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Transcription factors (TFs) exert their regulatory influence through the binding of enhancers, resulting in coordination of

gene expression programs. Active enhancers are often characterized by the presence of short, unstable transcripts termed

enhancer RNAs (eRNAs). While their function remains unclear, we demonstrate that eRNAs are a powerful readout of TF

activity. We infer sites of eRNA origination across hundreds of publicly available nascent transcription data sets and show

that eRNAs initiate from sites of TF binding. By quantifying the colocalization of TF binding motif instances and eRNA

origins, we derive a simple statistic capable of inferring TF activity. In doing so, we uncover dozens of previously unexplored

links between diverse stimuli and the TFs they affect.

[Supplemental material is available for this article.]

Transcription is orchestrated by the sequence-specific binding of
transcription factors (TFs) to DNA, resulting in regulation of
gene expression programs (Spitz and Furlong 2012). Hence, TFs
function as major determinants of cell state (Takahashi and
Yamanaka 2006; Rackham et al. 2016). Chromatin immunopre-
cipitation (ChIP) studies have identified binding sites for many
of the approximately 1400 TFs encoded within the human ge-
nome (Vaquerizas et al. 2009), allowing estimation of a DNA-bind-
ing motif model for more than 600 factors (Kulakovskiy et al.
2013). However, studies comparing TF binding events to RNA ex-
pression levels have revealed that many TF binding sites have no
apparent effect on nearby transcription (Li et al. 2008; Fisher
et al. 2012; Read et al. 2016). Distinguishing such “silent” TF bind-
ing events from those with regulatory capacity is a fundamental
challenge. Despite their critical importance for controlling cellular
phenotypes, it is difficult to ascertainwhen a TF is active, e.g., con-
tributes to nearby transcription.

One notable attempt to infer TF activity leveraged patterns of
TF motif instances at annotated protein coding genes to explain
changes in expression (The FANTOM Consortium and Riken
Omics Science Center 2009; Balwierz et al. 2014). Yet, most TF
binding occurs within regions of the genome distal to protein
coding genes (Spitz and Furlong 2012). These binding events often
correspond to enhancer regions known to be important for regula-
tion of gene expression and cellular identity (Heintzman et al.
2009). Active enhancers are often characterized by the presence
of short, unstable, bidirectional transcripts termed enhancer
RNAs (eRNAs). When a specific TF is activated, eRNA transcription
generally increases at the location of the TF binding event (Danko
et al. 2013;Hah et al. 2013; Allen et al. 2014; Puc et al. 2015).While
the functions of eRNAs are only beginning to be understood (Hah
et al. 2013; Li et al. 2013; Sigova et al. 2015), their presence is none-

theless an indicator of enhancer activity (Andersson et al. 2014;
Danko et al. 2015).

eRNA detection requires extremely sensitive methods, both
in the laboratory as well as computationally. Because they are un-
stable, eRNAs are rarely observed via steady-state RNA assays such
as RNA-seq. Nascent transcription assays capture transcription
throughout the genome, including eRNA transcription (Core
and Lis 2008; Core et al. 2014; Nojima et al. 2015).We recently de-
scribed a model capable of estimating sites of bidirectional tran-
script initiation at single-base-pair resolution (Azofeifa and
Dowell 2017). Transcription fit (Tfit) leverages the known behav-
ior of RNA polymerase II (RNAP) to identify individual transcripts
within nascent transcription data (Azofeifa and Dowell 2017).
Although Tfit does not implicitly assume polymerase initiation
will be bidirectional, we observed bidirectional transcription at
both promoters and enhancers (Azofeifa and Dowell 2017).
Whether bidirectional (two transcripts) or unidirectional (one
transcript), ourmodel precisely infers the point of RNApolymerase
loading, i.e., the origin point of transcription.

Here, we leverage the Tfit model to ascertain TF activity. We
show that, by calculating the frequency of TF binding motif in-
stances relative to the location of eRNA initiation, the activity
of the TF itself can be inferred from nascent transcription data
alone. We apply our model to hundreds of publicly available hu-
man and mouse nascent transcription data sets to discover previ-
ously unknown links between TF activity and diverse biological
phenomena.

Results

eRNA origins mark sites of regulatory TF binding

To utilize Tfit across a broad set of nascent transcription data sets,
wemodified the algorithm both to rapidly identify all sites of tran-
script initiation genome-wide and to account for the variable

Corresponding author: robin.dowell@colorado.edu
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.225755.117.
Freely available online through the Genome Research Open Access option.

© 2018 Azofeifa et al. This article, published in Genome Research, is available
under a Creative Commons License (Attribution-NonCommercial 4.0 Inter-
national), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Research

334 Genome Research 28:334–344 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/18; www.genome.org
www.genome.org

mailto:robin.dowell@colorado.edu
mailto:robin.dowell@colorado.edu
mailto:robin.dowell@colorado.edu
http://www.genome.org/cgi/doi/10.1101/gr.225755.117
http://www.genome.org/cgi/doi/10.1101/gr.225755.117
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


distances between forward and reverse
strand transcriptsobservedacrossdistinct
nascent transcription data sets (see
Methods). As a first application and
validation of this revised algorithm, we
identified 39,633 putative sites of bidirec-
tional transcription in a K562 GRO-cap
data set (Core et al. 2014), of which
30,324were not associatedwith an anno-
tated promoter (Supplemental Figs. S1,
S2). As previously observed (Danko et al.
2015; Azofeifa and Dowell 2017), marks
of active chromatin as well as TF binding
events strongly associate with Tfit-pre-
dicted sites of bidirectional transcription
(Supplemental Figs. S3–S5; Supplemental
Table S1). Given their distal location rela-
tive to promoters, their overwhelming
co-association with marks of active chro-
matin, and their association with TF
binding complexes (Supplemental Fig.
S6), we refer to non-promoter-associated
Tfit polymerase loading positions as
eRNA origins.

