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4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) is a potent new bleaching
herbicide target. Therefore, in silico structure-based virtual screening was performed
in order to speed up the identification of promising HPPD inhibitors. In this study, an
integrated virtual screening protocol by combining 3D-pharmacophore model, molecular
docking and molecular dynamics (MD) simulation was established to find novel HPPD
inhibitors from four commercial databases. 3D-pharmacophore Hypo1 model was
applied to efficiently narrow potential hits. The hit compounds were subsequently
submitted to molecular docking studies, showing four compounds as potent inhibitor
with the mechanism of the Fe(II) coordination and interaction with Phe360, Phe403, and
Phe398. MD result demonstrated that nonpolar term of compound 3881 made great
contributions to binding affinities. It showed an IC50 being 2.49µM against AtHPPD
in vitro. The results provided useful information for developing novel HPPD inhibitors,
leading to further understanding of the interaction mechanism of HPPD inhibitors.

Keywords: HPPD inhibitors, structure-based design, pharmacophore model, molecule docking, virtual screening

INTRODUCTION

The success probability for novel herbicides discovery in agricultural field is cutting down and
weeds are becoming widely resistant to most common used herbicide in recent years (Green,
2014), all these make weed management difficult and time consuming. According to the literature,
at least 315 weed biotypes, 183 weed species including 110 dicots and 73 monocots worldwide
have been reported to have acquired resistance to widely used herbicides (Vishnoi et al., 2009).
Thus, there is an urgent need for novel herbicide discovery to overcome the weeds resistance.
The 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor offers such solutions by bleaching
herbicide mode of action.

HPPD, which was founded by Zeneca Group PLC in 1982, is nonheme Fe(II)-containing
dioxygenases (Lee et al., 1997; Neidig et al., 2006). HPPD catalyzes the conversion of
p-hydroxyphenylpyruvate (HPPA) to homogentisate (HGA) in aerobic metabolism. This reaction
involves decarboxylation, substituent migration and aromatic oxygenation in a single catalytic
cycle (Moran, 2005; Purpero and Moran, 2006). The transformation catalyzed by HPPD has both
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agricultural and therapeutic significance. In plants, HPPD is a
key enzyme involving the biosynthesis of the prenylquinones,
plastoquinone and tocopherols, and has been used for selective
weed control since the early 1990s (Wu et al., 2002). Tocopherol
and plastoquinone are produced by further transformation of
HGA, and both of them are vital for the natural growth of
plants (Yang et al., 2004). In the carotenoid biosynthesis pathway,
plastoquinone is an essential cofactor for phytoene desaturase.
HPPD inhibition will hinder HPPA–HGA conversion, which
gives rise to the deficiency in isoprenoid redox cofactors such
as plastoquinone and tocopherol, and finally causes growth
inhibition, necrosis and death of treated plants (Borowski et al.,
2004; Kovaleva and Lipscomb, 2008; Siehl et al., 2014). In human,
the deficiency of tyrosine catabolism enzyme will lead to the
tyrosine catabolism pathway suffocation (Raspail et al., 2011).

HPPD is a kind of new herbicide target enzyme, and
several HPPD inhibited herbicides have been commercialized.
Since the first launch of pyrazolynate by Sankyo in 1980,
approximately 13 HPPD inhibitors have been commercialized
(Meazzaa et al., 2002; Witschel, 2009). Several of class HPPD
inhibitors are currently used as selective broad leaf herbicides
including triketones, pyrazoles, isoxazoles, diketone nitriles
and benzophenones, among them, the triketone herbicides
have contributed to various commercialized HPPD inhibitors
through structural modification (Figure S1), such as sulcotrione,
mesotrione and benzobicylon (Mitchell et al., 2001; Sutton et al.,
2002; Ahrens et al., 2013). These inhibitors also show numerous
advantages, such as application security, high activity, low
residual, broad-spectrum weeds control (including herbicide-
resistant weed biotypes), excellent crop selectivity and benign
environmental effects (Beaudegnies et al., 2009; Woodyard
et al., 2009). Many have been obtained potent inhibitors but
none was as potent as sulcotrione. Because of emergence of
sulcotrione resistant, therefore obtaining HPPD inhibitors with
novel scaffolds is an urgent task for herbicide developers.
The inhibitory mechanism has been found in previous studies
(Lin et al., 2013; Silva et al., 2015). In HPPD, active site
Fe(II) octahedral coordination sphere is accomplished by
forming coordinating interaction with three protein ligand
atoms and three water molecules. However, two coordinating
water molecules are displaced by the 1,3-diketone moiety of
the HPPD inhibitor in the enzyme-inhibitor complex. HPPD
enzyme shares two His and a Glu residue as Fe(II) ligands
and the distance to oxygen atom of His is 2.5 Å (Brownlee
et al., 2004). Two other bidentate ligands are from the oxygen
of HPPD inhibitors and the distance from oxygen to metal
ions is between 1.9 and 2.4. The π-π stacking interaction
also plays an important role in the binding model of complex
(Ndikuryayo et al., 2017). Based on the above research, a virtual
screening method was used to obtain novel HPPD inhibitor. In
the present investigation, predictive 3D-pharmacophore model
was built on basis of the known HPPD inhibitors reflecting
the structure-activity relationship (SAR). Subsequently, the best
pharmacophore model was used as a 3D query for searching
four databases (Maybridge, Chembridge, ChemDiv, and Specs)
to discern novel HPPD inhibitors and also utilized as a predictive
program to estimate bioactivity of HPPD inhibitors. Further,

