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Abstract 

Background:  Haplotype reconstruction (phasing) is an essential step in many applications, including imputation and 
genomic selection. The best phasing methods rely on both familial and linkage disequilibrium (LD) information. With 
whole-genome sequence (WGS) data, relatively small samples of reference individuals are generally sequenced due 
to prohibitive sequencing costs, thus only a limited amount of familial information is available. However, reference 
individuals have many relatives that have been genotyped (at lower density). The goal of our study was to improve 
phasing of WGS data by integrating familial information from haplotypes that were obtained from a larger genotyped 
dataset and to quantify its impact on imputation accuracy.

Results:  Aligning a pre-phased WGS panel [~5 million single nucleotide polymorphisms (SNPs)], which is based on 
LD information only, to a 50k SNP array that is phased with both LD and familial information (called scaffold) resulted 
in correctly assigning parental origin for 99.62% of the WGS SNPs, their phase being determined unambiguously 
based on parental genotypes. Without using the 50k haplotypes as scaffold, that value dropped as expected to 50%. 
Correctly phased segments were on average longer after alignment to the genotype phase while the number of 
switches decreased slightly. Most of the incorrectly assigned segments, and subsequent switches, were due to single-
ton errors. Imputation from 50k SNP array to WGS data with improved phasing had a marginal impact on imputation 
accuracy (measured as r2), i.e. on average, 90.47% with traditional techniques versus 90.65% with pre-phasing inte-
grating familial information. Differences were larger for SNPs located in chromosome ends and rare variants. Using a 
denser WGS panel (~13 millions SNPs) that was obtained with traditional variant filtering rules, we found similar results 
although performances of both phasing and imputation accuracy were lower.

Conclusions:  We present a phasing strategy for WGS data, which indirectly integrates familial information by aligning 
WGS haplotypes that are pre-phased with LD information only on haplotypes obtained with genotyping data, with 
both LD and familial information and on a much larger population. This strategy results in very few mismatches with 
the phase obtained by Mendelian segregation rules. Finally, we propose a strategy to further improve phasing accu-
racy based on haplotype clusters obtained with genotyping data.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Most genotyping technologies provide, for each marker, 
the combination of marker alleles that are carried by an 
individual. Haplotype reconstruction for such genotyping 

data, or phasing, refers to statistical methods that deter-
mine which marker alleles were inherited from the same 
parent and are located on the same homolog. It is an 
essential step in many applications, including imputa-
tion [1], pre-phasing of reference panels [2], estimation of 
identity-by-descent (IBD) probability for genetic or QTL 
mapping [3], association analysis (e.g. [4–6]), genomic 
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selection [7–10], studies of genetic diversity, detection of 
signatures of selection [11, 12] or the study of the recom-
bination process (e.g. [13]).

Most haplotyping methods rely either on familial infor-
mation (e.g., [14, 15]), linkage disequilibrium (LD, e.g. 
[16–19]) or both (e.g., [20]). Methods that rely on heuris-
tics (possibly in combination with familial information) 
have also proven efficient [21–23]. The use of familial 
information is particularly important to perform haplo-
type reconstruction at long distances and is extremely 
precise with large half-sib families whereas LD-based 
methods are very effective at short distances. Note that 
the so-called long-range phasing (LRP) methods achieve 
haplotype reconstruction at long distances without 
requiring explicit familial information.

In many populations, including livestock species, 
whole-genome sequencing (WGS) is applied only to a 
relatively small sample of individuals, because associ-
ated costs remain high. In many cases, unrelated refer-
ence individuals are selected to capture as much variation 
from the population as possible [24]. Therefore, the use 
of familial information might be of little benefit. Conse-
quently, these datasets are most often phased with LD-
based methods only (e.g. [25–27]). The small size of the 
reference population also impacts the efficiency of these 
LD-based methods and the inferred haplotypes. Improv-
ing the phasing accuracy should positively impact all 
related applications mentioned above. Large samples 
from a population, including many relatives of these ref-
erence individuals, are genotyped with single nucleotide 
polymorphism (SNP) arrays. As a result, the quality of 
haplotype reconstruction with such SNP array data is 
high due to the use of the available familial information. 
In addition, more genotyped individuals are available to 
estimate LD patterns (between SNPs on the array).

The main objective of our study was to determine 
whether phasing of WGS data of reference individuals 
using their haplotypes that are obtained with genotyp-
ing array data as template (hereafter called “scaffold” as 
in [1, 28]) is more accurate or not. In addition, we evalu-
ated whether phasing based on LD and familial informa-
tion has an impact on imputation accuracy. Finally, we 
suggest several possible improvements of the phasing 
method.

Methods
Data
Selection of SNPs from WGS data
In the current study, we selected 67 bulls and 24 cows 
that originated from New-Zealand and were all both 
genotyped and sequenced at high coverage (15x or more) 
from a larger WGS dataset that was previously used in 
[29]. It should be noted that, in this study, our aim was 

to assess the phasing accuracy for WGS genotypes called 
with relatively high confidence and not for low-fold WGS 
data. Detailed procedures to generate the WGS data, 
including DNA extraction, sequencing procedure, align-
ment, quality score recalibration and variant calling were 
previously described in [29].

This WGS dataset is composed of 36 Holstein–Friesian 
(six cows and 30 bulls), 24 Jersey bulls and 31 Holstein–
Friesian/Jersey crossbred (18 cows and 13 bulls) individu-
als. Among these 91 animals, 38 parent-offspring pairs 
were available for which data was available in the WGS 
dataset for the sire of 30 animals, for the dam of two ani-
mals and for both sire and dam of three animals. These 
parent-offspring relationships span over several gen-
erations (up to four generations) and were used to phase 
offspring with high confidence based on the Mendelian 
segregation rules.

