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OBJECTIVE—Fluxes through mitochondrial pathways are de-
fective in insulin-resistant skeletal muscle, but it is unclear
whether similar mitochondrial defects play a role in the liver
during insulin resistance and/or diabetes. The purpose of this
study is to determine whether abnormal mitochondrial metabo-
lism plays a role in the dysregulation of both hepatic fat and
glucose metabolism during diabetes.

RESEARCH DESIGN AND METHODS—Mitochondrial fluxes
were measured using 2H/13C tracers and nuclear magnetic reso-
nance spectroscopy in ZDF rats during early and advanced
diabetes. To determine whether defects in hepatic fat oxidation
can be corrected by peroxisome proliferator–activated receptor
(PPAR-)-� activation, rats were treated with WY14,643 for 3
weeks before tracer administration.

RESULTS—Hepatic mitochondrial fat oxidation in the diabetic
liver was impaired twofold secondary to decreased ketogenesis,
but tricarboxylic acid (TCA) cycle activity and pyruvate carbox-
ylase flux were normal in newly diabetic rats and elevated in
older rats. Treatment of diabetic rats with a PPAR–� agonist
induced hepatic fat oxidation via ketogenesis and hepatic TCA
cycle activity but failed to lower fasting glycemia or endogenous
glucose production. In fact, PPAR-� agonism overstimulated
mitochondrial TCA cycle flux and induced pyruvate carboxylase
flux and gluconeogenesis in lean rats.

CONCLUSIONS—The impairment of certain mitochondrial
fluxes, but preservation or induction of others, suggests a com-
plex defect in mitochondrial metabolism in the diabetic liver.
These data indicate an important codependence between hepatic
fat oxidation and gluconeogenesis in the normal and diabetic
state and potentially explain the sometimes equivocal effect of
PPAR-� agonists on glycemia. Diabetes 57:2012–2021, 2008

T
he liver is a critical hub in systemic energy
distribution. In the postprandial state, the liver
condenses dietary carbohydrate to glycogen or
converts it to lipid for storage in peripheral

adipose tissue. During fasting, the liver oxidizes fatty acids
released by lipolysis to provide energy for the synthesis of
glucose (gluconeogenesis) or to provide substrate for the
synthesis of ketone bodies (ketogenesis). Because both
glucose and ketones are crucial for postabsorptive sur-
vival, their synthesis is tightly regulated by multiple mech-
anisms. However, during insulin resistance and diabetes,
these regulatory mechanisms fail, resulting in hepatic fat
accumulation and uncontrolled glucose production. Un-
derstanding the precise metabolic perturbations that ac-
company these regulatory failures has important
implications for the prevention and treatment of diabetes
and fatty liver disease.

The relationship between hepatic fat metabolism and
gluconeogenesis is complex and codependent. Gluconeo-
genesis and fatty acid oxidation share molecular media-
tors that coordinate enzyme expression in these pathways
(1–4). Metabolically, hepatic glucose metabolism is linked
to mitochondrial fat oxidation, as evidenced by 1) the
dependence of gluconeogenesis on mitochondrial fat oxi-
dation in the isolated liver (5,6), 2) the induction of hepatic
insulin resistance during a short-term high-fat diet (7), 3)
the stimulation of gluconeogenesis and reduction of gly-
cogenolysis during acute lipid infusions (8–10), and 4)
impaired gluconeogenesis and hypoglycemia in humans
(11,12) and in animal models (13,14) with primary defects
in hepatic fat oxidation. Based on these observations, it is
reasonable to suspect that the abnormal lipid and glucose
metabolism associated with insulin resistance and diabe-
tes might be related to defects in shared metabolic path-
ways, particularly those in the mitochondria (15,16).
Mitochondrial “dysfunction” in the form of impaired en-
ergy generation (17–19) or incomplete fat oxidation (20) is
associated with insulin-resistant skeletal muscle, but it
remains unclear whether similar defects exist in liver and,
if so, how they could coexist with the increased energetic
requirements of elevated gluconeogenesis and lipogenesis
found in the insulin-resistant liver.

The ZDF rat is a model of obesity, insulin resistance,
and diabetes in which the regulation of both hepatic fat
and glucose metabolism are substantially dysfunctional
(21). We hypothesized that defects of hepatic fat and
glucose metabolism are coupled via defects in mito-
chondrial fluxes. The data indicate impaired mitochon-
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drial fluxes of �-oxidation but induction of the
mitochondrial fluxes of the tricarboxylic acid (TCA)
cycle and pyruvate carboxylase, which tends to contrib-
ute to elevated rates of glucose production in diabetic
rats. Treatment with a peroxisome proliferator–acti-
vated receptor (PPAR)-� agonist improved plasma non-
esterified fatty acid (NEFA), ketones, and insulin levels
but overstimulated TCA cycle flux, did not normalize
glucose homeostasis in diabetic rats, and even induced
glucose production in lean rats. The data suggest that a
defect in mitochondrial metabolism is a fundamental
feature of this model of diabetes and that it cannot be
fully corrected by PPAR-� agonist treatment.