Although the vast majority of eRNA
origins localize with TF binding, only a
fraction of TF binding sites overlap
eRNA origins (Supplemental Fig. S3A).
Previous efforts to predict sites of TFbind-
ing using joint eRNA and TF-DNAmotifs
focused on only a small set of TFs (Danko
et al. 2015). We extended this analysis to
include 139 TF ChIP-seq experiments
and observed a wide spectrum of associa-
tion between TF binding sites and eRNA
presence, suggesting that eRNA presence
alone is not sufficient to fully explain TF
binding (Fig. 1A). These data are consis-
tentwith the observation that only a frac-
tion of TF binding sites result in a
concomitant change in nearby gene ex-
pression (Cusanovich et al. 2014; Savic
et al. 2015).

Given the strong relationship be-
tween active chromatin and eRNA tran-
scription, we asked whether eRNAs
discriminate “silent” from “active” TF
binding. In support of this hypothesis, TF binding sites occurring
at sites of eRNA origination display a significantly increased over-
lap with canonical marks of active chromatin relative to non-
eRNA-associated TF binding (Fig. 1B). Moreover, no statistical dif-
ference is detected between these categories for repressive chroma-
tin marks.

Although regulatory TF binding is often enriched for open
and active chromatin, functional TF binding must ultimately
lead to a change in gene expression. To this end, we considered
TF binding events within enhancers conserved between two cell
types but differing in terms of eRNA presence with the hypothesis
that neighboring gene expression would be elevated in the eRNA-
harboring cell type (Fig. 1C). There are 95 TFs profiled in at least
two cell types for which cell-type–matched nascent transcription
is available (Supplemental Table S2). For example, binding of the

TF NR2F2 was profiled in both K562 andMCF-7 cell lines, yielding
30,618 and 16,678 binding peaks, respectively, with 3491 peaks
shared between the two cell types (Fig. 1D). Of these cell-type–in-
variant peaks, 25% harbor an eRNA origin in both cell types, 7%
only in K562, and 12% only in MCF-7, and 56% do not harbor
an eRNA origin in either cell type.Measuring the transcription lev-
el of nearby target genes (TF binding site <10 kb of gene promoter)
revealed that eRNA presence is significantly correlated with elevat-
ed local gene expression (P-value <10−6). After making a total of
262 possible pairwise cell type comparisons (95 TFs, four cell
types), we noted that 73% of these comparisons display such dy-
namics (Fig. 1E; Supplemental Table S2). In the same vein, TF bind-
ing sites that overlap a region with strong enhancer activity—as
measured by a CapStarr-seq enhancer assay (Vanhille et al. 2015)
—are five times more likely to associate with eRNAs than regions

Figure 1. Enhancer RNA (eRNA) presence marks the active subset of TF binding. (A) ROC analysis of TF
binding site prediction via eRNA presence. False-positive and true-positive rates are varied by threshold-
ing the penalized likelihood ratio statistic generated from Tfit. (B) TF binding peaks (Supplemental Table
S1) were grouped according to eRNA association. A box-and-whiskers displays the median/variability in
proportion of histone mark association between the groups across all TFs (Supplemental Table S1).
Asterisks indicate a P-value <10−10 by z-test. All data in A and B are K562 cells. (C ) Pairwise cell type–as-
sociated TF binding peaks were grouped according to eRNA presence from matched cell types
(Supplemental Table S2). A gene was considered “neighboring” by a distance <10 kb. (D) Log base
10 FPKM fold change of “neighboring” genes related to eRNA-grouped NR2F2 binding peaks. (E)
Histogram of Log base 10 FPKM fold change of “neighboring” genes for all possible eRNA-grouped
TF ChIP-seq data sets (n = 255).
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considered inactive by the enhancer assay (P-value <10−19, hyper-
geometric). These results are consistent with a model where eRNA
presence discriminates silent from functional TF binding.

eRNA origins colocalize with TF binding motif instances

Given that many TFs bind DNA in a sequence-specific manner, we
next sought to determine the precise spatial relationship between
instances of the TF-DNA motif model and eRNA transcription. To
this end, we measured the distance between genomic instances of
the TF motif model and eRNA origins in a K562 GRO-cap data set
(Core et al. 2014). We observed a stark colocalization of the motif
instance with the eRNA origin specifically in the TF-bound frac-
tion of eRNAs (Supplemental Fig. S7A), suggesting that the motif
sequence is present at the precise point of eRNA origination.
This led to the speculation that the genome-wide patterns ofmotif
sequence to eRNA co-occurrence could identify the set of active
TFs directly regulating eRNA transcription, even when ChIP data
are not available.

To investigate this hypothesis systematically requires a mea-
surement of the colocalization of motif instances with eRNA ori-

gins. With this in mind, we devised a simple statistic—the motif
displacement score (MD-score)—which computes the proportion
of TF sequence motif instances within an h-radius of eRNA origins
relative to a larger local H-radius (Fig. 2A). Similar to the average
length of a nucleosome free region (Yadon et al. 2010), we set
the h-radius based on the average estimated distance between
the forward and reverse strand transcript peaks at eRNA origins
(h = 150 bp; Supplemental Fig. S7B) and theH-radius as the average
length of chromatin marks associated with active regulatory loci
(H = 1500 bp; Supplemental Fig. S8). Consistent with the patterns
observed inChIP data, theMD-score is elevated in the bound set of
eRNAs relative to the not bound set (Supplemental Fig. S7C).

In order to expand our approach to include TFs for which no
ChIP-seq is available, we leveraged a hand-curated database of TF
binding motif models (HOCOMOCO, 641 motif models)
(Kulakovskiy et al. 2013) and measured the distribution of motif
instances proximal to K562 eRNA origins (Fig. 2B). Under a uni-
formnucleotide backgroundmodel, 32%of themotifmodels colo-
calized significantly with eRNAs (P-value <10−6). However, similar
to gene promoters and TF binding motifs, enhancers exhibit
heightened GC content (Fenouil et al. 2012; The ENCODE

Figure 2. Motif colocalization with eRNA origins varies by cell type. (A) An example locus of GRO-seq, the inferred eRNA origin, and computation of
“motif displacement” (MD) and the associated MD-score. (B) Each row is a TF motif model, and each column is a bin of a histogram (100) where heat
is proportional to the frequency of a motif instance at that distance from an eRNA origin. (C ) A comparison between the expected MD-score for a motif
model (x-axis) and the observedMD-score in a K562 GRO-cap experiment (Core et al. 2014). Red and green dots indicate a P-value <10−6 above or below
expectation hypothesis tests, respectively. (D) MD-scores were computed and ranked under six nascent transcription data sets. (E) Each row corresponds to
a nascent data set, and each column relates tomotif frequency. TheseMDdistributions are shown for two demonstrative examples (JUND and CLOCK) and
the associated MD-scores, sorted by publication.
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Project Consortium 2012), which may artificially induce GC-rich
motif presence at eRNAorigins (Supplemental Fig. S9A). To control
for local sequence bias in our colocalizationmetric, we developed a
simulation-based method to perform empirical hypothesis testing
of the MD-score (Supplemental Fig. S9B). We observed that—even
in light of a significant nucleotide bias—27% of motif models re-
main significantly colocalized with eRNA origins in the K562
GRO-cap data set (Fig. 2C).