When evaluating phasing accuracy on real WGS data, 
the estimated phasing errors do not result only from 
genuine phasing errors but also from other sources (e.g. 
assembly or genotype calling errors), which can blur the 
genuine phasing errors. To reduce as much as possible, 
the noise due to other sources of errors, we performed a 
very stringent data filtering to select the so-called trusted 
variants (high-confidence variants). For the sake of gen-
erality, we also performed a more traditional variant fil-
tering for ease of comparison with other studies and to 
evaluate phasing in more realistic conditions. In this 
paper, the WGS dataset always refers to the trusted set of 
variants, unless explicitly specified.

The stringent filtering rules applied to the 22,228,949 
SNPs from the original VCF file are described hereafter. 
In addition to calibration score, we used VCFtools [30] to 
select bi-allelic SNPs that:

• • are present in other available bovine WGS datasets 
(the 1000 bull genomes [31] run 2, the Belgian Blue 
cattle and New-Zealand populations used in [29] 
and a Dutch Holstein pedigree of 415 individuals 
reported in [32]);

• • are present in the datasets of all 91 individuals used 
here;

• • have a MAF higher than 0.01 (i.e. any SNP for which 
the minor allele occurred only once was discarded);

• • did not deviate from Hardy–Weinberg equilibrium 
(p > 0.05).

In this selection, we retained SNPs that displayed correct 
Mendelian segregation in the WGS Dutch Holstein ped-
igree based on the following rules: no parent-offspring 
incompatibilities (e.g., opposite homozygotes), no devia-
tion from Hardy–Weinberg proportions (p  >  0.05) and 
no deviation from expected genotypic proportions in 
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offspring of heterozygous parents (p > 0.05). In addition, 
we excluded those markers associated with a low power 
to detect possible parent-offspring inconsistencies. 
Application of these filtering steps reduced substantially 
the number of SNPs but also the level of genotyping 
errors.

In addition to variant quality, we also removed some 
genomic regions that may be incorrectly mapped 
(errors in the genome assembly). Additional errors were 
detected based on the following evidences: multiple long 
runs of homozygosity (ROH) that had been detected with 
the genotyping array data were heterozygous for some 
segments of the WGS data, excess of double cross-overs 
in the WGS Dutch Holstein pedigree compared to the 
array-based haplotypes, and split reads or unexpected 
distances between mate-pairs in a WGS mate-pair 
library.

Finally, SNPs that were retained in the genotyping 
array dataset (see below) but discarded based on the 
filtering step mentioned just above were re-introduced 
in the WGS dataset. Application of the complete series 
of filtering steps resulted in a final list of 5,185,663 
SNPs (thereafter referred to as the trusted set of WGS 
SNPs) that are listed in Additional file  1: Table S1, 
whereas, application of only the more traditional filter-
ing steps, i.e. SNPs that were bi-allelic, present in the 
datasets of all 91 animals, showed no deviation from 
Hardy–Weinberg equilibrium with p  >  0.05, and had 
a MAF higher than 0.01 resulted in 13,175,535 SNPs. 
The latter set was used only for illustrative purposes 
(comparisons to other studies) and will be referred to 
as the traditionally filtered WGS data (see Additional 
file 2: Table S2).

Selection of SNPs from genotyping array
A total of 58,369 animals from Livestock Improve-
ment Corporation (LIC, New Zealand), including the 
91 sequenced animals, were genotyped using either the 
BovineSNP50k (v1 and v2) or the BovineHD genotyp-
ing array from Illumina. Only SNPs that were common 
to the three arrays were retained. We removed SNPs 
that had a call-rate less than 95%, generated more than 
10 Mendelian inconsistencies, were monomorphic or 
strongly deviated from Hardy–Weinberg equilibrium. 
In addition, map errors were detected and discarded 
using LINKPHASE3 [33]. Application of these filters 
resulted in 37,740 autosomal SNPs. Furthermore, 2455 
SNPs that showed more than 4% mismatches between 
the genotype and WGS data for the 91 individuals were 
discarded. This final panel of 35,285 phased SNPs will 
be referred to as genotyping data. As stated above, all 
the SNPs used in the genotyping data were present in 
the WGS data.

Phasing methods applied to genotype and WGS data
Phasing of the genotype data using only LD information 
(GEN‑P1)
A first phasing was done for all 58,369 genotyped ani-
mals from LIC using SHAPEIT2 [34, 35] and default 
parameters except for the window size (set to 5  Mb). 
The originality of this method consists in the possibility 
to efficiently explore the space of the haplotypes that are 
consistent with a given genotype. This phasing method 
is referred to as “GEN-P1” and the results were used as 
the pre-phase for imputation of the WGS data from the 
genotyping data using only LD information.

Phasing of the genotype data using both LD and familial 
information (GEN‑P2)
As mentioned above, LINKPHASE3 was used to detect 
and discard map errors. However, the original purpose 
of this method is to partially phase the genotypes using 
Mendelian segregation rules and linkage in half-sibs 
families. After applying this method to the population 
of 58,369 animals, further haplotype reconstruction was 
performed by integrating LD information using DAG-
PHASE [20] and Beagle [16]. The resulting haplotypes 
were therefore inferred with both familial and LD infor-
mation to the 35,285 SNPs (missing genotypes being 
imputed by Beagle). This phasing method is referred to as 
“GEN-P2” and was used as scaffold for phasing the WGS 
data panel using both LD and familial information.

