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Bacterial vaginosis (BV) is the most common infectious disease of the reproductive tract in
women of childbearing age. It often manifests as an imbalance in the vaginal microbiome,
including a decrease in Lactobacillus and an increase in anaerobic bacteria. While
Gardnerella spp. are considered a major cause of BV, they are also detected in the
vaginal microbiome of healthy women. G. vaginalis was the only recognized species of
Gardnerella until a recent study characterized three new species, G. leopoldii, G. piotii,
and G. swidsinskii. This review describes the different types and genetic diversity of
Gardnerella, as well as new findings on the correlation between different Gardnerella spp.
and BV.
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INTRODUCTION

Bacterial vaginosis (BV) is the most common lower genital tract infection affecting approximately
30% of women in the general population and 50% of African American women (Ravel et al., 2011;
Kenyon et al., 2013; Morrill et al., 2020). Variations in prevalence exist among different races and
ethnicities (Allsworth and Peipert, 2007). BV is associated with a disruption of the optimal vaginal
microbiota characterized by a decreased proportion of lactic acid-producing bacteria and an
increased proportion of a wide array of strict and facultative anaerobes (Ravel et al., 2021).
Bacteria commonly associated with BV include Gardnerella vaginalis (G. vaginalis), Megasphaera
spp., Fannyhessea vaginae [previously known as Atopobium vaginae, (Rodriguez Jovita et al., 1999;
Nouioui et al., 2018)], Dialister spp., Mobiluncus spp., Sneathia amnii, Sneathia sanguinegens,
Porphyromonas spp., and Prevotella spp (Muzny et al., 2018; Rosca et al., 2020). Although BV is
frequently asymptomatic, women with BV are more likely to report vaginal odor, itching, and
discharge than those without (Klebanoff et al., 2004). In addition, most women do not report BV
symptoms to their providers, even when there are clinical signs (Masson et al., 2019). Serious
adverse health outcomes have been associated with BV, including increased risk of infertility (Ravel
et al., 2021), adverse pregnancy outcomes (Giakoumelou et al., 2016; Tabatabaei et al., 2019), pelvic
inflammatory disease (PID) (Wiesenfeld et al., 2002; Ravel et al., 2021) and sexually transmitted
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infections (STIs), including chlamydia (Shipitsyna et al., 2020),
gonorrhea (Bautista et al., 2017), human papilloma virus (HPV)
(Usyk et al., 2022) and human immunodeficiency virus (HIV)
(Atashili et al., 2008).

BV etiology is controversial and not yet fully understood.
According to Catlin’research, the G. vaginalis-associated vaginal
syndrome was earlier called nonspecific vaginitis (NSV) in
recognition of the absence of recognized agents of vaginitis
(Catlin, 1992). In 1955, Gardner and Dukes showed that 90%
of NSV cases were caused by a single microbe, Haemophilus
vaginalis (H. vaginalis), and the name was changed to H.
vaginalis vaginitis (Gardner and Dukes, 1955). However,
subsequent studies found that because H. vaginalis does not
require heme or nicotinamide adenine dinucleotide for growth, it
may not be a member of the Haemophilus genus. H. vaginalis
shows uncertainty in gram staining, also a characteristic of the
Corynebacteria. As a result, H. vaginalis was reassigned to the
Corynebacterium genus and renamed Corynebacterium vaginale
(Zinnemann and Turner, 1963). This name also proved to be
inaccurate because these bacteria are catalase-negative and do
not have arabinose in their cell wall (Catlin, 1992). In 1980, two
large taxonomic studies using DNA hybridization, electron
microscopy, and various biochemical methods showed that the
bacterium lacked close similarity to any previously established
genus (Greenwood and Pickett, 1980; Piot et al., 1980). This
resulted in the development of a new genus, Gardnerella, and
Corynebacterium vaginitis was renamed Gardnerella vaginitis.
Gardner believed that Gardnerella vaginitis was a specific vaginal
infection with a clear cause and that most vaginitis previously
classified as “nonspecific” was likely caused by Gardnerella spp.
In 1984, the name was officially changed to “BV” because
vaginitis is suggestive of an inflammatory response in the
vaginal epithelium, which is usually absent in women with BV
(Catlin, 1992). It wasn’t until 1984 that BV was officially named
(Workshop on Anaerobic Curved Rods and Bacterial Vaginosis,
Stockholm, January, 1984) (Bump et al., 1984).