molecular docking and molecular dynamics (MD) simulation
were performed to identify the most potential HPPD inhibitors
with strong ligand binding affinity. The obtained compounds
were subsequently assayed the bioactivity in vitro to verify the
inhibition on AtHPPD. The detailed screening workflow was
shown in Figure 1.

MATERIALS AND METHODS

Data Collection and Preparation
This training set, including 16 structurally diverse chemical
compounds (Figure 2) from various literatures (Huang et al.,
2002; Cho et al., 2013; Xu et al., 2014; Lei et al., 2016) with
wide activity were used to generate 3D-pharmacophore models.
The molecular structures of the studied dataset compounds were
depicted in SYBYL 6.9 program (SYBYL, Version 6.91). To
validate the hypothesis, the test set 22 compounds obtained from
literatures (Huang et al., 2002; Dayan et al., 2009; Cho et al., 2013;
Lei et al., 2016) were prepared using the same protocol (Figure 3).

3D-Pharmacophore Generation Using
HypoGen
Based on spatial permutations of pharmacodynamic
characteristic elements that play an important role in the
activity, the key common chemical features were selected to
create 3D-pharmacophore models with HypoGen. The common
features of pharmacophore were generated in “Feature Mapping”
module by identifying the important chemical features from
the training set before establishing hypothesis. Hydrogen bond
acceptor (HBA), hydrogen bond donor (HBD), hydrophobic
features (HY), and ring aromatic (RA) were selected as key
chemical properties to generate the pharmacophore model.
Subsequently, pharmacophore models were computed using the
“HypoGen” module of DS v3.5 (Catalyst, Version 4.102) and
the top 10 hypotheses based on the fixed cost, null cost, and
total cost values were saved. The best hypothesis (Hypo1) model
was analyzed and selected according to the cost analysis and
consideration of vital factors, namely configuration cost, root
mean square deviation (rmsd) and correlation coefficient (r) of
the training set between experimental and predicted values.

Validation and Evaluation of
Pharmacophore Model
The best ligand-based pharmacophore model evidenced that as
rmsd and configuration components are very low and the value of
total cost would always be rather higher than null cost but close to
the fixed cost. Regard to external validation, firstly the correlation
of test set between the experimental and predicted activity was an
important index. Secondly randomizing the data using Fischer’s
Randomization test was performed to obtain cross validation.
All process was carried out with the “Ligand Pharmacophore
Mapping” module.

1SYBYL Version 6.9. Tripos Inc., St. Louis, MO.
2Catalyst Version 4.10. Accelrys Inc., San Diego, CA, USA, 2005.
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FIGURE 1 | The screening workflow that was applied to discern novel HPPD inhibitors.

Pharmacophore Based on Database Virtual
Screening
The well-validated Hypo1 was further used to screen the database
consisted of 111560 compounds belonging to four different
chemical databases. The four databases were built by “Build
3D Database” protocol of DS v3.5. Subsequently, Chembridge,
Maybridge, ChemDiv and Specs were selected as “Input
Database” and Hypo1 was imported to “Input Pharmacophore”
to discriminate potential HPPD inhibitor from database using
“Search 3D Database” of DS v3.5.

Molecular Docking
1917 Compounds which were obtained according to the property
of fit value and predictive bioactivity in the previous steps
further were used to molecular docking. Docking simulation
was carried out utilizing CDOCKER module of the DS v3.5 to
explore the binding mode of compounds. The AtHPPD crystal
structure (PDB ID: 1TFZ) was downloaded from the ProteinData
Bank. The protein was prepared by removing the water, adding
hydrogen and correcting the incomplete residues using “Clean
Protein” tool in “Prepare Protein” module, then the protein were
assigned potentials with CHARMm force field. The active site
of protein was predicted and identified using “Edit binding site”
module of DS v3.5 according to the native ligand and the radius
was set to 10Å. The obtained receptor was used as the “Input
Receptor” molecule parameter. All hit compounds subjected
to first filtering processes were chosen as “Input Ligand” and
docked into the active site of HPPD. The “Pose Cluster Radius”
was defined as 0.5 Å for increasing the diversity of the docked
poses. The Top Hits was set to 10, which means top the 10

conformations were saved for each ligand based on scoring
and ranking by the negative value of CDOCKER energy. The
remaining parameters were default. The best bindingmodes were
determined by docking scores and also the comparison with
available complex crystal structure of DAS869 with AtHPPD as
reference.

