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Abstract: Hyaluronic acid (HA) has been widely used for viscosupplementation of diseased or 

aged articular joints. However, recent investigations have revealed the active anti-inflammatory 

or chondroprotective effect of HA, suggesting its potential role in attenuation of joint damage. 

In particular, interactions between HA and other inflammatory mediators are attracting inter-

est. This review summarizes several aspects of recent investigations of the anti-inflammatory 

effects of HA in arthritis.
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Introduction
Intra-articular administration of hyaluronic acid (HA; hyaluronan) is a widely applied 

treatment for osteoarthritis (OA) (reviewed by Simon and Strand).1 Although HA 

injection provides relief from pain, albeit transiently, its mechanism of action has not 

been fully clarified. In a recent recommendation on the management of hip and knee 

OA by the Osteoarthritis Research Society International (OARSI),2 the strength of 

recommendation (SOR) of intra-articular HA was calculated to be relatively low (64%), 

whereas that of nonsteroidal anti-inflammatory drugs (NSAIDs) for oral administration 

as analgesics was 92%–93%.

The effect of HA in OA has often been attributed to its potential use in viscosupple-

mentation, ie, supplementation of viscosity; however, the benefits of HA from “some 

other action and not by its biomechanical properties” is also suggested (reviewed by 

Neustadt and colleagues).3 More specifically, a direct effect of HA against inflamma-

tion or cartilage degradation in OA has also been suggested.

In addition to its use in OA, intra-articular injection of HA has been used in patients 

with inflammatory arthritis such as rheumatoid arthritis (RA). In some reports, it is 

indicated that HA has beneficial effects on inflammatory arthritis.4–6

This study briefly reviews the recent findings related to the function of HA, focusing 

on its reported effects in chondrocytes, not only in supplementing viscosity, but also as a 

potential anti-inflammatory anti-arthritic agent. Since it is well-known that oligosaccharide 

hyaluronan is inversely involved in inflammation,7 whenever HA is mentioned in this 

paper, it should be understood that the reference is to high molecular weight hyaluronan.

Biochemistry of HA
Hyaluronic acid is a polysaccharide composed of repeating disaccharide units, ie, 

1,4-glucuronic acid (GlcUA) and 1,3-N-acetylglucosamine (GlcNAC). HA belongs 
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to the group of glycosaminoglycans, but unlike chondroitin 

sulfate or keratan sulfate, HA is not sulfated. HA is synthe-

sized by bioactivity of hyaluronan synthase (HAS), which 

has been reported to have three isoforms (HAS1, HAS2, and 

HAS3) in humans.8

HA is widely distributed but mainly localized to the 

extracellular matrix and body fluid. It contributes to the 

viscoelasticity of the fluid and elasticity in connective tissues, 

which absorb mechanical stress, for example, between car-

tilage and cartilage surfaces.3

In addition to this property of providing viscoelasticity, 

recent investigations have continued to reveal the variety of 

actions of HA on cartilage. For example, in normal diarthrodial 

joints, HA not only works as a mechanical/physical barrier, 

but also has anti-inflammatory and analgesic functions.3 As 

for pain suppression, it has been shown that HA attenuates 

prostaglandin- or bradykinin-induced pain in experimental 

OA animals.9,10

HA binds to the signal-transducing receptor molecules 

CD44 and receptor for HA-mediated motility (RHAMM; 

reviewed by Taylor and colleagues).11 In this regard, CD44 is 

the primary receptor of HA, and has also been found to bind 

with other matrix components, including collagen, chondroi-

tin sulphate, and osteopontin.11–13 Binding of the components 

to CD44 leads to modulation of cellular functions;14–16 for 

example, HA is reported to inhibit proteoglycan degradation 

and anti-Fas-induced apoptosis of chondrocytes through 

CD44 expressed on the cells.17,18

HA suppresses inflammatory 
responses in articular joints
HA suppresses MMPs and ADAMTS
In inflammatory or degenerative joints, cartilage matrix 

is degraded by the action of an array of proteinases. In 

particular, the families of matrix metalloproteinases (MMP) 