RESEARCH DESIGN AND METHODS

[3,4-13C]glucose (98%) was purchased from Omicron Biochemicals (South
Bend, IN). [3,4-13C]ethylacetoacetate (98%) and [1,2-13C]sodium �-hydroxybu-
tyrate (98%) were purchased from Isotec (St. Louis, MO). [U-13C] propionate
and deuterium oxide (99%) were purchased from Cambridge Isotopes (An-
dover, MA). Other common chemicals were obtained from Sigma (St. Louis,
MO).

Sprague-Dawley (�300 g), ZDF (Fa/fa) control (�300 g), and (fa/fa)
diabetic ZDF (�450 g) rats were studied using a protocol approved by the
University of Texas Southwestern Institutional Animal Care and Use Commit-
tee. ZDF rats were studied at �12 and �22 weeks of age. Five days before
infusion, rats were anesthetized with an isoflourane/oxygen and a jugular vein
catheter was surgically implanted (22). On day 5, rats were fasted for 24 h
(unless otherwise noted). An initial blood sample was collected from the tail
vein to measure pre-experimental glucose and ketone concentrations. Eto-
moxir was given as a 0.5 �mol/100 g body wt i.p. injection 90 min before the
infusion of isotope tracers, where applicable. Where noted, rats were infused
with octanoate along with tracers at a rate of 30 �mol/min for 90 min to
stimulate ketogenesis. WY14,643 (BIOMOL Research Laboratories, Plymouth
Meeting, PA) was mixed with rat diet at 100 (low dose) or 300 (high dose)
mg/kg diet and administered for 3 weeks before the study of 12-week-old rats.
Infusate preparation. On the morning of infusion, 28 mg [3,4-13C]ethylac-
etoacetate was suspended in 4 ml deionized water and 80 �l of 4 M NaOH. This
solution was stirred at 40°C for 75 min. The solution was neutralized with
dilute HCl, and quantitative hydrolysis to [3,4-13C]acetoacetate was confirmed
by 1H nuclear magnetic resonance (NMR) spectroscopy. To this solution, 27
mg [3,4-13C]glucose and 21 mg [1,2-13C]�-hydroxybutyrate was added, and the
volume was adjusted to 7.2 ml with saline before filtering through a 0.2-� filter.
This procedure gives �20 mmol/l of each tracer, although the actual concen-
trations were assayed.
Tracer delivery. Rats received an intraperitoneal injection (20 �l/g rat)
containing [U-13C]propionate (5 mg/ml) dissolved in 2H2O (99%). A bolus of
infusate (2.25 ml/h for 10 min) was administered, followed by continuous
infusion at a rate of 0.5 ml/h for 90 min. Rats were allowed unrestrained
movement within their cage during the infusion period.
Sample preparation. After infusion, rats were anesthetized with isoflourane-
oxygen gas, and �10 ml of blood was collected from the vena cava. A small
portion (200 �l) was used for biochemical assays, and the remainder was
extracted with perchloric acid. Supernatant was passed through cation (H�)
resin and neutralized with LiOH. This solution was condensed to �400 �l by
incomplete lyophilization, and 100 �l of D2O was added before 13C NMR
analysis of acetoacetate and �-hydoxybutyrate multiplets. After analysis of
ketones, the glucose was converted to the 1,2-isopropylidene glucofuranose
derivative (monoacetone glucose [MAG]) (23,24).
NMR analysis. Standard proton decoupled 13C NMR spectra of plasma
extracts were acquired on a 14T spectrometer equipped with a 5-mm
broadband probe using a 45° pulse and a 3-s repetition time. MAG was
analyzed by 2H and 13C NMR as previously described (23,24). Peak areas (2H
and 13C) were measured using the 1D NMR software ACD/Labs 9.0 (Advanced
Chemistry Development, Toronto, ON, Canada).
Metabolic analysis. The 2H and 13C NMR spectra of MAG were used to
measure glycogenolysis, gluconeogenesis from glycerol (GNGglycerol), glucone-
ogenesis from phosphoenolpyruvate originating from the TCA cycle
(GNGPEP), and TCA cycle turnover (23,24) (see Supplemental Methods in the
online appendix [available at http://dx.doi.org/10.2337/db08-0226]). Apparent
ketone turnover was measured using a two-pool model of exchangeable
acetoacetate (ACAC) and �-hydroxybutyrate (BHB) (25–27). Equations from
reference 27 were adapted to NMR data (Supplemental Methods, online
appendix).