Molecular Dynamics Simulations
In order to analyze the ligand-target interactions, further
9 hits compounds with the best docked poses in complex
with AtHPPD were submitted to the MD simulation in
Amber16 (Case et al., 2017). Meanwhile, mesotrione and
2-(aryloxyacetyl)cyclohexane-1,3-diones were used as positive
control for the in silico simulations. The general AMBER force
field gaff and ff14SB force field were employed for the ligand
and protein, respectively (Wang et al., 2004; Hornak et al.,
2006). The 3D structure coordinate files of candidate ligand
and control compound were manually edited to match atom
number and naming conventions consistent with pdb format
for input into the “Antechamber” module of Amber16. The
partial atomic charges of ligands were calculated using the
AM1-BCC method (Jakalian et al., 2002). The force field of
the Fe(II) treated in the “MCPB” module of Amber which
was used to build nonbonded model. The nonbonded model
with simple form and excellent transferability implemented in
the metal center parameter builder (MCPB) tool was employed
to treat Fe(II)-protein interaction (Peters et al., 2010; Li and
Merz, 2014). The side chain model including Fe(II) coordination
sphere with His205, His287, and Glu373 was first created in
MCPB module. The geometry optimization and the atomic
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FIGURE 2 | Training set compounds with IC50 values used for pharmacophore model generation.

partial charges of side chain model were calculation through the
restrained electrostatic potential (RESP) technique in Gaussian03
(Frisch et al., 2004). Then parameter information included bond,
angle, torsion, improper, van der Waals, and electrostatic terms
about the Fe(II) coordinating three residues were generated in
the “MCPB” module of Amber. The charge neutralized and
solvated progress was performed in the “LEaP” module of
Amber16. The resulting structure was immersed into a TIP3P
water box with 11,614 water molecules in a rectangular periodic
box of 10 Å distance around the complex and eight sodium
counter ions were added to maintain electro-neutrality of all
systems. The energy minimization and equilibration protocol
was carried out in the Sander program. First, a minimization
with a tightly restrained protein with a force constant of 500
kcal mol−1 Å−2 was applied to all the atoms of the complex
to relieve bad contacts in the surrounding solvent. Then, only
the protein backbone atoms were fixed with a restraint force
of 5.0 kcal mol−1 Å−2 to minimize the side chain and ligand.
Finally, a minimization was performed for all atoms with no
restraint. In each step, energy minimization was first performed

using the steepest descent algorithm for 2,500 steps, and then
the conjugated gradient algorithm for another 2,500 steps. The
temperature was gradually raised from 0 to 298K in the canonical
(NVT) ensemble with Langevin thermostat to relax the location
of the solvent molecules. Then short equilibration with 500 ps
was performed to adjust the solvent density in the isothermal
isobaric (NPT) ensemble with Monte Carlo barostat. Finally the
system was equilibrated for 1 ns without any restraint in the NTP
ensemble. All simulations were run with the PMEMD program
without any restraints for 10 ns in NTP ensemble (298K and
a pressure of 1 atm) with a 2 fs time step. During the MD
simulation, the particle mesh Ewald (PME) algorithm was used
to deal with long-range electrostatic interactions, with a cut-off
distance of 10Å (Darden et al., 1993; Essmann et al., 1995). And
bond lengths involving hydrogen atom were constrained using
the SHAKE algorithm (Ryckaert et al., 1977).

The binding free energy (1Gbind) was calculated with the
molecular mechanics and Poisson–Boltzmann solvation area
(MM/PBSA) methodology was applied based on stable MD
trajectory. Entropy was omitted herein because we pay more
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FIGURE 3 | Test set compounds with IC50 values used for pharmacophore model validation.
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attention to relative binding free energy for a series of very similar
systems.

1Gbinding = Gcomplex − Greceptor − Gligand (1)

Where Gcomplex, Greceptor , and Gligand are the free energy of
complex, receptor and ligand molecules, respectively. The free
energy (G) was calculated based on an average over the extracted
snapshots from the MD trajectories. Each term can be expressed
as follows:

G = Egas + Gsol − TS (2)

Egas = Eint + Evdw + Eele (3)

Gsol = GGB + Gnp (4)

Gnp = γ SASA (5)

Where Egas is gas-phase energy and can be decomposed into
internal energy Eint, van der Waals energies Evdw and Coulomb
Eele; Gsol is salvation free energy; GGB is the polar solvation
contribution calculated by solving the GB equation; Gnp is the
nonpolar solvation contribution and was estimated by the solvent
accessible surface area (SASA) determined using a water probe
radius of 1.4 Å (Yang et al., 2011). The surface tension constant
(γ ) was set to 0.0072 kcal mol−1 Å−2 (Sitkoff et al., 1994); TS is
entropy term.