Interestingly, a subset of TFs display significantly lowered
MD-scores relative to expectation (green dots in Fig. 2C), suggest-
ing that in these cases, the instances of themotif model are signifi-
cantly depleted at eRNA origins. Consistent with this observation,
a previously published knockout of the Rev-Erb family of transcrip-
tional repressors (Nr1d1 and Nr1d2) resulted in the gain of eRNAs
(Lam et al. 2013). Taken together, these results suggest that repres-
sors suppress eRNA activity proximal to their DNA response
element.

Significant enrichment or depletion of a motif model near
eRNA origins likely indicates that the TF protein is present and
functionally active, as either an activator or repressor, respectively.
Tovalidate thatMD-scores reflect TF activity,we first examined the
MD-scores of all motif models across a set of nascent transcription
data sets from six distinct cell types. Our analysis revealed
wide fluctuations in MD-scores of several motif models across
experiments (Fig. 2D). Importantly, we observed that the MD-
score associated with cell-type–specific TFs are elevated in their
known lineage of activity. For example, NANOG is elevated in
embryonic stem cells, consistent with its role in maintaining plu-
ripotency (Mitsui et al. 2003; Estarás et al. 2015). Additionally,
GATA1 is elevated in K562 cells, consistent with its role in leuke-
mia (Shimamoto et al. 1995).

To further evaluate the MD-score, we predicted eRNA origins
in a large collection of publicly available nascent transcription data
sets (67 publications, 34 cell types and 205 treatments; Supple-
mental Table S3). Our compendia include a diverse collection of
nascent transcription protocols, cell types, sequencing depths,
and laboratory of origin. Across the compendium, the spatial rela-
tionship between eRNA transcription and motif sequence is ex-
ceedingly dynamic (Supplemental Fig. S10), as exemplified by
the JUND and CLOCK motif models (Fig. 2E). Given that we ob-
served a modest correlation between sequencing depth and
eRNA-identification (Supplemental Fig. S11), we next sought to
determine the extent to which the inferred MD-score simply re-
flected batch effects. To this end, we leveraged the fact that
many TFs play a pivotal role in cell fate and identity (Mitsui
et al. 2003). Indeed, dimensionality reduction of our MD-score
compendium (491 human nascent transcription experiments) re-
vealed statistical influences based predominantly on underlying
cell type (Supplemental Figs. S12, S13). Notably, 78% of motif
models in HOCOMOCO are significantly colocalized with eRNA
origins in at least one data set. While the experimental details
clearly influence the ability to infer specific eRNAs, the aggrega-
tion of genome-wide signal makes MD-scores relatively robust to
experimental variability. Importantly, key cell-type–specific TFs
show elevated MD-scores only in the relevant cell type (Fig. 2D),
suggesting that MD-scores quantify activity for broad classes of
TFs across cell types, despite differences in protocol, sequencing
depth, and/or laboratory of origin. Overall, these results indicate
thatMD-scores fluctuate across cell types and conditions in aman-
ner that suggests changes in TF activity.

As an alternative validation, we examined the transcription
patterns of the gene encoding the TF. For many TFs, we observed

higher transcription of the TFwhen theMD-score significantly dif-
fered from expectation (Supplemental Fig. S14A). Overall, 45% of
TFs show a correlation across all samples between the eRNA in-
ferredMD-score and the transcription level (FPKM) of the gene en-
coding the TF (Supplemental Fig. S14B), suggesting that some TFs
are themselves regulated at transcription. However, the observed
correlations were often weak and complex—typically neither line-
ar or monotonic—consistent with the observation that expression
levels of a gene are poorly correlated with protein levels (Vogel and
Marcotte 2012). Many TFs, including TP53 (Supplemental Fig.
S14C), are post-transcriptionally or post-translationally modified
to regulate their activity, and therefore, FPKM and MD-scores are
not expected to correlate (Oren 1999; Everett et al. 2010).

MD-scores quantify TF activity

To better investigate whether MD-scores reflect TF activity, we
turned to experiments where the activity of individual TFs is per-
turbed (Supplemental Table S4). We reasoned that alterations in
TF activity should be detected as significant changes in the MD-
score. In previous work, we utilized the drug Nutlin-3a to activate
TP53 in HCT116 cells (Allen et al. 2014). Here we observe a signifi-
cant increase in the colocalization of the TP53motif sequence and
eRNA origins following 1 h of Nutlin-3a exposure (ΔMD-score
0.17, P-value <10−33). In fact, of the 641 available TF-motifmodels,
only TP53 and TP63, which have nearly identical motif models,
displayed elevated MD-scores following Nutlin-3a treatment (P-
value <10−6) (Fig. 3A). A number of other studies have specifically
activated TFs, including tumor necrosis factor (TNF, also known as
TNF-alpha) activation of the NF-κB complex (NFKB1/NFKB2/REL/
RELA/RELB) (Luo et al. 2014) and estradiol activation of ESR1 (Hah
et al. 2013). In both cases, we observed dramatic shifts in the MD-
score for the TF(s) known to be activated by each stimulus (Fig. 3B,
C). Despite the fact that treatments involving Nutlin-3a, TNF, and
estradiol are known to modulate gene expression (Hah et al.
2013; Allen et al. 2014; Luo et al. 2014), we observed no detectable
differences in MD-scores when considering only promoter-associ-
ated bidirectional transcript sites (Supplemental Fig. S15). In all
three cases (Fig. 3A–C), TF activation resulted in the production
of new eRNAs that are uniquely enriched for the relevant motif
model, effectively elevating the TF’s MD-score (Supplemental
Fig. S16).