Total ketone production is reported where:

ketone production � RaACAC � RaBHB

Ketone production and hepatic TCA cycle flux were used to estimate an index
of hepatic �-oxidation:

�-oxidation index �in 2 carbon units� � TCA cycle flux � 2
� ketone production

Gene expression analysis. Primers were designed using Primer Express
software (Applied Biosystems, San Jose, CA) based on GenBank sequence
data. Quantitative real-time PCR(10 �l) contained 25 ng cDNA, 150 nmol/l of
each primer, and 5 �l SYBR Green PCR Master Mix (Applied Biosystems). All
reactions were performed in triplicate on an Applied Biosystems Prism
7900HT Sequence Detection System, and relative mRNA levels were calcu-
lated by the comparative threshold cycle method using cyclophilin as the
internal control.
Metabolite/hormone measurements. Lipids were extracted from �50 mg
liver using a standard methanol/chloroform extraction, and triglyceride con-
tent of liver was measured using the L-type TGH triglyceride kit (Wako
Chemicals, Richmond, VA). Plasma free fatty acids were measured using an
NEFA kit (Wako Chemicals). Glucose was assayed by standard enzyme
coupled reactions. Total ketone concentration and BHB were measured using
a ketone kit (Wako Chemicals), and ACAC levels were determined from the
difference. Plasma insulin was measured by radioimmunoassay using the Rat
Insulin RIA kit (Linco Research). Plasma FGF-21 concentration was measured
using an RIA kit (Phoenix Pharmaceuticals, Burlingame, CA).
Statistics. Data are expressed as the mean � SE. Differences between groups
were analyzed for statistical significance using an unpaired Student’s t test,
where P 	 0.05 was considered significant. ANCOVA was used to compare
slopes between regression lines in Systat 12 (Systat Software, San Jose, CA).
Correlations with P 	 0.05 were considered significant.

RESULTS

Simultaneous delivery of five stable isotope tracers
and NMR analysis of plasma extracts provides insight
into hepatic fat metabolism. Simultaneous administra-
tion of 2H2O, [U-13C]propionate, [3,4-13C]glucose, [3,4-
13C]acetoacetate, and [1,2-13C]BHB was used to measure
gluconeogenesis and index hepatic fat oxidation by NMR
isotopomer analysis of plasma glucose and ketones. Trac-
ers of ketone turn over, the TCA cycle and gluconeogen-
esis have never been applied simultaneously; we therefore
performed initial experiments to confirm that the tech-
niques are compatible. [U-13C]propionate and [3,4-13C]glu-
cose generated 13C multiplets in the NMR spectrum of
plasma glucose but did not significantly enrich plasma
ketones, indicating that tracers of gluconeogenesis and the
TCA cycle do not interfere with the analysis of plasma
ketones (Supplemental Results and Supplemental Fig. 1 of
the online appendix). Similarly, carbon-13 originating from
[3,4-13C]acetoacetate and [1,2-13C]�-hydroxybutryrate did
not enrich plasma glucose at low infusion rates, indicating
that ketone tracers do not interfere with the determination
of gluconeogenesis. In addition, we measured ketone
turnover in a group of rats under various levels of hepatic
fat oxidation to assess the responsiveness of the method.
Data from fasted, fasted � etomoxir treated, fed, and fed
� octanoate treated rats confirm that ketone turnover, as
measured by NMR, matches the expected effect of the
interventions on hepatic fat oxidation (Supplemental Re-
sults and Supplemental Fig. 1, online appendix).
Hepatic fat oxidation is impaired in the ZDF rat. As
expected, fasting plasma glucose, NEFAs, insulin, and
liver triglycerides were markedly elevated in diabetic rats
(Table 1). Despite elevated NEFAs and liver triglycerides,
fasting plasma ketone concentration was approximately
fourfold lower in 12-week-old diabetic rats compared with
lean littermates, suggesting a defect in hepatic fat oxida-
tion. Ketone concentration doubled by 22 weeks in dia-
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betic rats but remained markedly lower than in control
rats.

Low plasma ketone levels in diabetic rats were inves-
tigated further using apparent ketone tracer turnover to
estimate hepatic ketone production in diabetic rats (Fig.
1A). Consistent with low plasma ketone concentration,
in vivo ketone turnover was fourfold lower in 12-week-
old diabetic rats and twofold lower in 22-week-old
diabetic rats. To investigate hepatic fat oxidation fur-

ther, we measured terminal substrate oxidation in the
hepatic TCA cycle by 13C and 2H NMR isotopomer
analysis of plasma glucose (23,24,28). Despite dramati-
cally impaired ketogenesis in diabetic rats, hepatic TCA
cycle flux was normal in 12-week-old diabetic rats
compared with lean controls (Fig. 1B). However, TCA
cycle flux increased by 60% in the 22-week-old diabetic
rats compared with their younger diabetic counterparts
(Fig. 1B), consistent with the ketone data, suggesting an