Free energy decomposition was performed to obtain the
key residues contribution to the binding energy of inhibitors.
MM-PBSA was used to compute the interaction energies to
each residue in Amber16 by considering molecular mechanics
energies and solvation energies without considering the
contribution of entropies. The binding interaction between
residue-ligand pair comprises three terms: the van der Waals
contribution (1Evdw), the electrostatic contribution (1Eele) and
the solvation contribution (1Gsol).

1Ginhibitor_residue = 1Evdw + 1Eele + 1Gsol (6)

AtHPPD Inhibition Bioassay in Vitro
Recombinant AtHPPD and homogentisate 1,2-dioxygenase
(HGD) was derived from Guangfu Yang research team. HPPD
inhibitory activity was determined by using method of coupled
enzyme in previously published works (Wang et al., 2015).
Assays were performed in 96-well plates at 30◦C using a UV/vis
plate reader to monitor the generation of maleylacetoacetate at
318 nm. The IC50 was then calculated based on the plot of the
residue activity against different concentration of test compounds
at certain concentrations of substrate by fitting the curves. Each
experiment was three replicates and averaged. Compound 3881
was purchased from Innochem. Mesotrione was obtained from
Wuhan Yuancheng Technology Co. Ltd. and was recrystallized
before use.

RESULTS AND DISCUSSION

HypoGen Model Generation for HPPD
Inhibitors
The best quantitative pharmacophore models indicated that
HBA, HBD, HA and RA features were important. The top

10 pharmacophore hypotheses were generated based on the
structure and the activity values of the training set compounds.
The values of 10 hypotheses such as total cost, r, and rmsd were
statistically significant (Table 1). All model total cost was from
72.491 to 94.376. The configuration cost of 16.09 bits represented
the acceptable complexity of the hypotheses space. The fixed
and the null cost values were 63.670 and 195.34, respectively.
Hypo1 had best r (0.978), maximum fitvalue (10.559) and lowest
rmsd of 0.907. The total cost (72.491) was also low and closed
to the fixed cost (63.670). Also, the cost difference 122.85
between null and fixed cost was more than 70 bits, which
illustrated that total cost was far from the null cost. Comparing
with other hypotheses, Hypo1 with higher 1Cost, better r
and low rmsd accounted for all the pharmacophore features
and had good predictive ability. Therefore, Hypo1 selected as
a best hypothesis was used for further analyses. The Hypo1
chemical features with its geometric parameters were shown in
Figure 4A and matched heat map of the ten hypotheses from
training set was displayed in Figure 4B. The results indicated
that all the training compounds were well matched to the Hypo1
and the compounds with better activity and fitvalue tended
to red.

Pharmacophore Model Hypo1 Validation
Verification hypothesis is one of the important processes
in the formation of pharmacophore. Test set and Fisher’s
Randomization test were employed to confirm the quality of
pharmacophore.

The test set was used to validate whether the best hypothesis
was capable of prediction for the active compounds other than
the training set molecules (Debnath, 2002). Hypo1 has predicted
the biological activities of most of the test set compounds in the
same activity scale with the r being 0.757 (Figure 5). The r for
the training set given by Hypo1 was 0.952. This result suggested
that the Hypo1 was not only fit for training set compounds but
also for the external compounds. It was also verified legalization
of Hypo1 to screen databases.

TABLE 1 | Parameters of top pharmacophore hypotheses computed by
HypoGen algorithma.

Hypo No. Total

cost

rmsd r a
1cost Features Maximum

fit

Hypo 1 72.49 0.91 0.98 122.85 HBA,HBD,HY,RA 10.56

Hypo 2 82.96 1.52 0.94 112.38 HBA,HY,HY,RA 9.57

Hypo 3 84.73 1.61 0.93 110.61 HBA,HY,HY,RA 9.12

Hypo 4 85.02 1.62 0.93 110.32 HBA,HY,HY,RA 8.94

Hypo 5 89.14 1.74 0.92 106.20 HBA,HBD,HY,RA 9.97

Hypo 6 90.97 1.85 0.90 104.37 HBA,HBA,HY,HY 8.36

Hypo 7 92.52 1.90 0.90 102.82 HBA,HY,HY,HY,RA 9.55

Hypo 8 93.52 1.91 0.90 101.82 HBA,HBD,RA 6.98

Hypo 9 93.93 1.93 0.90 101.41 HBA,HBD,HY,RA 9.27

Hypo10 94.38 1.96 0.89 100.96 HBA,HBA,HY,HY 8.13

a1Cost = null cost–total cost, null cost = 195.34, fixed cost = 63.67, configuration =

16.09.
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FIGURE 4 | (A) The best pharmacophore, Hypo1, was shown with its inter-feature distance constraints in angstrom (Å), where HA, HBD, RA, and HBA were
illustrated in cyan, pink, orange, and green, respectively. (B) Heat map of the ten hypotheses from training set.