We next sought to evaluate the robustness of the ΔMD-score
approach for inferring altered TF activity. First, differential MD-
score analysis between biological replicates revealed no significant
shifts in motif sequence to eRNA colocalization, indicating that
our false-discovery rate is low (Supplemental Fig. S17). Second,
we randomly subsampled reads from the Nutlin-3a experiment
to generate data sets with considerably lower depth. With increas-
ingly less depth, fewer eRNAs are detected and the inferred MD-
score drops. However, the magnitude of the ΔMD-score remains
relatively consistent, indicating that the metric is largely robust
to sequencing depth (Supplemental Fig. S18). Finally, we varied
the h-radius from 0 to 1500 (the full H-radius) to assess the impact
of the h-radius on differential MD-score analysis.We found detect-
able differences in the MD-score across a broad range of h-radius
values, indicating that detection of significant ΔMD-score is robust
to the choice of h-radius (Supplemental Fig. S19). Collectively,
these results indicate that differential MD-score analysis is a robust
method of detecting changes in TF activity.

In each of the aforementioned perturbations, nascent tran-
scription was assessed at a ≤1-h time point. Therefore, we next
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sought to determine whether MD-scores could capture TF activity
across broader time frames. First, we observed that detectable
changes in TF activity are exceedingly rapid, as exemplified by fla-
vopiridol (a CDK9 inhibitor)-treated mouse embryonic cells
(Laitem et al. 2015), which display a dramatic and monotonic in-
crease in the MD-scores of TP53 and E4F1 (Fig. 3D). For a number
of TFs, MD-scores trend upward at 12.5 min and show significant
changes within 25 min of exposure. Interestingly, this result indi-
cates that eRNA activity proximal to key TFs increases at short time
points, even though flavopiridol is a general repressor of transcrip-
tion.Mouse T cells treated for a longer time course with Kdo2-lipid
A (a highly specific TLR4 agonist) (Kaikkonen et al. 2013) showed
dynamic and time-ordered shifts inMD-scores for a number of key
TFs (Fig. 3E), including interferon (IRF7) and STAT2. Furthermore,
YBOX1 decreases in colocalization (reducedMD-score), consistent
with its known role as a transcriptional repressor that increases in
expression after KLA exposure (Liu et al. 2009). Collectively, these
results indicate that profiles of eRNA transcription—when com-
bined withmotif models—identify shifts in TF activity in response
to perturbation.

Discussion

We leveraged the observation that eRNAs mark the functional ac-
tivity of TFs to develop a simple statistic that reflects a TF’s func-
tional activity. Importantly, we do not assign TFs to individual
enhancers, because most eRNAs have numerous motif instances
proximal to their origin. Our approach does not determine which
of these possibilities is critical to the regulation of the eRNA.
Instead, our statistic, theMD-score,measures the global colocaliza-
tion of eRNAswith a TFmotifmodel in order to capture changes in
TF activity after diverse stimuli.

While the biological functions of eRNAs remain largely un-
known, eRNAsclearly represent apowerful readout for TF function-
al activity. Previouswork demonstrated that the presence of eRNAs
correlates with active regulatory regions and, consequently, a sub-
set of TF binding sites (Danko et al. 2015). Separately, it has been
noted that some binding sites are apparently “silent” with respect
to transcription (Cusanovich et al. 2014) or reflect artifacts of
ChIP (Teytelman et al. 2013; Worsley Hunt and Wasserman
2014). Therefore, to determine whether eRNAs mark sites of TF

Figure 3. MD-scores predict TF activity. (A, top) The MD distribution, MD-score, and the number of motifs within 1.5 kb of any eRNA origin before and
after stimulationwith Nutlin-3a (e.g., Nutlin) on TP53 (Allen et al. 2014), the TF known to be activated. (Bottom) For all motif models (each dot), the change
in MD-score (ΔM DS) following perturbation (y-axis) relative to the number of motifs within 1.5 kb of any eRNA origin (x-axis). Red points indicate signifi-
cantly increased and/or decreased MD-scores, respectively (P-value <10−6). Similar analysis for TNF activation of the NF-κB complex (B) (Luo et al. 2014)
and estradiol activation of estrogen receptor (ESR1; C) (Hah et al. 2013). (D) A time series data set following treatment with flavopiridol (Jonkers et al. 2014).
The y-axis indicates the MD-score change relative to time point zero. Blue dots indicate a MD-score difference <10−6. A darker shaded line indicates a time
trajectorywith at least one significantMD-score. (E) Time series data set following treatment with Kdo2-lipid A (KLA) where each time point is normalized to
time-matched DMSO (Kaikkonen et al. 2014). Therefore, the y-axis indicates MD-score difference relative to the time point–matched DMSO sample. NCBI
Sequence Read Archive (SRA) SRR numbers of these comparisons are outlined in Supplemental Table S4.
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activity, we leveraged binding events across cell lines that differed
only in their eRNA activity. Our results indicate that TF binding
sites that correspond to eRNAsynthesis aremore likely topositively
affect nearby gene expression than those lacking eRNA transcrip-
tion. Undoubtedly, assigning enhancers to the nearest gene is
not optimal, asmany enhancers are known to regulate target genes
at great distances (Yao et al. 2015). However, incorrect enhancer to
gene assignments would only increase noise within our compari-
son. Thus, given the instability and short half-lives of eRNAs (Li
et al. 2016), their presencewithin a cell reflects ongoingTF activity.

Consequently, we directly assess TF activity frommotif mod-
els and nascent transcription.We observe that manymotif models
show significantly enriched colocalization with eRNA origins be-
yond expectation, suggesting that these TFs are both present and
functionally active in regulation. As the detection of eRNAs is de-
pendent on sequencing depth, future TF-activity inference meth-
ods should consider both eRNA-motif colocalization as well as
read depth. Even still, we show that TF activity is a strong predictor
of cell type, even across distinct protocols, sequencing depths, and
laboratory of origin. Hence, our approach has utility in identifying
potentially diagnostic signatures of TF activity.

