X chro-
mosome is crucial for the epigenetic reprogramming dur-
ing early embryo development [95].

XCI ensures a similar dosage of X-linked genes between
male and female cells. However, this event in SCNT embryos
is largely abnormal among species [27, 51]. In mouse SCNT
embryos, X-linked genes were largely downregulated, which
is caused by ectopic expression of Xist from the active X
chromosome regardless of sex, leading to abnormal inacti-
vation of both X chromosomes [27]. Similarly, Xist is also
known to be aberrantly expressed in bovine and pig SCNT
embryos and proven to be associated with prenatal death
[96, 97], suggesting excessive Xist expression may be a barrier
of SCNT-mediated reprogramming. Deletion of XIST on the
active X chromosome rescued global gene expression and
resulted in about an 8- to 9-fold increase in cloning efficiency
[27]. Concordantly, prior injection of Xist-siRNA into recon-
structed oocytes normalized global gene expression of mouse
SCNT embryos at the morula stage and further improved
cloning efficiency 10-folds higher than control [98]. More-
over, correction of the abnormal XCI has a synergistic effect
with TSA but ectopic activation of Xist is reprogramming
barrier independent of H3K9me3 inherited from donor
cells [25, 98]. Differently in pig, abnormal XCI seems linked
with H3K9me3 for that increased quality of XIST-deficient
SCNT embryos was associated with the global H3K9me3
reduction and vice versa; Kdm4a addition also induced
XIST derepression in the active X chromosome [51]. This
discrepancy may be a result of different XCI processes
among different species, and the underlaid mechanisms
require further understanding.

6. Chromatin Accessibility

Chromatin accessibility is a good indicator of transcriptional
regulatory elements and can serve as a predictor of gene tran-
scription activity. In recent years, with the development and
improvement of low-input DNase I hypersensitive sequenc-
ing (liDNase-seq) and assay for transposase-accessible chro-
matin using sequencing (ATAC-seq), accessible chromatin
sites of mouse and human preimplantation embryos enabled
to be profiled [29, 65, 99, 100]. By using liDNase-seq, Lu et al.
uncovered that DNase I-hypersensitive site (DHS) landscape
is progressively established with a drastic increase at the 8-
cell stage of mouse preimplantation embryos [29]. The global
chromatin de- and recondensation is likely promoted by cis-
regulating of LINE-1 transcriptional activity [101]. Tran-

scription factors Nfya and Oct4 were responsible for DHS
formation at 2- and 8-cell stage embryos, respectively [29].

Full-pattern of chromatin accessibility during mouse
and human SCNT embryo development has not been elu-
cidated, but a recent research profiled DHSs in donor cells
and late-1-cell stage mouse SCNT embryos. They found
SCNT-mediated reprogramming of chromatin accessibility
is largely completed by 12 h after activation because DHSs
of the donor cells are drastically changed to recapitulate
that of the IVF zygotes within 12h. Surprisingly, this
change is DNA replication-independent, which is con-
served in Xenopus SCNT embryos [102], and the switch
from donor-specific TF network to that of zygotic may
be the critical factor responsible for the DHS profile repro-
gramming [103].

Despite global reprogramming, some regions are resis-
tant to reprogram [103]. Failure to close accessible somatic
promoters or to open distal regulatory regions required for
differentiation program may be the major reprogramming
barriers. It is interesting that these regions are enriched for
H3K9me3, a robust reprogramming barrier discussed above,
in both donor cells and 2-cell SCNT embryos [103]. Consid-
ering the change of the TF network which accompanies with
this reprogramming, failure of specific somatic cell TFs to
dissociate from chromatin can also be a barrier in SCNT
reprogramming. ATAC-seq on Xenopus SCNT embryos
revealed great loss of chromatin accessible sites before first
cleavage compared to that of donor cells, which is concor-
dant with the pattern in mouse. The researchers found genes
that are silenced but have preexisting open transcription start
sites (TSSs) in donor cells are prone to be activated after
SCNT, while genes resistant to reprogramming are associated
with closed chromatin configurations [102]. It is possible that
preexisted open accessibility of donor-specific genes and
closed accessibility of zygotic-essential genes inherited from
donor cells may be barriers during SCNT reprogramming,
but it needs further proven.

7. Higher-Order Chromatin Structure

Chromatin in the nucleus of eukaryotic cells is packaged
in a hierarchical structure, which is associated with many
biological processes [104, 105]. The role of the 3D genome
organization during mammalian embryogenesis has been
investigated benefit from the advance of the low-input
Hi-C (genome-wide chromosome conformation capture)
technology in recent years [106–108], which reveals the
removal and reestablishment of chromatin higher-order
structure are essential for both mouse [106, 107] and
human [108] embryogenesis.