FIGURE 5 | The graph of experimental vs. predicted activities by Hypo 1.

Fischer randomization calculations were performed on the
training set to validate statistical robustness of Hypo1 (Sakkiah
et al., 2010). 19 Random hypotheses were generated in 95%
confidence level and compared with Hypo1, and it was found
that the total cost of Hypo1 was lower than that of 19 random
models (Figure 6), which meant that the Hypo1 was robust and
stable. Meanwhile, statistical r of Hypo1 was far more superior
to the randomly generated 19 hypotheses (Figure 7).This result
clearly indicated that Hypo1 was not generated occasionally, and
the relationship between the structures and bioactivity did exist in
the training. Based on these validation results, the best validated
Hypo1 as a 3D query was used to retrieve HPPD inhibitors with
novel scaffold from four databases.

Database Screening Analysis
Virtual screening based on chemical databases is a fast and
accurate approach to identify novel and potential drug (Gogoi
et al., 2016; Guedes et al., 2016). The Hypo1 have used as a
3D query tool to screen the chemical databases like Maybridge
(20565), Chembridge (40637), ChemDiv (12620), and Specs
(37738). According the average fitvalue of the training set was
approximately 6.6 and the compounds with a value greater than
6.6 were screened from four databases. As a result, 643, 392,
416, and 466 (a total of 1917) compounds from Maybridge,
Chembridge, ChemDiv and Specs, were mapped upon all
the features of Hypo1. Screening compounds had scored the
HypoGen estimated activity value between 0.01 and 7.3µM, and
thus considered best for further studies.

Molecular Docking Analysis
Molecular docking is a perfect method for predicting the
interaction between small molecules and the receptor binding
cavity at the molecular level. In the current study, 3D structure
of AtHPPD complexed 1TFZ with ligand DAS869 was selected
as target protein. In the enzyme-inhibitor complex, the Fe(II)
coordinated to the three amino acids and the 1,3-diketone
moiety of the DAS869 inhibitor. The distances from the oxygen
atoms to the Fe(II) were restrained to a range of 1.9-2.4 Å.
This ensured the octahedral geometry and provided a strong
ligand orientation and binding force (Yang et al., 2004). Based
on the results of the above literature, the native ligand was
redocked into corresponding binding pocket. Figure 8 showed
that re-docked ligand and natural ligand share the same
binding site, whose RMSD values of 0.55 were calculated,
confirming the accuracy and feasibility of the docking method of
CDOCKER. These 1917 hits obtained through pharmacophore-
based screenings were submitted to molecular docking studies
by DS v3.5. The distance from Fe(II) to two oxygen atoms
of nine candidate ligand was the range of 1.9-2.4 Å. The
selection was further obtained 9 compounds (Table 2) based
on their -CDOCKER energy, which picked out 2, 4, 1, and 2

Frontiers in Chemistry | www.frontiersin.org 7 February 2018 | Volume 6 | Article 14

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Fu et al. Virtual Screening of Novel HPPD Inhibitor

FIGURE 6 | The difference in costs between HypoGen runs and the scrambled runs. The 95% confidence level was selected.

FIGURE 7 | The difference in correlation coefficient between HypoGen runs and the scrambled runs. The 95% confidence level was selected.

molecules from Maybridge, Chembridge, ChemDiv and Specs,
respectively.

Compared with the binding affinity the known inhibitors,
the selected hits were ranked according to the interaction
of the amino acid residues at the binding cavity. Most of
the sorted molecules from training set and test set showed

good interactions with the critical residues like phe360 and
phe403. According to this binding modes and binding affinity,
four hit compounds (Table 2) from Chembridge were selected
as the target inhibitors. The four compounds selected were
structurally similar to the triketones and bind to AtHPPD in
the same pose as the triketone. Compared with the training
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FIGURE 8 | The ligand compared by the CDOCKER docking method.
Redocked ligand was green and the native ligand in the crystallographic
complex was cyan.