Since Gardnerella spp. is highly detected in BV, it appears to
have a special role in vaginal microbiota dysbiosis (Reid, 2018).
While Gardnerella spp. is found in 95% to 100% of BV cases
(Muzny et al., 2019), colonization does not always lead to BV
(Hickey and Forney, 2014; Machado et al., 2015). Indeed, the role
of Gardnerella spp. in BV has remained controversial because it
is present in both healthy vaginal microbiota and in BV (Zozaya-
Hinchliffe et al., 2010). As a result, researchers have speculated
about whether there are different Gardnerella spp. (Cornejo et al.,
2018) with distinct pathogenicities that can lead to different
clinical outcomes (Janulaitiene et al., 2018). It is possible that
while healthy women are colonized by a less virulent strain of
Gardnerella spp., other more virulent strains promote the
development of BV. Studies have used several Gardnerella spp.
typing tests to explore the clinical characteristics of different
species. Indeed, the taxonomy of Gardnerella spp. will need to be
more completely defined in order to fully understand the
mechanism of Gardnerella spp. in BV pathogenesis (Castro
et al., 2019). This study reviews recent literature to explore the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
characteristics of Gardnerella spp., the typing methods used, and
their clinical significance.
CHARACTERISTICS OF GARDNERELLA

G. vaginalis was the first recognized Gardnerella species
(Harwich et al., 2010), with its closest relatives in the
Bifidobacterium genus (Harwich et al., 2010; Castro et al.,
2019). The cells are small, nonmotile, nonencapsulated, non-
spore-forming, pleomorphic rods with average dimensions of
0.4×1.0~1.5µm (Onderdonk et al., 2016). The cells are small,
nonmotile, nonencapsulated, non-spore-forming, pleomorphic
rods with average dimensions of 0.4×1.0~1.5µm (Sadhu et al.,
1989). Known as a facultative anaerobic microorganism, G.
vaginalis was also described as fastidious, as it grew better at
37°C in complex media in an atmosphere with 5–10% of carbon
dioxide (CO2) or in a candleflame extinction jar (Catlin, 1992;
Cereija et al., 2013). Nevertheless, it was demonstrated that
certain G. vaginalis strains are strict anaerobes (Malone et al.,
1975). The cellular surface of G. vaginalis is covered with
fimbriae, which are responsible for the attachment of G.
vaginalis to vaginal epithelial cells (Scott et al., 1989;
Onderdonk et al., 2016). More recent biochemical testing has
shown that G. vaginalis is catalase-, oxidase-, and b-glucosidase-
negative (Catlin, 1992; Turovskiy et al., 2011). It can ferment
starch, dextrin, sucrose, glucose, fructose, ribose, maltose and
raffinose. Some strains can also ferment xylose and trehalose.
Conversely, G. vaginalis is unable to ferment rhamnose,
melibiose, mannitol and sorbitol (Harwich et al., 2010).

The important pathogenic characteristics of Gardnerella spp.
include the production of sialidase, an enzyme that degrades
cervical and vaginal mucus, and vaginolysin, a lysoid that
induces the lysis of vaginal epithelial cells (Castro et al., 2019).
Sialidase is associated with the degradation of key mucosal
protective factors, such as mucin, that lead to the shedding of
vaginal epithelial cells (Lewis et al., 2013; Hardy et al., 2017).
Gardnerella spp. has three genes that encode sialidase, NanH1
(sialidase A gene), NanH2, and NanH3. NanH2 and NanH3
appear to be the main sources of sialidase activity in Gardnerella
spp (Robinson et al., 2019). Vaginal hemolysin is a cholesterol-
dependent cell hemolysin that was first discovered in the culture
medium of Gardnerella spp. It has cytotoxic activity against
human erythrocytes and can induce the dissolution of human
erythrocytes, epithelial cells, and polymorphonuclear leukocytes
(Zilnyte et al., 2015). Vaginal hemolysin and sialidase are the most
widely studied virulence factors of Gardnerella spp. (Santiago
et al., 2011; Janulaitiene et al., 2018), and are assumed to play a
substantial role in the pathogenesis of BV (Pleckaityte et al., 2012).
Swidsinski et al. used fluorescence in situ hybridization (FISH)
specific for Gardnerella spp. and were the first to show that these
species form biofilms on vaginal epithelium in women with BV.
This finding revealed the nature of clue cells, epithelial cells
covered by a Gardnerella spp. biofilm, and their etiological role
in Gardnerella spp. infection (Swidsinski et al., 2005).
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GARDNERELLA SPP. TYPING