A recent study of our group profiles the spatiotemporal
dynamic of 3D chromatin structure in SCNT early embryos
and reveals 3D chromatin structure can be rapidly reorga-
nized to an embryo-like state after nuclear transfer.
However, the aberrant TADs and compartment A/B orga-
nization can be observed and remain throughout preim-
plantation SCNT embryo development. Overexpression of
KDM4B, a H3K9me3 demethylase, can partially improve
the abnormal 3D chromatin structures [26] (Figure 2). This
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Figure 2: The higher-order chromatin organization in mouse SCNT embryos. Somatic donor cells exhibit interphase-state chromatin
characterized by mature compartments and topologically associating domains (TADs). Before activated, the transferred nucleus first
enters a mitotic-like state (premature chromatin condensation) followed by exhibiting mitotic and secondary meiotic metaphase-like
chromatin states lacking compartments and TADs 1 hour postinjection (1-hpi) and 1-hour postactivation (1-hpa), respectively. TADs are
stronger in SCNT 1-cell stage embryos and then become weaker at the 2-cell stage and gradually consolidating. Super enhancer-promoter
(SE-P) loops that exist in fertilized 2-cell embryos are absent in SCNT 2-cell embryos, which is correlated with aberrant H3K9me3 and
TAD persistence. Compartments A/B are markedly weak in 1-cell SCNT embryos and become increasingly strengthened afterward. By the
8-cell stage, somatic chromatin architecture is largely reset to embryonic patterns until the blastocyst stage. Predepleting cohesin in donor
cells increases SCNT reprogramming efficiency.
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indicates a correlation between the organization of 3D
chromatin structure and histone modifications during epi-
genetic reprogramming.

8. Removal of Multiple Barriers Is a Promising
Approach to Improve SCNT Reprogramming

It has been over two decades that the first mammalian species
has been successfully cloned, but low efficiency was still
observed until recently. Numerous efforts have been made
to increase reprogramming efficiency by removing epigenetic
barriers. Matoba et al. found H3K9me3 inherited from donor
cells act as a barrier that impede mouse SCNT-mediated pre-
implantation development. Removal of H3K9me3 in donor
cells by injecting Kdm4d mRNA into reconstructed embryos
5 hours postactivation (hpa) significantly increased the blas-
tocyst rate up to 81.2% (% blastocyst of cleaved embryos)
regardless of donor cell types and elevated birth rate from
only 1% up to 8.7%. Besides, the rate of ntESC line derivation
was increased from 10.1% to 50% after Kdm4d injection.
Moreover, to prevent the establishment of H3K9me3 in
donor cells, they knock down Suv39h1/2 (H3K9me3 transfer-
ases) in donor cells prior SCNT and improved blastocyst rate
from 6.7% to 49.9% [17]. Accordantly, our lab found another
H3K9me3 demethylase, Kdm4b, efficiently removed the
H3K9me3 barrier to increase blastocyst rate from about
30% to over 80%. Simultaneously, we found H3K4me3 may
be a candidate epigenetic barrier that impedes SCNT-
mediated reprogramming. Injection of Kdm5b mRNA into
enucleated oocyte significantly improves mouse blastocyst
rate from about 30% to over 50%. It is worth noting that
coinjection of Kdm4b and Kdm5b successfully elevated blas-
tocyst rate over 95% and led to over 11% of cloned embryos
developing to live animals, moreover, 60% ntESC derivation
efficiency based on the total number of MII oocytes rise the
possibility that removing multibarriers may be a more effi-
cient way to improve cloning efficiency [18].

We found excessive remethylation is a potent epigenetic
barrier in another study. Optimized DNA methylation level
by injecting siRNAs of Dnmt3a and Dnmt3b into enucleated
oocytes, 48.2% blastocysts were generated from cleaved
embryos (39.5% blastocyst rate of control group). Further-
more, of enucleated oocytes that subjected to Kdm4b+5b
mRNA and siDnmt3a+3b co-injection, 92.3% cleaved
embryos developed to blastocyst stage [24]. Another study
of Matoba et al. demonstrated that using a combination of
Xist knockout donor cells and overexpression of Kdm4b,
more than 20% birth rate of mouse SCNT embryos were
achieved [25], which is coincided with the idea that removing
multiple epigenetic barriers is a more efficient method for
SCNT reprogramming.

9. Concluding Remarks

SCNT provides the only way to reprogram somatic cells into
totipotent embryos and generate viable animals [9, 109, 110].
After injected into enucleated oocytes, the donor nucleus
quickly undergoes nuclear membrane breakdown followed
by premature chromosome condensation (PCC), which is

triggered by the M-phase-prompting factors (MPFs) stored
at ooplasm [111]. After activation, the nuclear membrane is
reformed to envelop PPN and incorporates amounts of
maternal factors [112]. Then, the reconstructed embryos
undergo SCNT-mediated embryogenesis. However, only
few of reconstructed embryos can develop to the blastocyst
stage, let alone develop to term. ZGA failure and disrupted
transcriptome were detected in SCNT embryos very often,
and this is largely affected by aberrant epigenetic reprogram-
ming [4].

In this review, we concluded our understanding on epige-
netic barriers of SCNT-mediated reprogramming and
methods to overcome these epigenetic berries. Given that
removal of multiple barriers that impede SCNT-mediated
reprogramming gives a blastocyst rate over 95% of cleaved
embryos and ntESC derivation efficiency of 60% based on
the total number of MII oocytes [18], and over 20% birth rate
of mouse [25], we demonstrate removing multiple barriers
may be a more efficient approach to achieve complete repro-
gramming compared to single barrier removal. However, low
birth rate compared with IVF counterpart and large placen-
tae were still observed. Therefore, further studies need to
focus on exploring more about reprogramming barriers and
emphasizing on removing multiple barriers to achieve nearly
complete SCNT reprogramming.
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