TABLE 1
Plasma metabolite and insulin concentrations in 12- and 22-week-old control (lean) and diabetic (ZDF) rats (n 
 7)

12 weeks 22 weeks
Lean ZDF Lean ZDF

Glucose (mmol/l) 4.4 � 0.79 10.2 � 0.73* 6.9 � 0.35 17.7 � 1.92*†
NEFA (mEq/l) 0.67 � 0.03 1.81 � 0.55* 0.88 � 0.08 2.45 � 0.26*†
Total ketones (�mol/l) 989 � 53.2 212 � 25.6* 919 � 24.8 406 � 67.6*†
Liver triglycerides (mg/g tissue) 3.8 � 0.22 15 � 5.5* 3.3 � 0.27 11 � 0.10*
Insulin (ng/ml) 0.22 � 0.04 2.6 � 0.87* 0.28 � 0.02 1.0 � 0.15*†

Data are means � SE. *P 	 0.05 between control and diabetic group. †P 	 0.05 between young and old groups.
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FIG. 1. In vivo fluxes associated with hepatic mitochondrial fat oxidation are defective in 24-h fasted 12-week-old and 22-week-old diabetic rats.
A: Ketogenesis is impaired in both 12- and 22-week-old diabetic rats. Ketone turnover was measured by tracer dilution of [1,2-13C]BHB and
[3,4-13C]ACAC. B: In vivo hepatic TCA cycle flux is normal in 12-week-old diabetic rats but is abnormally high in the more severe 22-week-old
diabetic rats. TCA cycle flux was measured by 13C and 2H NMR isotopomer analysis of plasma glucose. C: In vivo hepatic fat oxidation index is
impaired in 12-week-old diabetic rats but not 22-week-old rats. Hepatic fat oxidation index was calculated by adding A and B in 2 carbon units
(n � 4–11). Data are represented as the mean and SE. *P < 0.05 between control and diabetic groups. **P < 0.05 between young and old diabetic
groups.
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age- (or loss of insulin)-related increase in fat oxidation
in diabetic animals.

The sum of hepatic TCA cycle flux and ketone turnover
was used as an index of acetyl-CoA formation by in vivo
hepatic �-oxidation. This data indicated a substantially
lower rate of �-oxidation in newly diabetic rats compared
with age-matched controls (Fig. 1C). The 22-week-old
diabetic rats were not significantly different from control
littermates due to increased ketogenesis and TCA cycle
flux, but the relative contribution of these two pathways to
�-oxidation remained abnormal. These data indicate that
the early onset of fatty liver in these animals is partly due
to impaired fasting hepatic fat oxidation despite increased
peripheral lipolysis.

Sources of hepatic glucose production are abnormal

in ZDF rats. To determine the effect of impaired fat
oxidation on gluconeogenesis, hepatic glucose production
and its sources were measured in lean and diabetic rats. As
we previously reported (22), elevated glucose production
(Fig. 2A) in newly diabetic ZDF rats (age 12 weeks) was
associated with increased glycogenolysis (Fig. 2B) and
gluconeogenesis from glycerol (GNGglycerol) (Fig. 2C) but
with normal gluconeogenesis originating from substrates
(i.e., lactate and pyruvate alanine) that pass through the
TCA cycle (GNGPEP) (Fig. 2D). Flux through all of these
pathways was exacerbated in older diabetic rats (age 22
weeks), including a 45% increase in GNGPEP, which was
provoked by a 60% increase in anaplerotic flux (presum-
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FIG. 2. Sources of endogenous glucose production are abnormal in 24-h–fasted 12- and 22-week-old diabetic rats. A: Endogenous glucose
production is elevated in 12-week-old diabetic rats and further elevated in 22-week-old diabetic rats. Endogenous glucose production was
measured by tracer dilution of [3,4-13C]glucose (measured by 13C NMR). Sources of endogenous glucose production were determined by 2H
incorporation in plasma glucose (measured by 2H NMR) after administration of 2H2O. Glycogenolysis (B) and gluconeogenesis from glycerol (C)
are substantial sources of elevated glucose production in diabetic rats at both 12 and 22 weeks of age, whereas gluconeogenesis from
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of age but is elevated in the more severe 22-week-old diabetic rats. E: Hepatic fat oxidation correlates with the rate of gluconeogenesis, but
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cycle oxidation correlates with GNGPEP similarly in control and diabetic animals (n � 4–11). **P < 0.05 between young and old diabetic groups.
Data are represented as the mean and SE.