Biotyping
Gardnerella spp. was first divided into eight biotypes based on its
metabolic characteristics (Piot et al., 1984). In 1894, Piot et al.
established a simple and repeatable method for Gardnerella spp.
biotyping, known as Pilot typing, that is based on the reaction of
lipase, hippurate hydrolysis, and b-galactosidase. Benito et al.
identified 17 Gardnerella spp. biotypes based on these
characteristics in addition to fermentation of xylose, arabinose,
and galactose (Benito et al., 1986). This method is based on
enzyme reactions, however, so there is a risk that the wrong
biotypes will be produced when conditions change. Thus,
biotyping is not recommended to understand the epidemic
etiology of Gardnerella spp. (Ingianni et al., 1997).

Genotyping
Amplified Ribosomal DNA Restriction Analysis
Four genotypes of Gardnerella spp. were identified by amplified
ribosomal DNA restriction analysis (ARDRA) using different
restriction enzymes (Ingianni et al., 1997). In 1997, Ingianni et al.
first used ARDRA to identify 34 Gardnerella spp. strains. This
method is more accurate than biotyping but still relies on the
isolation and purification of Gardnerella spp. Each subtype has a
distinct growth and metabolic pattern, however, and
preferentially isolated strains may misrepresent the clinical
distribution of Gardnerella subtypes.

qPCR
Quantitative polymerase chain reaction (qPCR) typing can be used
on uncultured clinical specimens, allowing for quantitative
assessment of bacterial load and qualitative identification of
Gardnerella subtypes (Balashov et al., 2014). Since the isolation
of living bacterial cells is not involved, this approach can be
performed on different types of samples, including frozen DNA
or vaginal swab samples collected and stored under sub-optimal
conditions. In 2012, Ahmed et al. conducted a comparative
genomic analysis of 17 Gardnerella spp. clinical isolates and
suggested that it would be more accurate to define Gardnerella
spp. as four separate species (Ahmed et al., 2012). Balashov and his
colleagues developed multiplex single-tube qPCR targeting genes
encoding putative a-L-fucosidase (clade 1), a hypothetical protein
(clade 2), thioredoxin (clade 3) and CIC family chloride transporter
(clade 4), which was proven to be clade-specific and capable of
strain typing and identification of the four G. vaginalis clades in
noncultured clinical vaginal specimens (Balashov et al., 2014).

Cpn-60 Sequencing
Chaperonin-60 is a molecular chaperone required for the folding
and assembly of proteins and protein complexes in all eubacteria
and in the plastids and mitochondria of eukaryotes (Hill et al.,
2005). A 549-567 bp fragment of the cpn-60 gene was amplified
by universal PCR primers, and the sequencing results were
relatively stable (Jayaprakash et al., 2012). Gardnerella spp.
comprises four subgroups A, B, C, and D, based on cpn60
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
barcode sequences and whole-genome sequences (Jayaprakash
et al., 2012; Schellenberg et al., 2016). Cpn60 sequencing was also
applied to vaginal microbes in a larger sample of African
commercial sex workers (Schellenberg et al., 2011). Profiling of
vaginal microbiomes using cpn60 barcode sequencing, and
application of clade-specific PCR showed that the vagina is
often colonized by multiple Gardnerella spp. subgroups
simultaneously (Khan et al., 2019).