Phasing of the WGS data using only LD information (WGS‑P1)
As for the genotype data, we ran directly SHAPEIT2 on 
the WGS data. Since the population of WGS animals is 
relatively small (91 animals), we set the number of condi-
tioning states to the maximum value (182 different hap-
lotypes). The window size was set to 0.5 Mb, as suggested 
in the SHAPEIT2 documentation for use with sequence 
data. This phasing is referred to as “WGS-P1” and will 
also serve as a pre-phasing step for two purposes: (1) for 
phasing the WGS data using both LD and familial infor-
mation and (2) as reference for imputation to WGS level 
using only LD information.

Phasing of the WGS data using both LD and familial 
information (WGS‑P2)
This phasing is also achieved using SHAPEIT2 by using 
the option “call” instead of “phase”. The original aim of 
this option is to improve genotype calling from low cov-
erage WGS data [28] by applying a technique (haplotype 
scaffold) that uses the phase of a SNP genotyping array 
as scaffold. The principle is that the scaffold constraints 
the space of consistent haplotypes. Each non-overlapping 
successive segment (at least three sequence SNPs) is then 
aligned to the scaffold.
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In our implementation, the WGS data had a high cov-
erage (≥15x), thus the genotypes are coded as integers 
rather than real dosages and the space of the haplotypes 
that is consistent with a given genotype (and also with 
the scaffold) is expected to be much smaller than in the 
case of low-coverage data.

In our specific case, the advantage of this technique 
was that it aligned the pre-phased WGS data (WGS-
P1) to the GEN-P2 phase (i.e. the scaffold). In the latter, 
LD information was obtained from many more samples 
than for WGS-P1 (58,369 vs. 91 for WGS-P1, see Table 1 
for more details) but above all, GEN-P2 phase was also 
based on very accurate familial information and thus, it 
is expected to be correct at a longer range than GEN-P1 
phase. This argument was verified beforehand: close to 
50% of the SNPs of the genotyping data had a GEN-P1 
phase that was in opposite phase to that obtained based 
on Mendelian segregation rules. Since GEN-P2 phase 
was based on pedigree information, obviously it was in 
complete concordance with the phase that was obtained 
based on Mendelian segregation rules. Thus, it is rec-
ommended to use the GEN-P2 as a scaffold to phase the 
WGS data.

In our study, all SNPs of the genotype data are 
included in the WGS data, which results in the WGS-
P1 segments (defined as consecutive WGS SNPs for 
which the closest genotyped SNP is the same) that align 
on the GEN-P2 phase to be at least 1 bp long. On aver-
age, these WGS-P1 segments contain ~140 WGS SNPs 
and their median length is ~53 kb (see more details in 
Table 2).

Regarding the initial phasing of the WGS data, the 
number of conditioning states was set to 182 and the 
window size to 0.5  Mb. The number of Markov chain 
Monte Carlo (MCMC) iterations was optimized using 
a subset of parent-offspring pairs and subsequently 
set to 12 burn-in iterations and 30 main iterations (on 
which haplotypes are averaged). Twelve pruning stages 
of four iterations each were used for a more parsimo-
nious haplotype graph, as suggested in the SHAPEIT2 
documentation.

Figure 1 provides an overview of all the phasing steps 
described.

Assessing phasing accuracy of haplotypes WGS‑P1 
and WGS‑P2
Two criteria were computed to assess and compare the 
accuracy of the WGS-P1 and WGS-P2 phases: pro-
portion of phasing errors and number of switches. To 
compute these statistics, the WGS data was divided as 
follows: of the 91 animals included here, 77 were retained 
in the training set and 14 were removed because they 
were parents (10 sires and 4 dams) of 30 animals of the 77 
training animals (28 with only one parent known and two 
with both parents known). Phases WGS-P1 and WGS-P2 
were then estimated by using the training set only.

For each of the 30 animals with at least one parent 
known, WGS-P1 and WGS-P2 were subsequently com-
pared with the phase that was based on the Mendelian 
segregation rules, which correctly phase the SNPs that 
are heterozygous in the offspring and homozygous in 
at least one parent. Such SNPs are referred to as “phas-
able” and across these 30 animals, they represent on 
average ~15% of the WGS SNPs for the animals with 
only one sequenced parent and ~26% for those with two 
sequenced parents.

The proportion of phasing errors is the proportion of 
mismatches between the Mendelian phasing and the 
method under evaluation for the phasable SNPs. Each 
sequence of one or more consecutive mismatches delim-
its an incorrect segment, regardless of the distance 
between the SNPs in that sequence. Conversely, each 

Table 1  Importance of  the familial information for  the 91 
animals of the WGS dataset

a  The average number of offspring genotyped is the average number of 
offspring considering only animals with at least one offspring

Phased with 58,369 
genotyped animals

Phased with 91 
sequenced animals

Both parents genotyped 23 3

Only one parent geno-
typed

67 32

At least one offspring 
genotyped (average 
number of offspringa)

80 (178.6) 17 (2.2)

Table 2  Size distribution of  the WGS segmentsa encom-
passed by the scaffold (GEN-P2) (number of SNPs, physical 
length)

a  WGS segments being defined as all consecutive WGS SNPs of the trusted set of 
SNPs for which the closest genotyped SNP is the same
b  “Singleton segments” refers to segments that contain only one SNP from the 
scaffold, therefore a scaffold SNP encompassing only itself in the WGS data

GEN-P2 scaffold  

Number of WGS SNPs per segment Minimum 1

Average 146.97

Median 110

Maximum 2241

Singleton segmentsb Number 145

Scaffold proportion (%) 0.41

Physical length of segments in bp Minimum 1

Average 67,834.76

Median 53,507

Maximum 1,703,836

Physical length of non-singleton 
segments in bpb

Minimum 39

Average 68,114.66

Median 53,715
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sequence of one or more consecutive matches delimits a 
correct segment. The number of switches was recorded 
per animal as the number of times the phase switches 
from correct to incorrect or conversely. Segment length 
distribution was also recorded, as well as the number of 
singleton segments (i.e. segments containing only one 
phasable SNP).