S. SATAPATI AND ASSOCIATES

DIABETES, VOL. 57, AUGUST 2008 2015



ably via mitochondrial pyruvate carboxylase) in 22-week-
old ZDF rats compared with lean littermates (350 vs. 211
�mol � min�1 � kg�1, P 	 0.05).
The codependence of gluconeogenesis and hepatic
fat oxidation is altered in diabetic rats. Hepatic fat
oxidation induces glucose production by supplying ener-
gy-rich cofactors (ATP and NADH) necessary for glucone-
ogenesis and by altering the intrahepatic concentration of
allosteric effectors of gluconeogenic enzymes (acetyl-CoA
and citrate) (5). To determine whether this relationship is
altered by impaired fat oxidation in the ZDF model, we
compared the hepatic fat oxidation index with the rate of
gluconeogenesis (GNGPEP; Pyr 3 OAA 3 PEP 3 3
glucose, where OAA is oxaloacetate and PEP is phos-
phoenolpyruvate) (Fig. 2E). Increased hepatic �-oxidation
was closely associated with increased gluconeogenesis in
all animals (control: r 
 0.55, P 
 0.05; diabetic: r 
 0.78,
P 
 0.0006). These data indicate that hepatic fat oxidation
is an important component of in vivo gluconeogenic
potential; however, gluconeogenesis in diabetic livers re-
quired less total fat oxidation than in normal livers, as
evidenced by a higher slope for the correlation (P 	
0.0007). To determine the nature of this efficiency, we also
compared TCA cycle flux with GNGPEP and found a tight
correlation between the two that did not differ between
control and diabetic rats (Fig. 2F). These data are remi-
niscent of our previous description of TCA cycle flux as an
important mediator of glucongeogenic control in isolated
liver (6) and indicates that the diabetic liver responds to
impaired fat oxidation by preferentially shunting acetyl-
CoA away from ketogenesis and toward the TCA cycle to
preserve energy production for gluconeogenesis.
PPAR-� agonist treatment normalizes hepatic fat
oxidation but not hepatic glucose production. Be-
cause hepatic fat oxidation was markedly impaired in the
ZDF liver, we administered WY14,643 for 3 weeks to young
control and ZDF rats to determine whether fasting hepatic
fat oxidation could be corrected by PPAR-� induction and,
if so, how this intervention would affect gluconeogenesis.
Plasma NEFAs, ketones, and insulin levels were signifi-
cantly normalized by WY14,643 in a dose-dependent man-
ner, but hepatic triglyceride content was unresponsive
(Table 2). Surprisingly, fasting plasma glucose concentra-
tion did not decrease in diabetic rats and increased in
treated lean rats (Table 2). Ketogenesis normalized only at
high doses (Fig. 3A), and TCA cycle activity (Fig. 3B) was
driven to supra-normal levels by either dose. Thus,
PPAR-� agonism appeared to correct the hepatic fat
oxidation index (Fig. 3C) in diabetic rats, but the manner
in which the end product (acetyl-CoA) was further metab-

olized by hepatic mitochondria (TCA cycle oxidation vs.
ketogenesis) remained dysfunctional.

Despite improved aspects of insulin resistance (fasting
insulin and NEFAs), endogenous glucose production was
not improved by PPAR-� agonist treatment. Glycogenoly-
sis was slightly reduced in treated diabetic rats, but
gluconeogenesis was slightly increased (Fig. 4A–D), result-
ing in unabated hyperglycemia. A similar induction of
gluconeogenesis was observed in control rats, which led
to increased glucose production at the high dose of
WY14,643, consistent with increased plasma glucose con-
centration during treatment (Table 2). Interestingly, pyru-
vate carboxylase flux and pyruvate cycling through either
the malic or pyruvate kinase enzymes was induced two-
fold by WY14,643 in diabetic rats but to a much lesser
degree in control rats (Fig. 4E and F). These data suggest
that unabated fasting glucose can occur in rodents treated
with PPAR-� agonists (29–31) due, in part, to stimulation of
hepatic gluconeogenesis via induction of TCA cycle flux (6).
Expression of enzymes in hepatic fat oxidation is
slightly impaired in diabetic rats but is induced by
PPAR-� agonist treatment. We measured the expres-
sion of hepatic enzymes associated with mitochondrial,
peroxisomal, and microsomal fat oxidation by quantitative
PCR to investigate the molecular basis of attenuated
hepatic �-oxidation in ZDF rats (Table 3). Of the mRNA
measured, only carnitine palmitoyltransferase (CPT)-1a
(mitochondrial fat transporter) and Cyp-4a (microsomal
�-oxidation) were significantly decreased, while CD36/
FAT (cellular fat transporter) was overexpressed fivefold.
Treatment with WY14,643 dramatically stimulated the ex-
pression of nearly all measured FAO (fatty acid oxidation)
genes (Table 3), in agreement with the measures of
ketogenesis and TCA cycle activity after treatment. Sur-
prisingly, despite increased hepatic fat oxidation and
unaffected gluconeogenesis, PPAR- coactivator (PGC)-1�
expression was decreased by two- to threefold in
WY14,643-treated lean and diabetic rats.
Diabetic rats are resistant to the normal ketogenic
effects of fibroblast growth factor-21. Fibroblast
growth factor (FGF)-21 is an endocrine hormone pro-
duced by the liver that mediates the pleiotropic actions of
PPAR-� by stimulating lipolysis and ketogenesis (32,33).
To determine whether impaired hepatic fat oxidation in
ZDF rats might be associated with defects in FGF-21, we
measured both hepatic FGF-21 expression (Fig. 5A) and
plasma FGF-21 protein (Fig. 5B). FGF-21 plasma protein
was consistently, but not dramatically, elevated in diabetic
rats. However, FGF-21 expression was elevated sixfold in
the liver of newly diabetic rats. These findings are some-