Whole Genome Sequencing
Whole genome sequencing refers to the analysis of the whole
genome sequence of Gardnerella using digital DNA-DNA
hybridization and average nucleotide identity. In 2019,
Vaneechoutte et al. analyzed the whole genome sequence of 81
Gardnerella spp. and confirmed the existence of 13 subgroups,
GSP01-GSP13, all of which are sufficiently different to be
classified as independent species. Two subgroups were found
in subtypes clade 1, clade 2, and clade 4, and three undefined
subgroups were found in subtype clade 3 (Vaneechoutte et al.,
2019). This was an important breakthrough in this field that
resulted in an amended description of G. vaginalis and the
characterization of three additional Gardnerella species, G.
leopoldii, G. piotii, and G. swidsinskii (Potter et al., 2019).

The Relationship Between Different
Gardnerella Subtypes
The commonly used Gardnerella typing methods include
ARDRA, cpn-60, qPCR, and whole genome sequencing
(Castro et al., 2019). Since ARDRA typing of Gardnerella
results does not specifically correspond to clinical status (Piot
et al., 1984; Benito et al., 1986), it is not detailed here. Cpn-60
gene sequencing was used to divide Gardnerella into four
subtypes A, B, C and D, based on the phylogenetic relationship
between each cpn60 gene subsequence (Jayaprakash et al., 2012).
Similarly, qPCR divided Gardnerella isolates into four clades 1, 2,
3 and 4 (Balashov et al., 2014). Schellenberg et al. compared
cpn60 UT sequences from 112 G. vaginalis isolates from three
continents with cpn60 UT sequences extracted from previously
published whole genome sequences. All new isolates and
previously published genomes fall into four cpn60 subgroups
(Jayaprakash et al., 2012), including 17 isolates belonging to
clades 1- 4 (Ahmed et al., 2012). These results indicate that
similar phylogenetic resolution can be achieved using a partial
single gene sequence (552 bp) as 473 full-length gene sequences
common to all 17 genomes. Cpn60 subgroups A, B, C, and D
correspond to clade 4, 2, 1, and 3, respectively (Schellenberg
et al., 2016). Using a retrospective comparative analysis of 103
publicly available genomes and meta-transcriptomic bacterial
vaginosis datasets, Potter et al. identified 9 genome species of
Gardnerella, GS01-09 (Potter et al., 2019). Gardnerella species,
labeled with names or numbers, were defined by analysis of 81
genome sequences by digital DNA-DNA hybridization, average
nucleotide identity (ANI), and MALDI-MS protein signatures
(Vaneechoutte et al., 2019). The specific corresponding
relationship is shown in Table 1.
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CORRELATION BETWEEN
BACTERIAL VAGINOSIS AND
GARDNERELLA SUBTYPES

Gardnerella and Bacterial Vaginosis
Gardnerella is detected in both the vaginal secretions of women
with BV and healthy women. Using two qPCR assays, Balashov
et al. analyzed G. vaginalis bacterial loads and clade distribution
in 100 clinical vaginal-swab samples and showed that the
prevalence of G. vaginalis was 100% of BV patients and 97% in
healthy women; however, the G. vaginalis concentration was
significantly lower in non-BV samples. The detection frequency
of clades 1, 2, 3 and 4 was 53%, 25%, 32% and 83%, respectively.
In addition, 70% of BV vaginal swab samples had multiple
subtypes of Gardnerella (Balashov et al., 2014). An assessment
of the vaginal microbiota of 413 non-pregnant, reproductive-age
Canadian women showed that the number of Gardnerella spp.
detected per Gardnerella-positive sample ranged from 1 to 10.
Multiple Gardnerella spp. were detected in 63.8% of samples,
consistent with a previous report of multiple Gardnerella clades
in 70% of samples from women (Balashov et al., 2014), and the
majority contained one or two species (Hill et al., 2019). Multiple
subtypes of Gardnerella had a significant positive correlation
with BV, suggesting that the co-occurrence of multiple subtypes
may be one of the risk factors for BV.