Assessing the impact of the pre‑phasing strategy 
on accuracy of imputation from genotype data to WGS 
data
To assess whether a pre-phasing strategy based on both 
LD and familial information improves or not the accu-
racy of imputation, we compared two scenarios (see 
Fig. 1):

1.	 WGS-I1, imputation using WGS-P1 pre-phased hap-
lotypes, i.e. imputation is performed from GEN-P1 to 
WGS-P1;

2.	 WGS-I2, imputation using WGS-P2 pre-phased hap-
lotypes, i.e. imputation is performed from GEN-P2 to 
WGS-P2.

To evaluate the impact of the pre-phasing strategy on 
imputation accuracy, a 13-fold cross-validation was per-
formed. The imputation to seven target animals from 84 
reference animals was repeated 13 times. Pools of seven 
animals were randomly chosen without repetition, which 
resulted finally in 91 imputed animals. Imputation was 
achieved for all 29 bovine autosomes by using Impute2 [1], 
with an effective population size set to 200, a number of 
reference haplotypes set to 168, i.e. twice the number of ref-
erence animals, and by applying the option “–allow-large-
regions” to impute the entire chromosome at once. For 
each animal, the result is imputed dosage of both phases.

The following statistics were then obtained for all WGS 
SNPs by comparing the imputed dosages and observed 
genotypes of the 91 animals: imputation accuracy r2, as 
the squared correlation between imputed dosages and 
observed genotypes of any WGS SNP, and imputation 
error rate, as the sum of the residues between imputed 
dosages and observed genotypes per number of imputed 
SNP alleles (i.e. twice the number of SNPs).

Results
Phasing accuracy
Proportions of phasing errors, numbers of switches and 
distributions of length of segments are in Tables 3 and 4 
for the trusted set of variants. The results indicate that 
phasing with LD information only (WGS-P1 phase) leads 
to random assignment of parental origin: about 50% of 
SNPs are not correctly phased. Conversely, aligning the 
WGS-P1 phase on the GEN-P2 phase (relying on familial 
information), i.e. the WGS-P2 phase, results in accurate 
inference of the parental origin along each chromosome: 
99.62% of the phasable SNPs for the animals in the train-
ing set are correctly assigned.

We also observed differences between WGS-P1 and 
WGS-P2 in terms of number of switches and lengths 
of segments but they were not as important as those 
for phasing errors. The WGS-P2 phase presents fewer 
switches than the WGS-P1 phase, i.e. ~1.2 switches less 
per chromosome. On average, the distances between 
consecutive switches are larger for the WGS-P2 phase 
(3.19  Mb) than for the WGS-P1 phase (3.01  Mb.) We 
also found that any WGS SNP was located, on average, 
at 7.8  Mb of the closest switch for the WGS-P2 phase 
whereas it was only at 6.7  Mb for the WGS-P1 phase 
(Table 5). In the next section, we assess whether this had 
an influence on imputation.

WGS data
91 samples

unphased

GEN-P2
91 samples

GEN data
58,369

unphased

WGS-P1
91 samples

GEN-P2
58,369 samples

GEN-P1
91 samples

GEN-P1
58,369 samples

WGS-P2
91 samples

PHASEBOOK

selectionSHAPEIT2

SHAPEIT2

SHAPEIT2

Impute2

Impute2

selection

SHAPEIT2

only LD information

both LD and familial informations

Fig. 1  Flowchart of all phasing and imputation steps. Synoptic view of the two phasing strategies (P1 with LD information only, P2 with both LD 
and familial information) applied to the two datasets (GEN 50k dense genotype array data, WGS whole-genome sequence data) and the two impu-
tation scenarios
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Figure  2 shows the proportions of segments that are 
longer than 1, 5, 10 or 20  Mb with both WGS-P1 and 
WGS-P2, and whether these are correctly or incorrectly 
phased. Segment lengths that were equal to or longer 
than 50  Mb (~15% of the genome) were all correctly 
phased in the case of WGS-P2.

However, the median and maximum segment lengths 
were greater for the WGS-P1 phase, which is illustrated 
by the proportion of singleton segments, i.e. they are 
slightly more numerous for WGS-P2 than for WGS-
P1 (respectively, 37.1 and 35.7% of the total number of 
segments), but about 84% of the singleton segments 
obtained with WGS-P2 are incorrectly phased. The dif-
ference in average segment length between WGS-P1 
and WGS-P2 is larger if we consider that only segments 
below a threshold length are phasing errors: 9.5 versus 
11 Mb when discarding singletons and 15 versus 19 Mb 
when discarding singletons and small segments (maxi-
mum 5 phasable SNPs and 5  kb). Discarding singletons 
and small segments leads to an average length of almost 
32 Mb for WGS-P2 segments that were correctly phased.