and a disintegrin and metalloproteinase with thrombospondin 

motifs (ADAMTS) are mainly responsible for cartilage deg-

radation. More specifically, the collagenases (MMP-1 and 

MMP-13) and stromelysin-1 (MMP-3) play a pivotal role in 

collagen degradation, whereas the aggrecanases (ADAMTS) 

induce aggrecan degradation. These proteinases are often 

induced by inflammatory stimuli, such as interleukin-1 (IL-1) 

or tumor necrosis factor-α (TNF-α), which are activated by 

inflammation or mechanical or physical stress in joints.19,20 

Subsequently, in an inflamed joint, cartilage exposed to 

the induced ADAMTS-4 and ADAMTS-5 would release 

HA, indicating deterioration of matrix integrity;21 this loss 

of HA from the cartilage matrix is thought to result in the 

progression of cartilage degradation. On the other hand, it 

has been demonstrated that HA can enhance synthesis of 

chondroitin sulfate and proteoglycans,22,23 and reduce the 

production and activity of MMPs and ADAMTS.5,24,25

IL-1 is considered to be the dominant catabolic cytokine 

present in the inflamed articular joints. In this regard, HA is 

reported to counteract the catabolic process induced by IL-1. 

For example, Fioravanti and colleagues stimulated human 

chondrocytes under hydrostatic pressure and showed that HA 

(MW 500–730 kDa) abrogates a decrease in proteoglycan 

and an increase in nitric oxide (NO) levels, both induced by 

IL-1. In a study by Karna and colleagues, HA (500–730 kDa) 

was found to counteract the effect of IL-1, as HA inhibited 

IL-1-induced downregulation of type II collagen mRNA 

expression.26 Julovi and colleagues27 used 800-kDa HA to 

assess the inhibitory effect of HA on IL-1β-induced MMPs 

in cartilage and found that the 800-kDa HA penetrated 

cartilage tissue, localized in the pericellular matrix around 

chondrocytes, and bound with CD44 on chondrocytes, lead-

ing to the suppression of IL-1β-stimulated MMP production 

by chondrocytes. In this context, we found that HA (800 kDa 

and 1900 kDa) suppressed IL-1-induced MMP-1 production 

both at protein and mRNA levels in cultured human chon-

drocytes, and this effect was cancelled by treatment with 

anti-CD44 antibody.28

As for synovial fibroblasts, Shimizu and colleagues29 

reported that HA inhibited TNF-α- and IL-1-induced MMP-1 

production from rheumatoid synovial fibroblasts. For this 

effect, HA was suggested to bind with CD44 expressed 

in synovial fibroblasts. More recently, the interaction 

between synovial fibroblasts and HA via intracellular adhe-

sion molecule-1 (ICAM-1) was reported by Hiramitsu and 

colleagues.29 The mechanism of this inhibition was speculated 

to occur through HA binding to ICAM-1, leading to down-

regulation of nuclear factor-κB (NF-κB) and p38 mitogen-

activated protein kinase (MAPK) phosphorylation.

In addition to the effects shown against MMPs, a recent 

report by Yatabe and colleagues indicated the inhibition of 

ADAMTS4 (aggrecanase-1) expression in human chondro-

cytes by HA (2700 kDa) through the CD44 and ICAM-1 

signaling pathways.25 These findings collectively suggest 

a therapeutic potential of HA against matrix breakdown in 

arthritic cartilage.

Plasmin/plasminogen system and HA
Fibrinolysis is one of the major pathological changes occur-

ring in arthritic joints, in which the plasminogen system is 

known to play a key role. The balance between plasminogen 
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activator (PA) and plasminogen activator inhibitor (PAI) 

determines the direction in which plasminogen is activated 

into plasmin, which in turn further promotes fibrinolysis 

by activating proteinases, including gelatinases and other 

MMPs. PA occurs in two forms: urokinase-type PA (uPA) 

and tissue-type PA (tPA).