TABLE 2
Plasma metabolite and insulin concentrations in 12-week-old control (lean) and diabetic (ZDF) rats treated with a low or high dose
of the PPAR-� agonist WY14,643 (n 
 4–7)

Untreated Low dose High dose

Lean ZDF
Lean

WY14,643 ZDF
Lean

WY14,643
ZDF

WY14,643

Glucose (mmol/l) 4.4 � 0.79 10.2 � 0.73* 6.9 � 0.10† 9.2 � 0.30* 9.8 � 0.88† 10.4 � 0.24
NEFAs (mEq/l) 0.67 � 0.03 1.81 � 0.55* 0.31 � 0.05† 0.64 � 0.08*† 0.33 � 0.04† 0.86 � 0.20*†
Total ketones (�mol/l) 989 � 53.2 212 � 25.6* 790 � 39.5 482 � 76.5*† 886 � 90.9 1200 � 106†
Liver triglycerides (mg/g tissue) 3.8 � 0.22 15 � 5.5* 3.7 � 0.58 17 � 4.3* 4.8 � 0.22 13 � 1.6*
Insulin (ng/ml) 0.22 � 0.04 2.6 � 0.87* 0.13 � 0.02† 1.2 � 0.40*† 0.33 � 0.10 0.65 � 0.07*†

Data are means � SE. *P 	 0.05 between control and diabetic group. †P 	 0.05 between treated and untreated groups.
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what paradoxical, since FGF-21 induces hepatic ketogen-
esis (32) and has been found to have substantial
antidiabetogenic effects (34). Expression of FGF-21 was
induced by WY14,643 in control, but not diabetic, livers.
Conversely, WY14,643 increased plasma FGF-21 protein in
both control and diabetic rats. These data suggest that
FGF-21 maintains its downstream responsiveness to PPAR-�
in these diabetic rats but that their livers may be resistant to
the normal induction of fat oxidation by FGF-21.

DISCUSSION

Insulin resistance and diabetes have profound effects on
hepatic carbohydrate and lipid metabolism. In vivo
hepatic fat oxidation was severely impaired in the fasted
12-week-old ZDF rat, consistent with the previous re-
ports of increased de novo lipogenesis in the fed state
(35,36). By 22 weeks, hepatic fat oxidation index in the
ZDF rat was no longer impaired but remained dysfunc-
tional with regard to the distribution between ketogen-
esis (twofold lower than normal) and TCA cycle
oxidation (twofold higher than normal), suggesting a
reorganization of mitochondrial fat oxidation with the
onset of insulinopenia. Hepatic glucose production in
diabetic rats was also remarkably age dependent. To-
gether with previous work, the current data indicate
that elevated fasting glucose production in the ZDF rat

occurs initially as a consequence of increased glycogen
breakdown (28), followed shortly by increased conver-
sion of glycerol to glucose (22), and then, in later stages
of the phenotype, it occurs due to increased gluconeo-
genesis from substrates like lactate and amino acids
(Fig. 2). However, other studies have revealed less
remarkable changes in the sources of glucose produc-
tion (37), perhaps due to differences in fasting times or
methodological approaches.

Abnormal mitochondrial metabolism is a key feature of
insulin-resistant skeletal muscle (17–20) and has been
implicated in human insulin-resistant liver (15,16). How-
ever, there are few in vivo data regarding mitochondrial
metabolism in insulin-resistant liver. Here, FAO gene
expressions, including PGC-1� were not robustly altered,
indicating that defects in hepatic mitochondrial fat oxida-
tion may be metabolically mediated. Impaired fat oxida-
tion in hepatocytes of nondiabetic Zucker fatty rats (38)
and ZDF rats (39) has been attributed to increased levels
of malonyl-CoA (39) and inhibition of CPT-1–mediated
transport of long-chain fatty acids into mitochondria (40).
Liver mitochondria from nondiabetic Zucker fatty rats may
(40) or may not (41) have a primary defect in oxidative
capacity. In humans, abnormal mitochondrial respiratory
chain activity is associated with nonalcoholic fatty liver
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TABLE 3
mRNA levels in 12- and 22-week-old control (lean) and diabetic (ZDF) rats and 12-week-old rats treated with WY14,643 measured by
quantitative PCR (n 
 3)