The results obtained with more traditional variant filter-
ing rules (thus, containing more noise due to errors that 
do not depend on the phasing method) are in Tables 3 and 
6. Compared to the results obtained with the trusted set 
of variants, we observed more errors. First, correct identi-
fication of parental origin drops slightly i.e. to 98.9% of the 
variants with WGS-P2, whereas parental origin remains 
randomly assigned with WGS-P1 (Table 3). The propor-
tion of phasing errors increases by a ratio close to the 
number of SNPs (on average, 2.89 more phasing errors 
with 2.54 more SNPs). The increase in number of switches 
(per animal or per animal and per chromosome) is much 
more pronounced: on average 7.26 more switches than 
with the stringent set of SNPs (Table  3). When relaxing 
filters for SNP selection, the size of the segments (whether 
correctly phased or not) drops substantially from ~3 to 
~0.5 Mb for both phases WGS-P1 and WGS-P2, although 
less in terms of number of SNPs (on average, from 2.38 to 
2.85 less SNPs, for phases WGS-P1 and WGS-P2 and for 

number of all SNPs or only phasable SNPs, see Table 6). 
These reductions in overall performances indicate that, 
with such traditional filtering, many errors remain in the 
dataset (probably due to errors in the assembly or in the 
genotype calling), which makes the comparison of meth-
ods more difficult. Still, the strategy that relies on familial 
information results in more accurate phasing: WGS-P1 
tends to produce slightly shorter segments than WGS-P2. 
As for the trusted set of variants, segments with a cor-
rectly assigned parental origin are on average about two 
times longer when phasing relies on familial information 
(WGS-P2).

Accuracy of imputation of the WGS data
Imputation accuracies (measured as r2) are in Table  7 for 
each imputation scenario WGS-I1 (only LD information) 
and WGS-I2 (both LD and familial information), on both 
sets of SNPs. Although the scenario that indirectly accounts 
for familial information (through the use of a scaffold that 
exploits both familial and LD information) performs bet-
ter than the other scenario, this difference is small with the 
trusted set of SNPs: 90.65 for WGS-I2 versus 90.47% for 
WGS-I1. The overall imputation error rate is 1.70% for WGS-
I1 and 1.67% for WGS-I2, averaged per chromosome and 
animal, i.e. the scenario that indirectly accounts for familial 
information reduces error rate by ~2% (in relative terms).

However, the difference in imputation accuracy 
between scenarios is larger for specific classes of SNPs, 
for which both imputation r2 are lower. WGS-I2 results 
in an imputation accuracy (measured as r2) that is 0.88% 
higher than that for WGS-I1 for variants with a MAF 
between 1 and 5%. This difference is mainly due to the 
rarest SNPs being retained in the WGS dataset (two 
occurrences of the minor allele). For this particular class 
of SNPs, the median values of r2 are 67.47 and 86.78% for 
WGS-I1 and WGS-I2, respectively.

Both ends of all chromosomes also present lower r2 and 
larger differences between methods: on average, r2 is 2.15 
and 0.51% higher for the first and last Mb of each chro-
mosome, respectively, with WGS-I2.

Table 3  Statistics of phasing results for the two phasing strategies

WGS-P1 phased with LD information only, WGS-P2 phased with both LD and familial information

Trusted set of variants Traditional SNP filtering

WGS-P1 WGS-P2 WGS-P1 WGS-P2

Average Median Average Median Average Median Average Median

Proportion of phasing errors

Per animal 50.95% 50.13% 0.38% 0.32% 50.80% 50.41% 1.10% 1.04%

Number of switches

Per animal 739.2 631.5 704.5 574 4521 4291 4387.7 4079

Per animal and chromosome 25.49 18.5 24.29 16.5 155.9 105.5 151.3 112
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When relaxing filters for the selection of WGS SNPs 
(more traditional variant filtering rules), the average 
imputation accuracy (measured as r2) drops slightly for 

both imputation scenarios, but the difference between 
scenarios is more important than when a more stringent 
selection is applied: 89.07 for WGS-I2 versus 88.66% for 

Table 4  Lengths of  segments without  switches of  the trusted set of  WGS SNPs for  the two phasing strategiesa, 
whether correctly or wrongly phased or both (all)

A segment is defined as a run of consecutive phasable SNPs without switches
a  WGS-P1 phased with LD information only, WGS-P2 phased with both LD and familial information
b  Unless specified, all length units are in Mb
c  “Singleton” refers to segments that contain only one SNP

WGS-P1 WGS-P2

All Correct Wrong All Correct Wrong

Original segments

 Physical lengthb

  Avg 3.01 2.96 3.07 3.19 6.11 84.99 kb

  Med 4.58 kb 4.75 kb 4.33 kb 3.38 kb 1.74 1 bp

  Max 150.73 150.73 123.75 116.39 116.39 42.76

 Proportion of singletonsc 37.52% 37.53% 37.51% 38.82% 12.18% 67.24%

 Number of phasable SNPs per segment

  Avg 1048.45 1041.75 1055.17 1098.05 2119.04 8.39

  Med 4 4 4 3 644 1

  Max 55,553 55,553 50,217 51,340 51,340 835

 Number of SNPs per segment

  Avg 6232.95 6134.89 6331.09 6612.58 12,639.78 179.99

  Med 12 13 12 8.5 3641 1

  Max 308,884 308,884 240,332 231,051 231,051 85,165

After discarding singletonsc

 Physical lengthb

  Avg 9.48 9.28 9.67 11.02 19.46 0.36

  Med 1.25 1.39 1.12 0.26 6.39 0.01

  Max 154.47 154.47 147.3 147.3 147.3 42.76

 Number of phasable SNPs per segment

  Avg 3185.72 3163.65 3207.84 3652.87 6524.06 28.54

  Med 367 418 314 59 2352 4

  Max 67,776 67,776 60,281 67,776 67,776 1452

 Number of SNPs per segment

  Avg 19,586.14 19,210.75 19,962.22 22,778.53 40,230.9 748.21

  Med 2555 2925.5 2306 523 13,713 15

  Max 318,618 318,618 304,742 304,742 304,742 85,165

After discarding segments with less than five phasable SNPs and shorter than 5 kb

 Physical lengthb

  Avg 14.78 14.46 15.11 19.36 31.64 0.72

  Med 4.62 4.72 4.51 2.28 19.59 0.06

  Max 158.12 158.1 158.12 158.24 158.24 42.76

 Number of phasable SNPs per segment

  Avg 4956.66 4911.73 5001.86 6400.99 10,581.41 53.68

  Med 1489 1584 1401 522 6580 13

  Max 73,348 73,348 60,625 67,776 67,776 1452

 Number of SNPs per segment

  Avg 30,549.61 29,916.85 31,186.28 40,033.57 65,412.51 1499.57

  Med 9884 10,364 9497.5 4913 41,646 138

  Max 327,738 327,706 327,738 327,914 327,914 85,165
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WGS-I1. This difference is probably due to the classes of 
rare variants, since they are much more frequent in this 
dataset (e.g. ~8.5 more SNPs of the rarest class).