It has been suggested that hyaluronan modulates the 

PA system in articular joints. For example, Nonaka and 

colleagues30 reported that HA suppressed the secretion of 

u-PA and PAI-1 from OA synovial fibroblasts. Further, it 

was found that the receptor for u-PA (u-PAR) was expressed 

in the synovium in both OA and RA and that the expression 

was attenuated by treatment with HA.30 These results sug-

gested that HA could suppress fibrinolytic activity mediated 

by the uPA and uPAR systems. More recently, Hsieh et al 

measured the levels of MMP-2, MMP-9, u-PA, and PAI-1 

in a series of chondral, meniscal, and synovial cultures of 

early OA after treatment with or without three HA products 

with different molecular weights (MW), and demonstrated 

that all of the HA products could decrease the secretion of 

MMP-2 and MMP-9. They suggested that HA with high 

MW might be more effective in inhibiting MMP-2, MMP-9, 

u-PA, and PAI-1 expression.31 Further investigation on the 

crosstalk between PA/PAI and HA would provide important 

clues to the protection of cartilage degradation by these 

proteinases.

Hyaluronan and cyclooxygenase
Acidic NSAIDs are a major subset of anti-inflammatory 

drugs that inhibit the activity of cyclooxygenase (COX), 

leading to suppression of prostaglandins and leukotrienes 

in inflamed tissue. In this regard, interaction has been 

demonstrated between HA or its fragment and COX-2 

expression in a variety of cells.32–35 Several studies showed 

upregulation of COX-2 expression by HA. For example, 

HA (200-kDa) was reported to increase the expression of 

glomerular COX-2 in rat renal glomerular cells34 and in 

human vascular endothelial cells,36 respectively. The effect 

of HA has been reported to be mimicked by an engagement 

of CD44 (an HA receptor).35,36 Further, Stuhlmeier reported 

prostaglandin E
2
(PGE

2
) as a potent activator of HAS1 

in IL-1-treated type-B-synoviocytes.37 In that study, the 

author tested a series of eicosanoids and found that PGE
2
, 

and to a lesser extent, PGI
2
 and thromboxane A

2
 analogues 

activated HAS1 expression in synoviocytes after IL-1 

treatment, whereas the lipoxygenase product leukotriene 

B4 had no effect on HAS1 induction. Therefore, HA may 

upregulate COX-2, causing the activated COX-2 to induce 

PGE
2
, which would then activate HAS1 through a positive 

feedback mechanism (Figure 1). Conversely, Mitsui and 

colleagues demonstrated an inhibitory effect of HA on the 

expression of COX-2 mRNA in IL-1-stimulated subacro-

mial synovial fibroblasts.33 In that study, however, HA 

with a molecular weight of 90 × 104 was used; therefore, 

the different effect of HA might have been due to the dif-

ference in the molecular weight. In addition, Kinugasa 

and colleagues40 reported that inhibition of COX-2 using 

a COX inhibitor or COX-2 antisense oligonucleotide in 

a tumor cell line resulted in downregulation of CD44 

expression.38

Collectively, the HAS/HA system and COX/PG system 

may have a regulatory network via CD44, which would 

be regulated differently by each HA component present 

in each cell type, and further modulated by the presence 

of inflammatory cytokines and mediators (Figure 1). Still, 

inconsistency among studies concerning the interaction 

between HA and COX/PG may also, at least in part, be due 

to the expression or activation of HAS isoforms (HAS1-3), 

the expression pattern of prostanoid receptors, or the amount 

of concomitant stimuli by other inflammatory mediators 

such as IL-1. For example, isoforms of HAS or EP recep-

tors are expressed and function differentially among tissues 

and cells.8,39 Elucidation of the interaction between HA 

and COX systems in articular chondrocytes would give 

important information about the clinical application of HA 

with simultaneous clinical use of NSAIDs, and may clarify 

the possible beneficial effects of HA with larger molecular 

weight in this regard.

Conclusions
Although articular injection of HA is frequently used in the 

treatment of arthritic conditions, the precise mechanism 

by which HA suppresses degradation of cartilage or intra-

articular inflammation is still under vigorous investigation. 