set of compounds, all potent HPPD inhibitors (compound
1–10) containing 2-benzoylethen-1-ol moiety showed better
bioactivity, but the activity without the above structure was
reduced, such as compound 11–16 (Figure 2) as well as the test
set. The common chemical structure of representative HPPD
inhibitors (Figure S1) also contained the 2-benzoylethen-1-ol
moiety, which could coordinate to the Fe(II) and interact
with phe360 and phe403, as the essential pharmacophore for
a significant inhibition of the HPPD activity. The four hit
compounds included common subunit of triketone. Two oxygen
atoms of hit compounds were responsible for coordinating with
Fe(II). It is an effective way to obtain new HPPD inhibitors by
lengthening the aryl moiety of triketone compounds according
to the literatures (Wang et al., 2016). Aryl in the extended side
chain which inserted a C-O between the triketone and side
chains formed a more favorable sandwich π-π interaction with
residues Phe360 and Phe403 of AtHPPD in the active pocket.
Similarly, a C=C was inserted between the triketones and the
aryl moiety of the four hit compounds. In addition, an extensive
review on the triketone inhibitors indicated that modification
of substituent on the benzoyl was a common way to increase
inhibitory activity, but transformation of 3-hydroxycyclohex-2-
en-1-one was hardly seen. The 3-hydroxycyclohex-2-en-1-one
part was replaced by 4-hydroxy-6-methyl-2H-pyran-2-one of the
obtained four compounds and formed favorable π-π stacking
interaction with Phe398, which effectively increased the stability
of the ligand binding to AtHPPD. It was also first reported the
interaction with Phe398. The predicted pKa for the obtained
compounds were less than 6.0, and the weak acidity was favorable
for plant uptake and conduction.

An analysis of the co-crystallized HPPD-inhibitor complex
showed the interaction pattern between the inhibitor and the
HPPD binding site (Figure 9). All selected 4 compounds from
Chembridge were inserted well into the binding groove and
showed metal-coordination binding to Fe(II). The C-terminal

harbored a wide cavity exposed to the solvent that accommodated
the Fe(II) cofactor. Ferrous ion coordination was fulfilled by
the amino acids His205, His287, and Glu373, while the two
remaining coordinating water were replaced by the oxygen atoms
of inhibitors. When the distances of two oxygen atoms and
the Fe(II) were compared (Figure 10), we found that distance
from Fe(II) to two oxygen atoms of 4293 was 2.2 and 2.3Å and
the distance of Fe(II) with oxygen atoms of compound 3885,
compound 3881 and compound 3882 was 2.3 and 2.3Å. However,
the distance of control 1 was 2.4 and 2.4Å. For control 2, the
distance was 2.3 and 2.4Å. The decreased distances of the Fe(II)
from oxygen atoms of four hit compounds may increase HPPD
inhibition.

The detailed chemical interactions of the best hits were
presented in Figure 10. The benzene ring of the hit compounds
sandwiched by the phenyl of Phe360 and Phe403, forming
hydrophobic interaction with the two residues. In addition, hit
compounds generated another π-π stacking interactions with
Phe398, whereas this interaction was disappeared in the binding
of control compounds with HPPD. Therefore, the aromatic
subunit should be introduced on the 1,3-dione part for design
novel HPPD inhibitors in the future, which lead the π-π
interaction with phe398 to increasing the binding affinity. All
the interactions indicated that the selected compounds were
potential HPPD inhibition.

MD Simulations Analysis
MD simulations were carried out to validate the dynamic
interactions between ligands and receptors, and the MM/PBSA
program was applied to calculate the binding free energy. To
assess the dynamics stability of all the complexes during the MD
simulations, root-mean-square-deviations (RMSD) was used to
monitor entire MD simulation of each complex. As shown in
Figure 11A, all the RMSD values of backbone atoms of protein
was very smooth in the whole simulation process maintaining
at around 1.5–2.0 Å. Figure 11B showed that the RMSD of the
active site of compound 522 suffered a conformational change
during the MD simulation after 9 ns. It could be seen that the
averaged RMSD of all the heavy atoms of the ligand reached
equilibrium at about last 1 ns, which indicated that the all the
trajectories was stable during the course of simulation after 1
ns course of simulation in Figure 11C. Therefore, the last 1 ns
trajectory was used to analyze the binding free energy and free
energy decomposition of all complexes.

For each system, 200 snapshots of each complex were
extracted from the last 1 ns stable MD trajectory and used to
calculate binding free energy calculations and the results were
shown in Table 3. The calculated 1G bind of the four compounds
from Chembridge was higher 30 kcal/mol, however, binding
free energy of other compounds from Maybridge, ChemDiv
and Specs was lower than control and other compounds in
Chembridge. The compound 3885 bound systems remained
highest than other bound systems. The 1Evdw, 1Eele, and 1GSA

energy were the favorable contribution to 1Gbind, and the
positive free energy (1GPB/GB) displayed adverse effect for all the
systems. The1Eele made the greatest contribution to the binding
free energy for all complexes. And electrostatic energy of control
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TABLE 2 | The 2D structure of the potential HPPD Inhibitors and the evaluation value.