Discussion
Integrating familial information in phasing of WGS data 
results in accurate haplotypes with sparse phasing errors
The main idea of our new strategy is to indirectly use 
familial and LD information from genotyped populations 
to improve phasing of a smaller population of whole-
genome sequenced reference individuals in a two-step 
procedure. It should be noted that the strategy is not 
restricted to WGS data; for instance, phasing of a HD 
panel can be improved with information from a larger 
50k panel. The reasoning is that genotyped populations 

are larger and thus more familial information (more 
genotyped parents and more genotyped offspring) is 
available. For instance, 80 of the 91 animals used in this 
study have offspring in the genotyped population (178.6 
offspring on average, see Table 1). Within the population 
of animals with sequence data, this number would drop 
to 17 animals (with 2.2 offspring on average). Moreover, 
with a larger population, there are more records and a 
larger variety of haplotypes represented to infer the LD 
structure. Therefore, haplotype reconstruction in these 
larger genotyped populations has proven particularly 
efficient in pedigreed populations and such haplotypes 
would be good scaffolds (or anchors) to phase the WGS 
data. Another key point is that we assume that LD-based 
methods are able to correctly phase segments that are a 
few Mb long (but not at long range). As long as these cor-
rectly phased segments each contain a few SNPs from the 
lower-density panel, it should be possible to infer their 
parental origin based on the phased genotype data. Our 
results prove that these hypotheses are valid for a bovine 
dataset and that our strategy results in WGS haplotypes 
being correctly phased along the entire chromosome 
except for a few small segments (most often singletons).

First, we determined the range of correct phasing with 
LD-based methods on WGS data. Generally, methods 

Table 5  Distancea between  any SNP of  the trusted set 
of WGS SNPs and the closest switch

Distances are estimated on 30 animals of the training population
a  In Mb

WGS-P1 WGS-P2

Average 6.74 7.77

Median 3.49 4.08

Maximum 150.81 98.69
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Fig. 2  Proportion of the genome by class of size of phased segments. Proportions of the genome in segments that are longer or equal to 5, 10, 20 
or 50 Mb, regardless of whether they are correctly (grey) or incorrectly (black) phased, when phasing the WGS data using only LD information (WGS-
P1) or both LD and familial information (WGS-P2)
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Table 6  Lengths of  segments without  switches obtained with  WGS SNPs selected with  more traditional filtering rules 
for the two phasing strategiesa, whether correctly or wrongly phased or both (all)

A segment is defined as a run of consecutive phasable SNPs without switches
a  WGS-P1: phased with LD information only; WGS-P2: phased with both LD and familial information
b  Unless specified, all length units are in Mb
c  “Singleton” refers to segments that contain only one SNP

WGS-P1 WGS-P2

All Correct Wrong All Correct Wrong

Original segments

 Physical lengthb

  Avg 0.50 0.49 0.50 0.51 0.99 0.04

  Med 346 bp 297 bp 404 bp 396 bp 223.51 kb 1 bp

  Max 34.88 34.88 21.33 25.64 25.64 14.65

 Proportion of singletonsc 40.76% 41.05% 40.48% 40.61% 16.11% 65.31%

 Number of phasable SNPs per segment

  Avg 373.70 370.72 376.69 384.98 758.49 8.40

  Med 2 2 2 2 131 1

  Max 29,712 29,712 26,646 32,839 32,839 1813

 Number of SNPs per segment

  Avg 2618.11 2593.29 2642.94 2704.68 5179.74 209.22

  Med 4 4 4 4 1228.5 1

  Max 158,630 158,630 113,469 134,130 134,130 84,929

After discarding singletonsc

 Physical lengthb

  Avg 1.88 1.87 1.9 1.94 3.64 0.19

  Med 0.05 0.05 0.05 0.03 1.04 1.92 kb

  Max 63.16 55.98 63.16 85.72 85.72 31.87

 Number of phasable SNPs per segment

  Avg 1335.70 1325.27 1346.13 1373.47 2675.79 28.52

  Med 14 14 14 10 659 3

  Max 74,067 57,000 74,067 97,334 97,334 2787

 Number of SNPs per segment

  Avg 9895.56 9823.59 9967.51 10,208.87 19,121.57 1004.46

  Med 255 241 266 153 5657 13

  Max 325,812 293,893 325,812 437,121 437,121 141,991

After discarding segments with less than five phasable SNPs and shorter than 5 kb

 Physical lengthb

  Avg 4.34 4.31 4.36 4.84 8.84 0.50

  Med 0.95 0.95 0.95 0.44 3.52 494.45 kb

  Max 121.41 121.41 116.11 121.41 121.41 33.07

 Number of phasable SNPs per segment

  Avg 3045.22 3024.33 3066.06 3388.28 6444.96 69.46

  Med 318 310.5 325 78 2311 10

  Max 110,344 110,344 86,208 112,056 112,056 2793

 Number of SNPs per segment

  Avg 22,773.56 22,633.66 22,913.14 25,438.65 46,480.17 2592.66

  Med 4951 4939 4971 2206 19,046 254

  Max 605,700 605,700 601,045 653,272 653,272 160,715
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that are designed for phasing and imputation in human 
datasets (e.g. [2, 16, 17]) are used in livestock popula-
tions without knowing this information. Here we show, 
that LD-based methods work quite well, resulting in 
3-Mb long correctly phased segments. This average value 
includes singletons and other very small errors and more 
than 80% of the genome lies in segments that are larger 
than 5 Mb (see Fig. 2).