Most importantly, MD-scores can be used to identify when
the activity of a TF differs between two data sets, due to either
an experimental stimulus or differences in cell type. Our metric
utilizes the genome-wide patterns of TFmotif sequence colocaliza-
tion with eRNA origins to identify changes in TF activity, regard-
less of whether the TF functions as an activator or repressor.
Implicitly, changes in MD-score must thus reflect the gain and
loss of eRNAs between two conditions, suggesting a direct relation-
ship between functional TF binding and eRNA transcription initi-
ation. However, we and others have observed changes in eRNA
transcription levels after stimulus (Hah et al. 2013; Allen et al.
2014), suggesting that our metric could be improved by including
changes in the transcription levels of pre-existing eRNAs.

Notably, our differential MD-score approach has some limita-
tions. First, as described, ourmodel considers the influence of each
TF on transcription activity independently, yet TFs are often
known to work cooperative or in combination (Spitz and
Furlong 2012). If two (or more) TFs collaborate to induce eRNA ac-
tivity and each motif model is enriched over expectation, both
would be detected. However, if only the combination is enriched,
we would not detect it in our current framework. Second, some
families of TFs have similar recognition motifs, making distin-
guishing between themdifficult. In a few cases, one ormore family
members is not transcribed. For example, upon stimulation with
Nutlin-3a, both TP53 and TP63 show significant increases in
MD-score (Fig. 3A), but in this cell type (HCT116), only TP53 is
transcribed. Thus in this case, we can confidently assert that
Nutlin-3a activates TP53. However, in most cases, we will not be
able to distinguish family members apart. Finally, we focus here
on colocalization of TF motif instances with eRNAs. However, a
small set of TFs preferentially bind to promoters (The ENCODE
Project Consortium 2012). For these factors, stronger signals may
be obtained by computing MD-scores from all sites of polymerase
initiation (promoters and enhancers).

In conclusion, we showed that addition of diverse chemical
stimuli to cells resulted in activation or deactivation of specific
TFs. It is compelling to think that had we not known the nature
of each stimulus, we could have inferred their effects from the
unique eRNA profile obtained immediately after addition of the
compound. As methods for measuring eRNA production become
simpler and cheaper, our approach could eventually serve as a

screen capable of discriminating between the direct mechanistic
impact of closely related compounds and, hence, serve as another
layer of information about the effects of a drug. Such data could
help to define previously poorly understood molecular mecha-
nisms underlying a drug’s activity.

Methods

Public data sets

We examine the relationship (association and/or overlap) be-
tween genomic features such as TF binding peaks, chromatin
modifications, DNA sequence, TF binding motif models, and
eRNA presence. Data for all features were obtained from publicly
available sources and compared relative to a human and mouse
genome versions hg19 and mm10, respectively. Human and
mouse nascent transcription data were obtained from the NCBI
Gene Expression Ombnibus (Supplemental Table S3). ENCODE
peak data were obtained from https://www.encodeproject.org/
matrix/?type=Experiment. Most data were provided relative to
hg19, but when necessary, ENCODE files were converted to
hg19 via the Python LiftOver package. Accession numbers for
all ENCODE data utilized are provided in Supplemental Table
S1. Motif models were obtained from the HOCOMOCO v. 10
(Kulakovskiy et al. 2013, 2016) database and scanned against
the genome. For complete details on the processing and remap-
ping of these data sets, refer to the Supplemental Methods.

Tfit modification and parameters

In prior work (Azofeifa and Dowell 2017), we leveraged the known
behavior of RNAP to identify individual transcripts within nascent
transcription data. Our model (Azofeifa and Dowell 2017), known
as transcription fit (Tfit), infers the precise point of RNA polymer-
ase loading, e.g., the origin point of transcription. Formally, this
origin point (µ) represents the expected value of a Gaussian (nor-
mal) random variable, discussed in great detail in our previous
publication (Azofeifa and Dowell 2017).

For analysis of numerous nascent data sets, here we modify
our previous approach in two ways. First, to rapidly identify all
sites of transcription initiation genome-wide, we compute a likeli-
hood ratio statistic between a fully specified exponentially modi-
fied Gaussian (Equation 1, the loading/initiation/pausing phase
of our earlier Tfit model) (Azofeifa and Dowell 2017) against a uni-
formdistribution backgroundmodel (Equation 2) at some genome
interval [a, b]. We hereafter refer to this approach as template
matching. Second, we amend our earlier estimate of the loading
step of polymerase activity to permit variable distances between
the forward and reverse strand transcripts, hereafter referred to as
a polymerase footprint. For completeness, we now describe
both modifications in full detail below. We then validated the
modified Tfit by comparison of predictions to histone marks
and TF binding data (for full description of validation, see
Supplemental Methods).

Template matching

The loading/initiation/pausing portion of our earlier model, fully
specified in Azofeifa (Azofeifa and Dowell 2017), describes the ini-
tial activity of RNAP and captures initiating transcription, which is
often bidirectional, genome-wide. Briefly, our model assumes
RNAP is first recruited and binds to some genomic coordinate X
as a Gaussian-distributed random variable with parameters µ, σ2,
where µ might represent the typical loading position (e.g., origin
of any resulting transcript either TSS or enhancer locus) and σ2

the amount of error in recruitment to µ. Upon recruitment,
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RNAP selects and binds to either the forward or reverse strand,
which we characterize as a Bernoulli random variable S with pa-
rameter π. Following loading and preinitiation, RNAP immediately
escapes the promoter and transcribes a short distance, Y. We as-
sume that the initiation distance is distributed as an exponential
random variable with rate parameter λ. In this way, the final geno-
mic position Z of RNAP is a sum of two independent random var-
iables (X + SY), where the density function (resulting from the
convolution/cross-correlation) is given in Equation 1. Note that,
in keeping with traditional notation, we let uppercase, non-
Greek alphabet letters represent randomvariables and the associat-
ed lowercase letters refer to instances or observations of the sto-
chastic process.

h(z, s;m,s, l,p) =lf
z− m

s

( )
R ls− s

z− m

s

( )
1(s)

1(s) = p : s = +1

1− p : s = −1

{
.