Clinical Symptoms Associated With
Gardnerella Subtypes
There was no correlation between Gardnerella spp. biotyping
and clinical symptoms (Pleckaityte et al., 2012). According to
Hill and Albert’s research, the relative abundances of the more
frequently occurring species (G. vaginalis, G. swidsinskii, G.
leopoldii, G. piotii, and genome species) among groups based
on clinical Nugent scores (negative, intermediate, and BV) and
self-reported symptoms in the 2 weeks prior to the swab
collection (odor, irritation, and discharge) were compared (Hill
and Albert, 2019). Whole genome sequence analysis revealed a
strong relationship between abnormal odor and discharge with
higher relative abundance of G. vaginalis and G. swidsinskii. The
cooccurrence of these Gardnerella spp. also showed
proportionality, suggesting that their abundance is correlated.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Thus, it remains unclear whether one of these species or both are
associated with vaginal symptoms (Hill and Albert, 2019).

Gardnerella Subtypes Distribution
Early studies on Gardnerella typing indicated that biotypes 1, 2,
and 5 were more common in females with BV (Piot et al., 1984),
however subsequent studies could not confirm these findings.
Balashov et al. found a positive correlation between BV and clade
1 and clade 3 in vaginal samples from 60 American women.
Meanwhile, clade 2 was positively correlated with vaginal
microbiota in an intermediate state of BV and C4 had no
correlation with infection (Balashov et al., 2014). Janulaitiene
et al. performed qPCR on vaginal swab samples from 109
Lithuanian women and confirmed that the microbial status of
the vaginal microbiota was associated with the clade 1 and clade
2 subgroups (Nugent score 7-10). The clade 3 and clade 4 showed
no association with high Nugent Scores (Janulaitiene et al.,
2017). However, the results from a study on the vaginal
microbiota of 299 Russian women of reproductive age were
different from those of previous studies. Quantifying the four
Gardnerella subtypes could more accurately distinguish BV from
healthy microbiota than detecting the sialidase A gene and clade
4 was closely related to the status of the BV microbiome
(Shipitsyna et al., 2019).

Plummer et al. studied the relationship between infection
with the clade 1, clade 2, and clade 3 subtypes and Nugent scores
in 101 Australian women of reproductive age. Multiple
Gardnerella subtypes and the clade 1 subtype alone were
associated with the absence of Lactobacillus in the vaginal
microbiome. Clade 4 was not associated with BV or the
absence of Lactobacillus, supporting the existence of symbiotic
and pathogenic subtypes of Gardnerella spp (Plummer et al.,
2020). Hill et al. used whole genome sequencing to compare the
species abundance of Gardnerella subgroups between healthy
women and those with BV. The relative abundance of G.
vaginalis, G. swidsinskii, and G. piotii correlated significantly
with Nugent scores. In addition, the association between G. piotii
(B subgroup/clade 2) and the “intermediate state” microbiome
was observed by cpn60 sequencing and qPCR (Hill and Albert,
2019). Gardnerella typing results from different studies are
shown in Table 2.
TABLE 1 | The relationship between different Gardnerella species.

Cpn-60 qPCR Gardnerella genomospecies Gardnerella species

Subgroup A Clade 4 GS03 G. swidsinskii, G. leopoldii
Subgroup B Clade 2 GS02 & GS06 G. piotii, Gsp03
Subgroup C Clade 1 GS01 G. vaginalis (Gsp01), Gsp02
Subgroup D Clade 3 GS05 Gsp08, Gsp09, & Gsp10

GS04 Gsp07
GS06 Gsp11
GS07 Gsp12
GS08 Gsp13
GS09
March 2022 |
Four subgroups of Gardnerella have been defined by sequencing polymorphisms within the cpn60 gene and by qPCR detection of clade-specific genes (clades 1, 2, 3 and 4). These
subtypes were designated as genovars by genome sequencing of 17 isolates. Genomospecies (GS) were defined by integrating four sequence comparison methods of 103 genomic
sequences. Gardnerella species, labelled with names or numbers, were defined by analysis of 81 genome sequences by digital DNA-DNA hybridization, average nucleotide identity (ANI)
and MALDI-MS protein signatures.
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In summary, current studies remain unable to determine the
relationship between different Gardnerella genotypes and
clinically relevant BV status.