Next, we showed that our strategy improves phas-
ing accuracy: a larger fraction of the genome lies within 
long correctly phased fragments (more than 75% of the 
genome lies within segments that are longer than 10 Mb) 
and fewer switches are observed. However, the main ben-
efit is that the parental origin is correctly inferred across 
the entire chromosome. The phasing errors are mostly 
associated to small segments: ~70% of these incorrect 
segments are singletons and ~81% contain five or less 
phasable SNPs. An illustration of these results for two 
animals with different profiles is in Fig.  3, i.e. with our 
new strategy, the chromosome shown for the first ani-
mal is divided into 15 segments (14 switches) and all 
segments that are assigned an incorrect parental origin 
contain three or less phasable SNPs (only one for most 
of them), whereas for the second animal there are many 
more switches (138) but the size of incorrectly phased 
segments remains small in general.

We suggest that all LD-based phasing methods should 
offer the possibility to incorporate external phasing infor-
mation (such as haplotype information inferred from 
low-density panels), for instance as scaffold. This is often 
not possible with software programs that are primarily 
designed for human genetics studies. Popular rule-based 

phasing and imputation methods that are commonly 
used in animal breeding genetics such as FImpute [23], 
findhap [36] or AlphaPhase [21] use information from 
relatives genotyped at lower marker density to phase 
animals in the reference panel. A recent study [37] com-
pared haplotypes that were obtained from genotyping 
array data with such methods to those obtained with LD-
based methods and found that FImpute [23] achieved a 
more accurate phasing than other methods when at least 
one parent was genotyped.

Improvement of phasing accuracy should positively 
impact all applications using haplotypes. For instance, 
for the detection of signatures of selection, it is impor-
tant that haplotypes are not subdivided into smaller seg-
ments. Larger correctly phased segments allow to better 
identify IBD relationships and to better cluster local hap-
lotypes for imputation, association studies and genomic 
selection. These applications would work nicely for SNPs 
that are located in the center of segments, thus only SNPs 
that are closer to the segments’ boundaries (closer to 
switches) would remain problematic. LD-based meth-
ods result in many more such switches that might locally 
impact haplotype-based applications (our results show 
that our two-step strategy increases the proportion of 
SNPs that are distantly located from switches). In addi-
tion, the presence of singletons (as observed with our 
new strategy) is often well handled by imputation or hap-
lotype clustering methods that accommodate for geno-
typing errors.

The major difference between our strategy and LD-
based methods is the ability to correctly infer the paren-
tal origin along the entire length of chromosomes and we 

Table 7  Imputation reliability (measured as r2 and given in %) for the two scenariosa of imputation

a  WGS-I1: imputation from GEN-P1 to WGS-P1 (using only LD information); WGS-I2: imputation from GEN-P2 to WGS-P2 (using both LD and familial information)
b  DI2-I1: difference of average r2

c  NMA: number of occurrences of the minor allele

Trusted set of variants Traditional variant filtering

N WGS-I1a WGS-I2a Db
I2-I1 N WGS-I1a WGS-I2a DI2-I1b

Avg r2 Med r2 Avg r2 Med r2 Avg r2 Med r2 Avg r2 Med r2

Overall 5,149,267 90.47 93.63 90.65 93.81 0.18 13,129,937 88.66 93.57 89.07 93.87 0.41

NMA = 2c 79,755 56.74 67.47 59.98 86.76 3.24 680,303 63.04 80.94 67.95 96.96 4.91

NMA = 3c 78,933 69.10 71.02 70.78 75.35 1.68 510,080 77.28 92.25 79.00 95.49 1.72

0.01 < MAF ≤ 0.05 644,224 77.57 85.82 78.45 87.11 0.88 3,278,384 79.56 91.35 81.01 94.27 1.46

0.05 < MAF ≤ 0.10 673,955 89.15 91.65 89.21 91.81 0.06 2,047,206 89.91 92.82 90.07 93.15 0.16

0.10 < MAF 3,831,088 92.87 94.20 92.95 94.30 0.08 7,804,347 92.15 93.91 92.19 93.96 0.04

First Mb 48,089 85.40 90.90 87.56 92.84 2.15 134,266 83.17 90.10 85.19 92.27 2.01

Last Mb 53,502 87.94 91.55 88.45 92.05 0.51 155,246 85.85 91.26 86.53 91.88 0.68

Between first and last Mb 5,045,959 90.55 93.68 90.70 93.84 0.16 12,840,425 88.75 93.62 89.14 93.91 0.39
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showed that this could be improved from ~50 to ~99.62% 
of the WGS SNPs of the trusted set of variants. Correct 
parental origin is important for disease mapping (e.g., if 
it is known that the causal variant is transmitted through 
the maternal path), when breed origin of different hap-
lotypes must be determined in multiple-breed crosses 
(e.g. [38]), when studying parental imprinting (e.g., [39]) 
or when estimating parent-of-origin effects for allele-
specific gene expression [40]. For recent mutations in 
common haplotypes, parental origin and accurate long-
distance haplotyping are also essential to determine 
whether the original or mutated version of the haplotype 
was inherited.