(1)

Above, φ(.) refers to the standard normal density function and R(.)
refers to the Mill’s ratio.

In contrast, reads obtained outside of initiation regions are
captured by a uniform distribution (Equation 2).

u(z; a, b) = p̂

b− a
, (2)

where p̂ refers to themaximum likelihood estimator for the strand
bias (Equation 3).

p̂ =
∑N
i=1

I(si . 0)/N, (3)

where I(.) is an indicator function. Finally, the (log-)likelihood of
the exponentially modified Gaussian (LLemg) and uniform (Lu) dis-
tribution computed at a genomic interval [a,b] using aligned read
counts is given in Equation 4.

LLemg =
∑b
i=a

log h(zi, si; m̂, ŝ, 1̂/l, p̂),

LLu =
∑b
i=a

I(si . 0) log p̂

b− a
+ I(si , 0) log 1− p̂

b− a
,

LLR = LLemg − LLu.

(4)

Here, m̂ refers to the center of the window. Based on our
previous study (Azofeifa and Dowell 2017), we set
{ŝ, 1̂/l, ŵ, p̂} = {34.2,391.7,0.358,0.501}.

The algorithm is a simple sliding window of LLR computa-
tions. Overlapping (1-bp) regions of interest (LLR > τ) are merged.
In every study profiled for bidirectional transcription by Tfit, τ =
103. More information on running and using Tfit output is avail-
able at https://biof-git.colorado.edu/dowelllab/Tfit.

EM algorithm and bidirectional origin estimation

On its own, however, the template matching module of Tfit does
not provide an exact estimate over Θ (the parameters associated
with a single loading position). To perform optimization over Θ
and specifically μ (the origin of bidirectional transcription), we de-
rived the expectation maximization algorithm (outlined in detail
in our previous publication) (Azofeifa and Dowell 2017) to opti-
mize the likelihood function of Equation 4. In brief, we used the
following EM-specific parameters at each loci: The number of ran-
dom reinitializations per loci was set to 64, the threshold at which
the EM was said to converge, |llt− llt+1|, was set to 10−5. Finally for

computational tractability, the EM algorithm halted after maxi-
mum of 5000 iterations.

At each window predicted by the sliding window algo-
rithm, we perform inference over μ, σ, λ, and π by the EM algo-
rithm. Details of the derivation, model selection, and algorithm
design can be found in our previous report (Azofeifa and Dowell
2017).

Footprint estimation

Importantly, our previous effort at parameter estimation of the fi-
nite mixture model assumed that RNAP behaved as a point source
(Azofeifa and Dowell 2017). Consequently, we could not incorpo-
rate a systematic approach to estimate observed gaps between the
forward and reverse strand peaks, which deviate more than could
be explained by an exponentiallymodified Gaussian density func-
tion. Here, we amend our earlier model only slightly to estimate
this behavior. We call the distance between the forward and re-
verse strand peaks, the footprint of RNAP or fp. In brief, fp amounts
to adding or removing a constant to zi, the genomic position of
RNAP after loading and initiation. Assuming that fp > 0 then the
above equations remain valid by a simple transformation to zi:

zi := zi − si · fp.
As in our previous effort (Azofeifa and Dowell 2017), we insert this
new parameter into the conditional expectation of the latent var-
iables given the observed random variables and perform a gradient
step. This allows us to optimize for fp (Equation 5):

f̂pk :=
1
rk

∑N
i=1

(si(zi − m) − E[Y|zi, si; ug ]) · rki . (5)

The interested reader should refer to our previous paper (Azofeifa
and Dowell 2017) where each parameter is explained fully; deriva-
tion of the EM algorithm and fitting of the Tfitmodel are discussed
heavily. For complete clarity, the full expression of the expectation
operators is given by Equation 6:

E[Y|gi; ut ] = si(z− m) − ls2 + s

R(ls− si(zi − m)/ s) ,

rki = p(k|gi; ugk) =
wk · p(gi; ugk)∑
k[K wk · p(gi; ugk)

,

rk =
∑N
i=1

rki .

(6)

TF binding site prediction via eRNA presence

We compute the receiver operating characteristic (ROC) curve to
quantify the ability of bidirectional transcription to predict TF
ChIP binding. ENCODE-called peaks within a TF’s ChIP-seq
data are considered truth, and randomly selected regions that
do not overlap any previously seen ChIP-seq peak are considered
a gold standard for noise. For each peak (truth or noise), a bidirec-
tional model is fit using the expectation maximization algo-
rithm. A Bayesian information criteria (BIC) score was
calculated between the exponentially modified Gaussian mixture
model and a simple uniform distribution with support across the
entire peak. We record a true positive if the BIC score exceeds a
threshold τ and the peak was one of the ENCODE peak calls.
We record a false positive if the BIC score exceeds the threshold
(τ) and the peak is a random noise interval. We vary the thresh-
old τ to obtain the ROC curve of Figure 1 and compute an area
under the curve (AUC).
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Computation of bimodality

To assesswhether the distribution of ChIP peaks or TF bindingmo-
tif sequences around an eRNA origin is bimodal, we developed and
employed a pairwise distribution test.We define the ΔBIC score (in
Equation 8) to be the difference in BIC scores between a single
Laplace-uniform mixture centered at zero (unimodal) and a two
component Laplace-uniform mixture with displacement away
from0, i.e., c (bimodal). The density function of a Laplace distribu-
tionwith parameters (c,b) is provided in Equation 7, andweuse the
formulation for the uniform distribution of Equation 2.

p(d; c, b) = 1
2b

exp − |d − c|
b

. (7)

HereD refers to the set of distances, di∈ [− 1500, 1500], either the
center of the TF binding peaks obtained from MACS (Zhang et al.
2008) or the center of TF binding motif sequence from the PSSM
scanner relative to eRNAorigin. If ΔBIC≫ 0, we assume bimodality
in TF peak location relative to the eRNA origin:

L0(D;Q∗) =
∏N
i=1

1
3000

,

L1(D;Q∗) =
∏N
i=1

w
1
2b

exp − |di|
b

{ }
+ 1−w

3000
,

L2(D;Q∗) =
∏N
i=1

w
4b

exp − |di − c|
b

{ }
+ w
4b

exp − |di + m|
b

{ }
+ 1− w

3000
.