Compound ID Structure Fitvalue Estimate -CDOCKER energy pKa

Control 1 (mesotrione) – – 36.95 2.6 (0.5)

Control 2 (2-(Aryloxyacetyl) cyclohexane-1,3-diones) – – 33.29 4.6 (0.8)

3885 (Chembridge) 8.31 0.15 32.45 5.1 (0.8)

3881 (Chembridge) 7.06 1.24 29.04 5.1 (0.8)

3882 (Chembridge) 7.17 2.00 28.08 5.1 (0.8)

4293 (Chembridge) 6.87 4.01 28.01 5.2 (0.8)

520 (Maybridge) 6.73 3.68 29.65 5.8 (0.5)

522 (Maybridge) 6.78 3.73 28.74 5.8 (0.5)

4798 (ChemDiv) 7.23 2.17 30.15 7.8 (0.6)

118 (Specs) 7.26 2.38 29.89 7.8 (0.6)

120 (Specs) 7.26 2.35 29.79 7.8 (0.6)

2 and control 1 was lower than compounds from databases.
Therefore, the electrostatic interaction should be increased in
modification of the compound to strengthen the interactions
between each other.

The 1GPB/GB of the control 1 (91.38. kcal/mol) was higher
than that of the control 2 (75.94 kcal/mol) and compound 3881
(59.52 kcal/mol). The probable causes were that the lengthening
the aryl side chain of control 2 and compound 3881 reduced the
polar solvation energy. It was found that compound 3881(−28.79
kcal/mol) displayed relative lower 1Evdw energy than those of
control 2 (−25.91 kcal/mol). It should be noted that the sum
of the nonpolar term (1Evdw + 1GSA = −32.51 kcal/mol)
of 3881 were obviously stronger than that of control 2 with
−28.87 kcal/mol. Therefore, these results indicated that nonpolar

interactions played a crucial role in the increased binding
affinities of 3881 system.

The free energy decomposition was calculated to investigate
the contribution of key residue for the binding process from the
last 1 ns stable MD trajectory and the per-residue contribution
for the binding of all systems was plotted in Figure 12.
Residues Val207, His287, Phe360, and Phe403 made the greatest
contribution to binding energy for control 2. And Residues
Phe403 and Phe407 was important composition for binding
energy of control 1. His205 was unfavorable for the binding
energy of compound 118 and His287 had a negative effect on
the binding free energy of compound 120. Residues Leu244,
Phe398, and Phe403 had a more than 1 kcal /mol free energy
contribution to the binding of compound 3881, 3882, 3885, and
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FIGURE 9 | Binding modes of compounds at active pocket. Blue, green, yellow, and pink represented compound 3885, compound 3882, compound 4293, and
compound 3881, respectively.

FIGURE 10 | The receptor-ligand interaction of (A) control 1 (mesotrione), (B) control 2 (2-(Aryloxyacetyl) cyclohexane-1,3-diones), (C) compound 3885, (D)
compound 3881, (E) compound 3882, and (F) compound 4293 with the HPPD active site.
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FIGURE 11 | RMSD of the backbone Cα atoms (A), protein active pocket with residues of 5 Å around ligand (B) and heavy atoms of ligand (C) of the HPPD
complexes with reference to the first snapshots as a function of time.

TABLE 3 | Contributions of various energy components to the binding free energy (kcal/mol) for the studied inhibitor with HPPDa.

System 1Evdw 1Eele 1GPB/GB 1GSA 1Egas 1Gsol 1Gbind

Control 1 −36.97 (2.63) −84.88 (7.04) 91.38 (6.34) −3.64 (0.07) −121.85 (6.88) 87.74 (6.30) −34.11 (5.78)

Control 2 −25.91 (2.90) −88.39 (5.95) 75.94 (8.06) −2.96 (0.11) −114.30 (5.44) 72.99 (7.99) −41.31 (5.78)

3885 −29.46 (3.02) −75.59 (5.36) 64.58 (3.82) −3.48 (0.29) −105.05 (4.98) 61.10 (2.42) −43.95 (6.45)

3881 −28.79 (3.16) −65.68 (5.22) 59.52 (2.69) −3.72 (0.49) −94.47 (4.79) 55.8 (2.42) −38.67 (5.21)

3882 −29.85 (2.94) −72.88 (5.27) 65.70 (5.21) −3.35 (0.08) −102.74 (5.75) 62.35 (5.20) −40.38 (6.03)

4293 −27.49 (2.24) −69.23 (4.62) 68.72 (5.91) −3.57 (0.15) −96.72 (5.40) 65.15 (5.20) −31.57 (5.06)

520 −22.72 (3.93) −130.15 (14.18) 128.30 (12.86) −3.57 (0.08) −152.87 (11.46) 124.73 (12.82) −28.14 (5.32)