12 weeks 22 weeks Low dose High dose

Lean ZDF Lean ZDF
Lean

WY14,643
ZDF

WY14,643
Lean

WY14,643
ZDF

WY14,643

MCAD 1 � 0.16 0.84 � 0.12 1.0 � 0.13 1.1 � 0.12 0.97 � 0.34 0.79 � 0.04 2.3 � 0.50* 1.8 � 0.40*
CPT1a 1 � 0.14 0.49 � 0.09† 0.75 � 0.18 0.67 � 0.09 0.74 � 0.27 0.38 � 0.05† 0.67 � 0.15 0.60 � 0.10
HMGCS2 1 � 0.12 1.0 � 0.10 0.82 � 0.03 0.92 � 0.05 1.0 � 0.30 1.5 � 0.11* 1.2 � 0.20* 1.4 � 0.40
PDK4 1 � 0.30 1.3 � 0.53 1.3 � 0.14 2.3 � 0.56†‡ 1.3 � 0.39 3.9 � 1.7*† 22 � 2.5* 9.8 � 0.50*†
CD36/FAT 1 � 0.20 5.6 � 1.1* 1.7 � 0.15‡ 3.9 � 0.22†‡ 5.2 � 1.2* 2.2 � 0.20*† 9.3 � 0.81* 5.7 � 0.45†
Cyp4a 1 � 0.16 0.41 � 0.21* 0.95 � 0.24 0.37 � 0.20†‡ 3.7 � 2.0* 1.5 � 0.31*† 4.9 � 0.50* 3.2 � 0.92*†
ACOX1 1 � 0.15 0.80 � 0.06 0.88 � 0.7 1.20 � 0.04‡ 4.2 � 2.3* 2.4 � 0.20*† 9.5 � 1.0* 8.8 � 1.5*
PGC-1� 1 � 0.06 1.0 � 0.27 0.66 � 0.09‡ 0.85 � 0.19 0.55 � 0.06* 0.34 � 0.06*† 0.44 � 0.15* 0.42 � 0.20*†
PPAR-� 1 � 0.40 0.77 � 0.22 0.94 � 0.26 0.95 � 0.05 0.77 � 0.23 0.61 � 0.20 1.1 � 0.20 1.0 � 0.15

Data are means � SE. *P 	 0.05 between treated and untreated groups. †P 	 0.05 between control and diabetic groups. ‡P 	 0.05 between
young and old groups. ACOX, acyl-CoA oxidase; HMGCS, hydroxymethylglutaryl-CoA synthase; MCAD, medium-chain acyl-CoA dehydro-
genase; PDK, pyruvate dehydrogenase kinase.
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disease (16). In any case, defects in hepatic energy gener-
ation seem inconsistent with the increased energy require-
ments of excessive hepatic gluconeogenesis and lipogenesis
associated with hepatic insulin resistance and diabetes.

Humans (11,12) and animal models (13,14) with primary
defects in hepatic fat oxidation become hypoglycemic, yet
the ZDF rat has elevated fasting glucose production de-
spite impaired fat oxidation. This is possible because
elevated glucose production in the ZDF liver comes largely
from the nonenergy demanding pathways of glycogen
breakdown and conversion of glycerol to glucose
(GNGglycerol) (Fig. 2). The former process is essentially
energy neutral, while the latter process contributes to net
energy production by way of NADH generated in the
�-glycerophosphate dehydrogenase step. Additionally, al-
though mitochondrial metabolism is dysfunctional in the
diabetic liver, only total �-oxidation and ketogenesis are
impaired; the mitochondrial pathways of pyruvate carbox-
ylase, �-glycerophosphate dehydrogenase, and the TCA
cycle are, in fact, elevated. The inappropriate segregation
of �-oxidation products toward oxidation is reminiscent
but seemingly opposite to mitochondrial metabolism in

insulin-resistant skeletal muscle, where fatty acid overload
induces fat oxidation but results in the build-up of acyl-
carnitine/CoA intermediates (20) due to impaired TCA
cycle flux (18).