DBIC : = −2(logL(D)1 − logL(D)2) + k log (|D|).
(8)

Θ∗ is optimized again by the ExpectationMaximization algorithm
where the update rules are given in Equation 9:

dt+1 = 1
2(ra + rb)

∑n
i=1

rai di +
∑n
i=1

rai di

( )
,

bt+1 = 1
2(ra + rb)

∑n
i=1

rai |di| +
∑n
i=1

rbi |di|
( )

,

wt+1 = ra + rb

r
,

rai = p(di; c, b)
p(di; c, b) + p(di;−c, b) + u(di;−1500,1500) ,

rbi = p(di;−c, b)
p(di; c, b) + p(di;−c, b) + u(di;−1500,1500) ,

rui = 1− rai + rbi rx =
∑N
i=1

rxi r = ra + rb + ru.

(9)

We refer to a signal as bimodal (i.e., not unimodal) when ΔBIC >
500, estimated from the distribution in Supplemental Figure S5D.

MD-score hypothesis testing

The MD-score relates the proportion of significant motif instances
within some window 2h divided by the total number of motif in-
stances against some larger window2H centered at all bidirectional
origin events. It is calculated on a per PWM binding model basis.

Let Xj = {x1,x2,…} be the set of bidirectional origin locations
genome-wide for some experiment j. Let Yi = {y1,y2,…} be the set
of all significant motif instances for some TF-DNA binding motif
model i genome-wide, which is static as it only depends on the ge-
nome build of interest. Furthermore, because recent human ge-
nome builds vary little at the sequence level, the metric is not

expected to change significantly between hg19 versus GRCh38.
Therefore, the set of all MD-scores is calculated by Equation 10:

g(Xj,Yi; a) =
∑
x[Xj

∑
y[Yi

d(|x− y| , a),

mdj,i = g(Xj,Yi;h)/g(Xj,Yi;H),
mdj,i [[0,1) if h , H.

(10)

Here, δ(.) is a simple indicator function that returns one if the con-
dition (.) evaluates true and zero if false. The double sum, i.e., g(a),
is naively O(|X||Y|); however, data structures like interval trees re-
duce time to O(|X|log |Y|).

To be clear, there exist 641 TF-DNA binding models in the
HOCOMOCO database, and therefore, 641 MD-scores exist for
some experiment j. Let mdi be the MD-score computed for some
TF-DNA binding motif model. Therefore, let MDj = {md1, md2, …,
md641} be the vector of all MD-scores for some data set j.

MD-score significance under stationary model

If yi and xi are uniformly distributed throughout the genome, i.e.,
following a homogeneous Poisson point process, then g(h) is dis-
tributed as a binomial distribution with parameters p,N
(Equation 11):

g(h) �B(n, p),

B(k;n, p) = n

k

( )
( p)k(1− p)n−k,

where n = G(H) and p = h/H.

(11)

In cases where g(H)≫ 0, the binomial is well approximated by a
Gaussian distribution, and hypothesis testing under some α level
can proceed in the typical fashion. In brief, significantly increased
MD-scores (by a binomial test) is diagnostic of heightened motif
frequency surrounding eRNA origins.

MD-score significance under a nonstationary background model

Motif instances, however, are not distributed uniformly through-
out the genome. Specifically, particular regions, such as gene pro-
moters of the genome, are known to exhibit significance sequence
bias. Indeed, the localized GC content is highly nonstationary at
eRNAs (Supplemental Fig. S9A). Consequently, a binomial test,
which assumes a homogeneous Poisson process of motif locations
genome-wide, may be a too liberal null model (e.g., the wrong
background assumption).

To control for this nonstationarity, we propose a simulation-
basedmethod to compute P-values for MD-scores under an empir-
ical CDF, i.e., a localized backgroundmodel. Let p be a 4x2Hmatrix
where each column corresponds to a position from an origin and
each row corresponds to a probability distribution over the DNA
alphabet {A,C,G,T}. To be clear, p0,0 corresponds to the probability
of an A at position −H from any bidirectional origin, similarly
p2,1500 corresponds to the probability that a G occurs at exactly
the point of the bidirectional origin.

Therefore, the simulation-based method of the background
model is simple. Given an experiment ofXj bidirectional origin lo-
cations, we simulate |Xj| sequences following this nonstationary
GC content bias. We then iterate over all PWM models and look
for significant motif hits. We then compute summary statistics
about the displacement of the motif sequence relative to the set
of synthetic sequences, i.e., MD = {md1, md2, …, md641}. It should
be noted that, in this data set, any motif model match is by com-
plete chance alone. We iterate this process 10,000 times to com-
pute a random distribution over mdi, i.e., mdi

���
, and thus we can
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assess the probability of our observed (i.e., from real data) mdi rel-
ative to our empirically simulated mdi

���
. Example simulations are

shown in Supplemental Figure S9B.

Cell type and TF enrichment analysis

This section serves to outline the rational for determining if
heightened MD-scores correlate with a specific cell type category.
More traditional approaches such as a one-way ANOVA test
(MD-scores computed from similar cell types are grouped and
within group variance is assessed via a F-distribution) will not ad-
equately account for MD-scores with little support (i.e., motif hits
that overlap very few eRNAs). To overcome this, we propose a rel-
atively straightforward method that relies on performing hypoth-
esis testing on all pairwise experimental comparisons.

Let j and k be two nascent transcription data sets of interest,
then mdsj,i and mdsk,i refer to MD-scores for some TF-motif model
(i) for which we can performhypothesis testing over as outlined in
MD-Score Hypothesis Testing. If we let α be the threshold at which
we considermdsj,i−mdsk,i to significantly increase, thenwe expect
on average α ·N− 1 false positiveswhen considering a single exper-
iment against the rest of the corpus of size N.