522 −29.76 (3.22) −106.79 (4.36) 110.47 (3.66) −3.94 (0.09) −136.55 (4.24) 106.53 (3.62) −30.02 (4.15)

4798 −21.34 (3.62) −109.01 (6.46) 117.02 (5.24) −3.04 (0.05) −130.35 (3.90) 113.98 (5.21) −16.37 (4.22)

118 −22.87 (2.06) −69.24 (4.73) 74.90 (4.30) −2.70 (0.07) −92.11 (4.57) 72.20 (4.27) −19.91 (2.88)

120 −22.03 (2.06) −81.04 (6.49) 99.98 (5.97) −3.17 (0.07) −103.07 (5.94) 96.81 (5.93) −6.26 (2.17)

a1Evdw , van der Waals energy; 1Eele, electrostatic energy; 1GPB/GB, polar solvation energy with the PB model; 1GSA, nonpolar solvation energy with the PB model; 1Egas = 1Evdw

+ 1Eele; 1Gsol = 1GPB/GB + 1GSA; 1Gbind = 1Evdw + 1Eele + 1GPB/GB + 1GSA.

4293 and phe403 made the biggest contribution to the binding
between compound 3882 and protein with −2.46 kcal/mol. It
can be seen that the residues Phe403 and Phe360 has a greater
interaction with control 2, four compounds from Chembridge
and two compounds from Maybridge than control 1 and other
compounds, and it was found that these compounds included
extended side chain of aryl that formed a more favorable
sandwich π-π interaction. Furthermore, the contribution of
residues Phe398 to the binding of four compounds from

Chembridge has an obvious increase, indicating the importance
of π-π interaction between Phe398 and candidate ligand 3881,
3882, 3885, and 4293. This made a conclusion that molecular
dynamics result verified the interaction with Phe398, Phe403, and
Phe360 in molecular docking, which may lead to an increase in
hydrophobic interaction. During MD simulation, it is regrettable
that hydrogen bond could not be found and these findings
are consistent with the previous studies (Moran, 2014) that no
hydrogen bonds or ionic interactions contributed to the complex.
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FIGURE 12 | The Per-residue contributions of HPPD to ligand combination.

Bioactivity Analysis
Compound 3881, identified in silico as promising AtHPPD
inhibitor, was submitted to in vitro assays in order to confirm
the biological activity. The commercial mesotrione was used as
positive control. Figure 13 showed dose-dependent inhibitory
activity and the IC50 values were calculated. The IC50 of
mesotrione was 0.204µM. The inhibition of compound 3881
at 5µM was 65.89%, and IC50 was 2.489µM, showing good
inhibitory activity against AtHPPD in vitro indicating that it
may serve as a good template for the design of potent HPPD
inhibitor. Furthermore, the activity of compound 3881 was better
than compound 10 (IC50:11.2µM) that was parent skeleton of
mesotrione in the Figure 2. Compound 3881 was the parent
skeleton of all the four hit compounds and exhibited inhibition
to AtHPPD, according to analogous to the similarity property
principle (i.e., similar chemical structures share similar biological
activities) (Johnson and Maggiora, 1990), so it was inferred
that the virtual screening derivative 3882 with iodine, 3885
with methoxyl, and 4293 with bromine and hydroxyl also may
show good activity of inhibitor. Therefore, compound 3881 will
be used as a template compound for structural modification
in the subsequent work to obtain higher activity HPPD
inhibitors.

CONCLUSIONS

In summary, a reasonable and hierarchical virtual screening
workflow was successfully constructed to identify potential
HPPD inhibitors. Specially, 3D-pharmacophore and
molecular docking were applied to obtain 4 hits from 111560

FIGURE 13 | Dose-dependent inhibitory curves of the mesotrione and
compound 3881 against AtHPPD.

compounds. Compound 3881(3-cinnamoyl-4-hydroxy-6-
methyl-2H-pyran-2-one) subjected to biological validation
against AtHPPD, showing good inhibitory activity with IC50

being 2.489µM. Molecular docking result indicted that hit
compounds generated the bidentate coordination with Fe(II)
and formed the sandwiched π-π interaction of the benzene
ring with Phe403 and Phe360. In addition, it is firstly reported
π-π stacking interactions with Phe398. Therefore, the aromatic
subunit should be introduced on the 1,3-dione section for design
novel HPPD to improve the binding affinity. The MD simulation
and MM/PBSA calculations confirmed interaction with Phe398
to make great contributions to the binding free energy, which
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suggested that the constructed model was reliable and viable.
As far as known, these compounds have not been previously
reported as HPPD inhibitors. Therefore, this result offered
interesting templates for design of novel and more potent HPPD
inhibitors.
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