A reasonable response to impaired hepatic fat oxidation
is to correct the condition by pharmacological interven-
tion. While PPAR-� agonists (i.e., WY14,643 and fibrate
drugs) stimulate fat oxidation and improve insulin resis-
tance, they do not always improve glycemia and/or endog-
enous glucose production in diabetic rodent models (29–
31) or humans (42). Here, WY14,643 stimulated hepatic
�-oxidation in diabetic rats by overinduction of TCA cycle
flux, even at a relatively low dose (one-third the typical
rodent dose), and also ketogenesis at a higher dose
(typical rodent dose). Concurrently, hepatic pyruvate car-
boxylase flux was stimulated by WY14,643 treatment, and
although much of the effect was dissipated by an induction
of pyruvate cycling, GNG tended to be increased rather
than decreased (Fig. 4). Moreover, hepatic gluconeogene-
sis was increased in lean control animals treated with
WY14,643, reinforcing the indication that induction of
hepatic fat oxidation stimulates hepatic glucose produc-
tion. These data do not diminish the utility of PPAR-�
agonist drugs, which are commonly used to treat hyper-
lipidemia, but rather highlight an unanticipated effect on
liver metabolism that may go unnoticed because improved
insulin sensitivity can metabolically supersede the adverse
effect of stimulated gluconeogenesis on glycemia. This
may be particularly true in humans, where hepatic PPAR-�
expression is less abundant than in rodents (43).

It is unclear whether paradoxically increased FGF-21
expression in the hypoketotic liver of ZDF rats and other
diabetic rodents (44) is due to a PPAR-�–related defect or
some other form of resistance to the paracrine effects of
FGF-21. However, increased lipolysis and circulating NE-
FAs in these animals suggests that FGF-21’s endocrine
effects on adipose tissue (32) remain intact. Further stud-
ies are required to determine whether overproduction of
FGF-21 by the liver is a diabetogenic feature meant to
compensate for impaired fat oxidation and whether this
also contributes to hyperlipidemia by exacerbating the
lipolytic state of insulin-resistant adipose.
Methodological considerations and limitations. Mea-
surements of ketogenesis by ketone tracer dilution may be
vulnerable to overestimation via extrahepatic exchange
processes (45), termed pseudoketogenesis (46). This was
demonstrated in hepatectomized dogs given a bolus of
ketone tracers and the pyruvate dehydrogenase activator
trichloroacetate (47). However, others showed that
steady-state infusion of low enrichments of ketone tracers
matched the “gold standard” of hepatic ketone A/V differ-
ence in both fasted normal and diabetic dogs (25,26,48).
We cannot rule out the possibility that the method over-
estimated ketogenesis in the rat, but we consider it
unlikely that the approach would underestimate ketone
turnover in diabetic rats compared with controls. Most
importantly, the data correctly predict changes in hepatic
fat metabolism after interventions (i.e., fasting, feeding,
etomoxir treatment, and octanoate infusion; see supple-
mental data, online appendix).

With regard to impaired hepatic fat oxidation in the ZDF
rat, it is unclear whether this finding is a general feature of
obesity and insulin resistance or a defect specific to the
absence of a functioning leptin signaling pathway (49).
Thus, the hepatic fluxes should also be studied in non–
leptin-based rodent models to understand more clearly the

A

Control (Fa/fa)

Diabetic (fa/fa)

0

1

2

3

4

5

Plasma FGF-21

ng
/m

l

12 wks Low High

WY14,643 

22 wks

B

0

2

4

6

8

10

Hepatic FGF-21 expression

12 wks Low High

WY14,643 

22 wks

R
el

at
iv

e 
m

R
N

A
 L

ev
el

s

12

6

7

*

*

* *
*

*

FIG. 5. Diabetic rats are resistant to the normal induction of hepatic
fat oxidation by FGF-21. A: Hepatic FGF-21 expression measured by
quantitative PCR is substantially elevated in diabetic rats. WY14,643
induced hepatic FGF-21 expression sevenfold in control rats but only
20% in diabetic rats. B: Plasma FGF-21 protein concentration is
consistently increased in diabetic rats. All data are represented as the
mean and SE. *P < 0.05 between control and diabetic group (n � 3).

S. SATAPATI AND ASSOCIATES

DIABETES, VOL. 57, AUGUST 2008 2019



role of these defects in the insulin-resistant liver. More-
over, the approaches used here are completely translat-
able to human subjects and will be valuable tools for
probing fluxes in the liver during metabolic pathophysiol-
ogies and/or drug therapies.
Conclusions. These data reveal abnormal mitochondrial
metabolism in the ZDF rat liver leading to inefficient fat
oxidation, a process known to interfere with insulin sig-
naling in muscle (50); but induction of other mitochondrial
pathways (TCA cycle flux and pyruvate carboxylase)
reveals a complex defect in mitochondrial metabolism in
the liver during diabetes. PPAR-� agonist treatment low-
ered insulin and NEFA levels and improved mitochondrial
ketogenesis and total fat oxidation in diabetic rats but also
induced the mitochondrial fluxes of pyruvate carboxylase
and TCA cycle flux and the stimulation of gluconeogene-
sis. Future studies on other models of insulin resistance
and in human subjects will help to determine whether
defects in hepatic mitochondrial metabolism are a univer-
sal feature of insulin resistance.
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