In the current study, the method was applied to 
improve phasing of WGS genotypes that are known with 
relatively high confidence (coverage ≥ 15x) and our con-
clusions are restricted to this situation. Originally, the 
method was implemented in SHAPEIT2 to improve gen-
otyping calling with low-fold sequencing data. Scaffolds 
of haplotypes obtained on larger genotyped populations 
and with familial information may provide even more 
benefits when used with low-fold sequencing data. In 
such a case, the scaffold would be used to improve geno-
type calling, to impute missing genotypes and to perform 
haplotype reconstruction in the reference panel. With a 
view to extend the method to low-coverage SNPs, addi-
tional phase information could be provided directly from 
sequence reads (e.g. [41]).

Improving haplotype pre‑phasing has a marginal impact 
on imputation accuracy
The imputation accuracy achieved in our study is higher 
than that reported in other recent studies in cattle [25, 31, 
42], both with the trusted set of variants (r2 = 0.9065) or 
with more traditional variant filtering rules (r2 = 0.8907). 
It is worth noting that the above-mentioned studies 
impute data from high-density SNP panels (777k SNPs). 
For instance, the ratio between number of imputed and 
reference SNPs on bovine autosome 29 is equal to 28.5 
in [25], 46.2 in [31] and 427.1 in our study (with the 
trusted set of variants), thus, there are respectively 15.0 
or 9.2 times more SNPs imputed from a single SNP in our 
study. However, comparisons are difficult, since popula-
tions and the sizes of the reference populations differ. In 
addition, results are often expressed as correlations (r) 
whereas we used squared correlations (r2).

Surprisingly, improved haplotype pre-phasing had 
only a marginal impact on imputation accuracy. Impu-
tation relies on shared identical-by-state (IBS) segments 
between target and reference animals on the low-density 
panel (here, the genotyping data). Therefore, we com-
puted the average length of the longest IBS segment 
shared by any target haplotype from the phased genotype 
data (GEN-P1 or GEN-P2) and one of the 168 reference 
haplotypes (WGS-P1 or WGS-P2 phases obtained for 
the trusted set of variants) on all SNPs of the genotype 
data. The longest IBS segment was on average 43.4  Mb 

Fig. 3  WGS-P1 and WGS-P2 phases of bovine autosome 2 for two animals of the training set. Consecutive SNPs with phase in compliance with 
Mendelian segregation rules delimit correct segments (in grey); conversely, consecutive markers with phase not in compliance with Mendelian 
segregation rules delimit incorrect segments (in black). Corresponding number of switches and proportion of errors are indicated on the right side of 
each phase
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long for the GEN-P2 phase (including familial informa-
tion) versus 26.3  Mb for the GEN-P1 phase. The good 
performances of the WGS-I1 scenario (based on GEN-P1 
phase) could be due to the fact that the length of IBS seg-
ments between any target and the most similar reference 
haplotype is already sufficiently long (although shorter 
than with the WGS-I2 scenario).

Using additional information to improve the scaffold
A possibility to further improve phasing of WGS data and 
imputation accuracy could be to further enrich the scaf-
fold with SNPs that are phased with high confidence. As 
an illustration of this perspective, we previously observed 
that for SNPs on genotyping arrays, the LD between hap-
lotype clusters (hereafter called ancestral haplotypes—
AHAP) and underlying variants was high [6]. When 
there is a perfect match between such AHAP and vari-
ants from the WGS (each AHAP being perfectly asso-
ciated with one SNP allele), we can use these AHAP to 
determine the parental origin of the corresponding SNP 
alleles. We determined that 28% of the SNPs from the 
trusted set presented such a perfect association with a 
set of 50 AHAP and that using these haplotypes to phase 
these 28% SNPs resulted in a phasing accuracy of 99.9% 
(data not shown). Consequently, we considered that these 
SNPs could be added to the scaffold (resulting in a scaf-
fold of 1,485,758 WGS SNPs of the trusted set). Phasing 
and imputation accuracy were improved when using this 
new scaffold. Parental origins were correctly assigned 
for 99.72% of the SNPs (compared to 99.62% previously), 
less switches were observed (20.83 vs. 24.29 switches 
per chromosome) and imputation accuracy increased 
from 90.65 to 90.91%. This was even more pronounced 
for rare variants: imputation accuracy for the rarest vari-
ants (two occurrences of the minor allele) had a median 
imputation accuracy r2 equal to 94.71% compared to 
86.76% with the first scaffold. These results suggest that 
a strategy that relies on a scaffold of variants phased with 
high confidence can be further extended to other sources 
of information as long as they provide accurate phasing 
information.

Conclusions
In this paper, we describe a multi-step strategy to take 
both LD and familial information into account when phas-
ing WGS data. The strategy relies on the use of a 50k geno-
typing array, phased on a large population (including many 
relatives of the sequenced individuals) and using both LD 
and familial information, as haplotype scaffold. This strat-
egy results in a very low proportion of mismatches with 
the phase obtained by Mendelian segregation rules (0.32% 
on average). It also results in longer correctly phased seg-
ments than a method that relies on LD only. The majority 

of the errors results from single SNP errors. Imputation 
with such an improved pre-phasing step was slightly bet-
ter than with a traditional pre-phasing step. This small 
difference between the two imputation scenarios may be 
explained by the fact that even without a scaffold, correctly 
phased segments are already long enough for accurate 
imputation. Finally, we propose an additional strategy to 
further improve both haplotype reconstruction and impu-
tation of WGS data that relies on haplotype clustering 
based on the 50k genotyping array data.
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