A disease-modifying effect of HA has been suggested 

by some in vitro studies; however, there has been little 

clinical evidence thus far. Understanding the wide array 

of signaling pathways of anti-inflammatory effects by HA 

will encourage novel anti-degradation strategies for both 

inflammatory and degenerative arthritides, using HA in 

combination with other disease-modifying anti-rheumatic 

drugs and/or NSAIDs.

Disclosure
None of the authors have any conflict of interest regarding 

the contents of this article.

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of General Medicine 2009:280

Masuko et al Dovepress

submit your manuscript | www.dovepress.com

Dovepress 

References
 1. Simon LS, Strand V. The pharmacologic treatment of osteoarthritis. 

In: Osteoarthritis, Moskowitz RW, Altman RD, Buckwalter JA, 
Goldberg VM, Hochberg MC, editors. Philadelphia, PA: Lippincott 
Williams and Willkins; 2007. p. 267–286.

 2. Zhang W, Moskowitz RW, Nuki G, et al. OARSI recommendations 
for the management of hip and knee osteoarthritis, Part II: OARSI 
evidence-based, expert consensus guidelines. Osteoarthritis Cartilage. 
2008;16(2):137–162.

 3. Neustadt D, Altman RD. Intra-articular therapy. In: Osteoarthritis, 
Moskowitz RW, Altman RD, Buckwalter JA, Goldberg VM, 
Hochberg MC, editors. Philadelphia, PA: Lippincott Williams and 
Willkins; 2007. p. 287–301.

 4. Matsuno H, Yudoh K, Kondo M, Goto M, Kimura T. Biochemical effect 
of intra-articular injections of high molecular weight hyaluronate in 
rheumatoid arthritis patients. Inflamm Res. 1999;48(3):154–159.

 5. Goto M, Hanyu T, Yoshio T, et al. Intra-articular injection of hyaluro-
nate (SI-6601D) improves joint pain and synovial fluid prostaglandin 
E2 levels in rheumatoid arthritis: a multicenter clinical trial. Clin Exp 
Rheumatol. 2001;19(4):377–383.

 6. Roth A, Mollenhauer J, Wagner A, et al. Intra-articular injections of 
high-molecular-weight hyaluronic acid have biphasic effects on joint 
inflammation and destruction in rat antigen-induced arthritis. Arthritis 
Res Ther. 2005;7(3):R677–R686.

 7. Noble PW, McKee CM, Cowman M, Shin HS. Hyaluronan fragments 
activate an NF-kappa B/I-kappa B alpha autoregulatory loop in murine 
macrophages. J Exp Med. 1996;183(5):2373–2378.

 8. Itano N, Sawai T, Yoshida M, et al. Three isoforms of mammalian 
hyaluronan synthases have distinct enzymatic properties. J Biol Chem. 
1999;274(35):25085–25092.

 9. Aihara S, Murakami N, Ishii R, et al. [Effects of sodium hyaluronate on 
the nociceptive response of rats with experimentally induced arthritis]. 
Nippon Yakurigaku Zasshi. 1992;100(4):359–365.

10. Gotoh S, Onaya J, Abe M, et al. Effects of the molecular weight of 
hyaluronic acid and its action mechanisms on experimental joint pain 
in rats. Ann Rheum Dis. 1993;52(11):817–822.

11. Taylor KR, Gallo RL. Glycosaminoglycans and their proteoglycans: 
host-associated molecular patterns for initiation and modulation of 
inflammation. FASEB J. 2006;20(1):9–22.

12. Wang KX, Denhardt DT. Osteopontin: role in immune regulation 
and stress responses. Cytokine Growth Factor Rev. 2008;19(5–6): 
333–345.

13. Naor D, Sionov RV, Ish-Shalom D. CD44: structure, function, and 
association with the malignant process. Adv Cancer Res. 1997;71: 
241–319.

14. Lesley J, Hyman R, Kincade PW. CD44 and its interaction with extra-
cellular matrix. Adv Immunol. 1993;54:271–335.

15. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. 
CD44 is the principal cell surface receptor for hyaluronate. Cell. 
1990;61(7):1303–1313.