Gardnerella Subtypes Drug Resistance
Metronidazole resistance by Gardnerella isolates is likely
responsible for refractory or recurrent BV. Women with BV
are typically infected with multiple Gardnerella spp. subtypes, so
metronidazole may eliminate sensitive Gardnerella subtypes but
allow drug-resistant subtypes to survive. This could explain the
presence of Gardnerella in the vaginal microbiota even after
metronidazole treatment. BV is characterized by a thick vaginal
multi-species biofilm, in which Gardnerella spp. is the
predominant species. Since standard antibiotics, like
metronidazole, are unable to fully eradicate the vaginal biofilm,
this may explain the high recurrence rates of BV (Machado et al.,
2015; Verstraelen and Swidsinski, 2019). Early identification of
metronidazole-resistant Gardnerella subtypes helps to predict
the prognosis of BV and inform an appropriate treatment plan.
To explore the sensitivity of different Gardnerella subtypes to
metronidazole, Schuyler et al. collected 88 Gardnerella strains
and divided them into four groups, clades 1, 2, 3 and 4, by qPCR
sequencing. Metronidazole resistance was defined as a minimum
inhibitory concentration ≥32 mg/mL. A high correlation was
found between metronidazole resistance and Gardnerella typing.
While clade 3 and clade 4 strains showed 100% resistance, while
clade 1 and clade 2 showed 35% and 7.1% resistance, respectively
(Schuyler et al., 2016).

Clinical Outcomes of Gardnerella Subtypes
In 2017, Hilbert et al. conducted a short-term longitudinal study
of 149 non-pregnant Canadian women of reproductive age.
Vaginal swab samples were collected at first diagnosis, 7 days
after treatment, and 40-45 days after follow-up to detect the
abundance of different Gardnerella subtypes by qPCR. Higher
prevalence of clade 1 and clade 4 were found in vaginal samples
than clade 2 and clade 3. The abundance of each subtype
increased as the Nugent score, or the severity of BV, worsened
(Hilbert et al., 2017). The abundance of clade 1 and clade 4
decreased after clinical treatment regardless of the clinical and
microbiological outcome, and clade 2 decreased in women who
continued treatment for 40-45 days. Recurrent BV is
characterized by increased clade 1 and clade 2 levels after
treatment. The clade 1 and clade 4 subgroups were the
dominant strains in vaginal specimens. While the clade
abundance of Gardnerella was generally higher in vaginal
samples that met the four Amsel criteria than those that did
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
not, clade 1 was an exception. Thus, differences in qPCR subtype
abundance were associated with Nugent score, Amsel criteria,
sensitivity to treatment, and BV recurrence.

A recent study by Turner et al. associated sustained high
abundance of the Gardnerella Gsp07 subtype with a refractory
BV response and sustained low abundance of the Gardnerella
Gsp07 subtype and G. Swidsinskii/G. Leopoldii with BV
remission. In most patients with BV relapse or remission, the
abundance of Lactobacillus species increased 4–14 days after
initiation of treatment, and the increase was more obvious and
sustained in patients with BV remission. These findings
confirmed that Gardner’s Gsp07 subtypes and G. swidsinskii/G.
leopoldii coinfection correlate with poor clinical outcomes.
Alternatively, direct or indirect inhibition of lactic acid bacteria
strains may interfere with clinical recovery. Treatment by
clinicians targeting these marker subtypes of adverse outcomes
may improve clinical outcomes in patients with BV (Turner
et al., 2021).

Virulence Factors of Gardnerella Subtypes
Gardnerella pathogenicity is primarily mediated through vaginal
hemolysin (VLY), sialidase and biofilm formation (Pleckaityte
et al., 2012). Previous studies have shown that pathogenicity
differs by Gardnerella subspecies (Janulaitiene et al., 2018).
Zilnyte et al. found that VLY activity is dependent on the
complement regulatory molecule, CD59, and showed that
higher CD59 expression in hamsters correlated with increased
vaginal hemolysin-soluble cell sensitivity (Zilnyte et al., 2015). In
the cell culture model, the expression level of vaginal hemolysin
was correlated with the level of cytotoxicity, but there was no any
correlation between VLY production level and G. vaginalis
genotype/biotype (Pleckaityte et al., 2012).