Put another way, if we let the random variable Sj,i refer to the
numberof timesweconsidermdsj,i−mdsk,i to significantly increase
in a data set comparison, then Sj,i is binomial distributed with pa-
rametersN− 1 and α (Equation 12), assuming that there is not a re-
lationship between the motif model i and the experiment j:

S j,i =
∑N
k=1

I( p(mdsj,i . mdsk,i) , a). (12)

Inpracticewe setα to 10−6, and I refers to an indicator function that
returns one in the casewhere the statement evaluates to truth, oth-
erwise zero.

Naively, we could now ask for all the data sets annotated as
some cell type ct and then perform hypothesis testing on Sct (the
sum of Sj,i’s where experiment j belongs to the ct cell type set).
Importantly, we only consider data set pairs for which i and j
belong to different cell type sets. Unfortunately, a single experi-
ment within the cell type set might show strong association
with a TF (i.e., 90% of the N− 1 comparisons significantly deviate
from zero) where the rest of the cell types show small numbers of
significant deviations. By a binomial test, this is unlikely—even
when considering the expansion induced by the cell type set—
but intuitively does not fit into our notion of cell type association.

To this end, we define a final random variable Act,i to be the
number of times motif model i is significantly enriched for a
data set j and that data set j belongs to some cell type (Equation 13):

A =
∑N
j=1

p(S j,i . S) , 10−6I( j [ CT), (13)

where CT refers to the set of experiments that are annotated as cell
type ct. From there, it is easy to assess A across cell types and motif
models under a contingency model using Fisher’s exact test.

Transcription of the TF gene when the MD-score is elevated or

depleted

To evaluate whether significantly altered (elevated or depleted)
MD-scores reflect TF activity, we first calculate the nascent tran-
scription levels over the gene encoding the TF. To this end, all
RefSeq genes were downloaded from hg19. Samples with fewer
than 5000 Tfit bidirectional regions were removed from subse-
quent consideration. FPKM was calculated for each gene in each
human nascent transcription sample (n = 491) over the body of

the gene, defined here as 1 kb to the end of the gene. For all TFs
in HOCOMOCO >1 kb and with a RefSeq name (n = 635 TFs),
the maximum FPKM of all annotated isoforms was utilized. All
TF MD-scores were compared to expectation and classified on a
per sample basis. Significant deviations from expectation were de-
termined as passing both the stationary and nonstationary test (P-
value <10−6). TFs with significant deviation were subsequently la-
beled as elevated if they had aminimumMD-score of 0.1 and were
above expectation or labeled as depleted if they had a maximum
MD-score of 0.1 and below expectation. To identify samples in
which the TF is at expectation, we labeled a third set as at-expecta-
tion if they pass the stationary and nonstationary test (P-value
<10−2). For the box plots of Supplemental Figure S14A, we exclud-
ed samples with fewer than 10 significant (depleted or elevated) or
at-expectation samples. Across all samples, to avoid zero FPKM the
minimum nonzero FPKM was utilized.

We next calculated the Spearman’s rank correlation coeffi-
cient and P-value across all samples (n = 491; scipy v0.17.1) be-
tween MD-scores and the FPKM of the gene encoding the TF
(Supplemental Fig. S14B). When shuffling the FPKMs across sam-
ples, we expect an average of 8.4 TFs to show correlation (permu-
tation testing 100 times, standard deviation 2.4 TFs). For all
eRNAs (MD-score from nonpromoter associated bidirectionals),
286 of 635 TFs show a correlation (P-value <0.01). For all bidirec-
tionals (includes promoters), the same P-value cutoff finds
441 of 635 TFs with correlation (expectation 16.5, standard devia-
tion 3.8).

We next examined regions evaluated by a functional assay,
namely, CapStarr-seq (Vanhille et al. 2015), for their co-occurance
with eRNA origins. In CapStarr-seq, they utilized mouse 3T3 cells,
selected TF-bound regions (by ChIP), and determined whether the
bound regions functioned as an enhancer using a GFP expression
assay. Identified regions were moved to mm10 coordinates using
LiftOver (Hinrichs et al. 2006). For comparison to nascent tran-
scription, Tfit-called bidirectionals (both eRNA and promoter ori-
gins) for mouse samples (SRR1233867, SRR1233868, SRR1233869,
SRR1233870, SRR1233871, SRR1233872, SRR1233873,
SRR1233874, SRR1233875, SRR1233876) from the 3T3 cell lines
were combined (Step et al. 2014). While 35.5% of regions classi-
fied as a strong enhancer (n = 186) by CapStarr-seq contained a
bidirectional origin, only 7.9% of regions classified inactive (n =
4406) had a bidirectional origin. Generally, bidirectionals within
strong enhancers (by CapStarr-seq) were identified by Tfit in mul-
tiple nascent transcription replicates, while bidirectionals within
inactive regions were only in one nascent transcription replicate.
Overall, regions defined as strong enhancers were four times
more likely to contain an eRNA origin than regions defined as in-
active enhancers.

MD-score significance between experiments

The MD-score constitutes a proportion, and as long as h is upper-
boundedbyH, thenmdj,iwill always existwithin the semi-open in-
terval [0,1). An important question is whether mdj,i has signifi-
cantly shifted between two experiments: j,k as a function of Xj

and Xk. This analysis is straightforward under the two proportion
z-test. Specifically, we are testing the null and alternative hypoth-
esis tests in Equation 14:

H0 : mdj,i = mdk,i,

H1 : mdj,i =mdk,i.
(14)

We can then compute the pooled sample proportion (pi) and
standard error (SE) as shown in Equation 15. Therefore, our test sta-
tistic z (Equation 16) is normally distributed with mean 0 and
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variance 1:

pi =
(mdj,i · g(Xj,Yi;H) +mdk,i · g(Xk,Yi;H))

g(Xj,Yi;H) + g(Xk,Yi;H) ,

SE = p(1− p) · (1/g(Xj,Yi;H) + 1/g(Xk,Yi;H)),
(15)

z = mdj,i −mdk,i���
SE

√ � N(0,1). (16)

Computation of the P-value can be assessed in the normal fashion
under some α level. In all comparisons, we utilizemultiple hypoth-
esis correction outlined by Storey et al. (2007).
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