16. Weber GF, Ashkar S, Glimcher MJ, Cantor H. Receptor-ligand 
interaction between CD44 and osteopontin (Eta-1). Science. 
1996;271(5248):509–512.

17. Shimazu A, Jikko A, Iwamoto M, et al. Effects of hyaluronic acid on 
the release of proteoglycan from the cell matrix in rabbit chondrocyte 
cultures in the presence and absence of cytokines. Arthritis Rheum. 
1993;36(2):247–253.

18. Lisignoli G, Grassi F, Zini N, et al. Anti-Fas-induced apoptosis in 
chondrocytes reduced by hyaluronan: evidence for CD44 and CD54 
(intercellular adhesion molecule 1) invovement. Arthritis Rheum. 
2001;44(8):1800–1807.

Figure 1 Possible crosstalk between HA and COX systems. HA may upregulate the inducible expression of COX-2 via CD44. The activated COX-2 induces prostanoids, and 
PGe2 might further modulate the expressions of HAS and/or COX, through eP receptor(s) at least in part.
Abbreviations: HAS, hyaluronic acid synthase; HA, hyaluronic acid; COX, cyclooxygenase; PG, prostaglandin; eP, PGe2 receptors.

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of General Medicine 2009:2

International Journal of General Medicine

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/international-journal-of-general-medicine-journal

The International Journal of General Medicine is an international, 
peer-reviewed open-access journal that focuses on general and internal 
medicine, pathogenesis, epidemiology, diagnosis, monitoring and treat-
ment protocols. The journal is characterized by the rapid reporting of 
reviews, original research and clinical studies across all disease areas. 

A key focus is the elucidation of disease processes and management 
protocols resulting in improved outcomes for the patient.The manu-
script management system is completely online and includes a very 
quick and fair peer-review system. Visit http://www.dovepress.com/ 
testimonials.php to read real quotes from published authors.

81

Anti-inflammatory effects of hyaluronan in arthritisDovepress

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

19. Aigner T, Kurz B, Fukui N, Sandell L. Roles of chondrocytes in the 
pathogenesis of osteoarthritis. Curr Opin Rheumatol. 2002;14(5): 
578–584.

20. Pelletier J, Martel-Pelletier J, Abramson S. Osteoarthritis, an inflam-
matory disease. Arthritis Rheum. 2001;44(6):1237–1247.

21. Chockalingam PS, Zeng W, Morris EA, Flannery CR. Release of 
hyaluronan and hyaladherins (aggrecan G1 domain and link proteins) 
from articular cartilage exposed to ADAMTS-4 (aggrecanase 1) 
or ADAMTS-5 (aggrecanase 2). Arthritis Rheum. 2004;50(9): 
2839–2848.

22. Kawasaki K, Ochi M, Uchio Y, Adachi N, Matsusaki M. Hyaluronic 
acid enhances proliferation and chondroitin sulfate synthesis in 
cultured chondrocytes embedded in collagen gels. J Cell Physiol. 
1999;179(2):142–148.

23. Frean SP, Abraham LA, Lees P. In vitro stimulation of equine articular 
cartilage proteoglycan synthesis by hyaluronan and carprofen. Res Vet 
Sci. 1999;67(2):183–190.

24. Takahashi K, Goomer RS, Harwood F, Kubo T, Hirasawa Y, Amiel D. 
The effects of hyaluronan on matrix metalloproteinase-3 (MMP-3), 
interleukin-1beta(IL-1beta), and tissue inhibitor of metalloproteinase-1 
(TIMP-1) gene expression during the development of osteoarthritis. 
Osteoarthritis Cartilage. 1999;7(2):182–190.

25. Yatabe T, Mochizuki S, Takizawa M, et al. Hyaluronan inhibits expres-
sion of ADAMTS4 (aggrecanase-1) in human osteoarthritic chondro-
cytes. Ann Rheum Dis. 2009 Jan 5. [Epub ahead of print]

26. Karna E, Miltyk W, Palka JA, Jarzabek K, Wolczynski S. Hyaluronic 
acid counteracts interleukin-1-induced inhibition of collagen biosynthesis 
in cultured human chondrocytes. Pharmacol Res. 2006;54(4):275–281.