Sialidase lyses the terminal sialic acid residues of sialoglycan
in the vaginal environment and plays a key role in providing
nutrition for Gardnerella spp. through sialic acid catabolism,
providing a site for bacteria adhesion to the epithelium,
facilitating biofilm formation, and modulating immune
responses (Lewis et al., 2013; Schellenberg et al., 2017).
Harwich et al. (2010) and Janulaitiene et al. (2018) found
significant differences in the sialidase activity of Gardnerella
clades, however, with clade 2 having the highest levels followed
by clade 1, and clade 4 having the lowest. In addition, the gene
coding for sialidase was detected in all isolates of clade 1 and
clade 2, but not in clade 4 isolates (Schellenberg et al., 2016;
Janulaitiene et al., 2017). Shipitsyna also holds that clade 4 strains
mostly lack the sialidase A gene (Shipitsyna et al., 2019). Sialidase
activity is considered a marker of BV. Indeed, more than 50% of
TABLE 2 | Different Gardnerella subtypes predict distinct BV clinical outcomes.

BV BV Intermediate Healthy Methods

Jayaprakash et al., 2012 Subgroup B – – Cpn-60
Balashov et al., 2014 Clades 1 and 3 Clade 2 Clade 4 qPCR
Janulaitiene et al., 2017 Clades 1 and 2 – – clade-specific PCR
Shipitsyna et al., 2019 Clade 4 – – clade-specific PCR
Plummer et al., 2020 Clades1, 2, 3 and multiple subtypes Clade 3 Clade 4 qPCR
Hill and Albert, 2019 G. vaginalis, G. swidsinskii, and G. piotii – – Whole Genome Sequencing
March 2022 |
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BV is asymptomatic, which may be caused by Gardnerella
subspecies that lack sialidase (Janulaitiene et al., 2017).
Sialidase acts on sugar chains with sialic acid residues, which
are abundant on the mucosal surface of the reproductive tract.
Sialidase activity can be used as a diagnostic marker of BV
(Janulaitiene et al., 2018) and rapid clinical detection using
products like BVBlue® (Sekisui Diagnostics, L.L.C.,
Birmingham, AL, USA) (Hill and Albert, 2019).

The exfoliated vaginal epithelial cells in BV patients are
covered with multi-bacterial biofi lms dominated by
Gardnerella (Vestby et al., 2020). Biofilm formation is not only
associated with increased antimicrobial resistance and disease
recurrence but also increased risk of sexual transmission.
However, there is no significant difference in biofilm quantity
between Gardnerella subtypes (Janulaitiene et al., 2018).
CONCLUSIONS

In summary the relationship between the different subtypes of
Gardnerella and bacterial vaginosis is unclear. A large number of
studies show that different Gardnerella subtypes are possibly
represent different drug resistance, virulence, bacterial load and
indicate the clinical outcomes of BV. And the clinical significance
of asymptomatic BV remains unclear, one possible explanation
for its occurrence is the presence of high numbers of
nonpathogenic Gardnerella or other morphologically similar
species. This is especially likely given that Gardnerella is one of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
the key predictors of the Nugent score. Furthermore,
metronidazole treatment for BV cure rate is not ideal, and the
proportion of refractory and recurrent BV continues to rise. This
study reviewed the relationship between Gardnerella subtypes
species and BV clinical outcomes and evaluated patient
prognosis according to Gardnerella typing. This is particularly
important so that appropriate treatment can be given to improve
the BV clinical cure rate and reduce adverse obstetric and
gynecological complications as well as disease recurrence.
Given the current diversity of Gardnerella phenotypes,
especially virulence factors, genotypic diversity, and
Gardnerella prevalence in women, understanding the clinical
significance of these different strains is critical.
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