27. Julovi S, Yasuda T, Shimizu M, Hiramatsu T, Nakamura T. Inhibition 
of interleukin-1beta-stimulated production of matrix metalloproteinases 
by hyaluronan via CD44 in human articular cartilage. Arthritis Rheum. 
2004;50(2):516–525.

28. Tanaka M, Masuko-Hongo K, Kato T, Nishioka K, Nakamura H. Sup-
pressive effects of hyaluronan on MMP-1 and RANTES production 
from chondrocytes. Rheumatol Int. 2006;26(3):185–190.

29. Hiramitsu T, Yasuda T, Ito H, et al. Intercellular adhesion molecule-1 
mediates the inhibitory effects of hyaluronan on interleukin-1beta-
induced matrix metalloproteinase production in rheumatoid synovial 
fibroblasts via down-regulation of NF-kappaB and p38. Rheumatology 
(Oxford). 2006;45(7):824–832.

30. Nonaka T, Kikuchi H, Ikeda T, Okamoto Y, Hamanishi C, Tanaka S. 
Hyaluronic acid inhibits the expression of u-PA, PAI-1, and u-PAR in 
human synovial fibroblasts of osteoarthritis and rheumatoid arthritis. 
J Rheumatol. 2000;27(4):997–1004.

31. Hsieh YS, Yang SF, Lue KH, Chu SC, Lu KH. Effects of different 
molecular weight hyaluronan products on the expression of urokinase 
plasminogen activator and inhibitor and gelatinases during the early 
stage of osteoarthritis. J Orthop Res. 2008;26(4):475–484.

32. Dunlop ME, Muggli EE. Hyaluronan increases glomerular cyclooxy-
genase-2 protein expression in a p38 MAP-kinase-dependent process. 
Kidney Int. 2002;61(5):1729–1738.

33. Mitsui Y, Gotoh M, Nakama K, Yamada T, Higuchi F, Nagata K. Hyal-
uronic acid inhibits mRNA expression of proinflammatory cytokines 
and cyclooxygenase-2/prostaglandin E(2) production via CD44 in 
interleukin-1-stimulated subacromial synovial fibroblasts from patients 
with rotator cuff disease. J Orthop Res. 2008;26(7):1032–1037.

34. Misra S, Obeid L M, Hannun YA, et al. Hyaluronan constitutively 
regulates activation of COX-2-mediated cell survival activity in intes-
tinal epithelial and colon carcinoma cells. J Biol Chem. 2008;283(21): 
14335–14344.

35. Sun LK, Wahl P, Bilic G, Wuthrich RP. CD44-mediated cyclooxygenase-2 
expression and thromboxane A2 production in RAW 264.7 macrophages. 
Inflamm Res. 2001;50(10):496–499.

36. Murphy JF, Lennon F, Steele C, Kelleher D, Fitzgerald D, Long AC. 
Engagement of CD44 modulates cyclooxygenase induction, VEGF 
generation, and proliferation in human vascular endothelial cells. 
FASEB J. 2005;19(3):446–448.

37. Stuhlmeier KM. Prostaglandin E2: a potent activator of hyaluro-
nan synthase 1 in type-B-synoviocytes. Biochim Biophys Acta. 
2007;1770(1):121–129.

38. Kinugasa Y, Hatori M, Ito H, Kurihara Y, Ito D, Nagumo M. Inhibition 
of cyclooxygenase-2 suppresses invasiveness of oral squamous cell 
carcinoma cell lines via down-regulation of matrix metalloproteinase-2 
and CD44. Clin Exp Metastasis. 2004;21(8):737–745.

39. Sugimoto Y, Narumiya S. Prostaglandin E receptors. J Biol Chem. 
2007;282(16):11613–11617.

http://www.dovepress.com/international-journal-of-general-medicine-journal
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com

	Pub Info 42: 
	Nimber of times reviewed: 


