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Abstract
Rationale COPD affects 300 million people worldwide and is the third leading cause of death according
to World Health Organization global health estimates. Early symptoms are subtle, and so COPD is often
diagnosed at an advanced stage. Thus, there is an unmet need for biomarkers that can identify individuals
at early stages of the disease before clinical symptoms have manifested. To date, few biomarkers are
available for clinical diagnostic use in COPD.
Methods We evaluated a panel of serum biomarkers related to inflammation and infection for their ability
to discriminate between 77 subjects with chronic airflow limitation (CAL) and 142 subjects with COPD,
versus 150 healthy subjects (divided into two control groups that were matched with regards to age, gender
and smoking to CAL and COPD). Healthy subjects and CAL were from Burden of Obstructive Lung
Disease (BOLD), a population-based study. CAL was defined by post-bronchodilatory forced expiratory
volume in 1 s/forced vital capacity ratio <0.7 in the BOLD population. COPD subjects were from Tools
for Identifying Exacerbations (TIE), a COPD patient cohort. Quantification of 100 biomarker candidates
was done by liquid chromatography-tandem mass spectrometry.
Results Several protein-derived peptides were upregulated in CAL, compared to controls; most notably
peptides representing histidine-rich glycoprotein (HRG), α1-acid glycoprotein (AGP1), α1-antitrypsin
(α1AT) and fibronectin. Out of these, HRG-, AGP1- and α1AT-specific peptides were also elevated in the
COPD cohort.
Conclusion HRG, AGP1 and α1AT biomarkers distinguish subjects with CAL and COPD from healthy
controls. HRG and AGP1 represent novel findings.

Introduction
COPD affects 300 million people worldwide and is the third major cause of death, responsible for ∼6% of
total deaths [1]. COPD is a group of respiratory diseases (including emphysema and chronic bronchitis)
characterised by chronic airflow limitation (CAL) and breathing difficulties and is typically caused by
smoking and exposure of the airways to fumes and dust particles [2]. COPD develops over time and with
increasing age and thus relates to ageing, and possibly to an accelerated lung ageing process. It has been
described as a disease characterised by organ-specific senescence driven by stressors such as
smoking-induced DNA damage (reviewed by CHILDS et al. [3]) and senescent cells have been shown to
drive the pulmonary changes seen in COPD [4]. Early nonpharmacological intervention, such as smoking
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cessation, can prevent lung function impairment and disease progression [5]. However, once clinical
symptoms have manifested, there is no cure or medication to resolve COPD and since early symptoms are
subtle, COPD is often diagnosed at an advanced stage.

Diagnosis of COPD is considered in patients with dyspnoea, chronic cough, chronic sputum production
and history of exposure to risk factors, such as smoking and exposure to fumes and dust particles.
Diagnosis includes assessment by spirometry where the presence of a post-bronchodilator forced expiratory
volume in 1 s (FEV1)/forced vital capacity (FVC) ratio <0.7 defines CAL, which confirms a COPD
diagnosis in subjects with risk factors and symptoms according to the Global Initiative for Chronic
Obstructive Lung Disease (GOLD) [6]. In addition, there are different severity stages of airflow limitation
in COPD based on FEV1 as defined by GOLD [6]. Spirometry is the most readily available, reproducible
and objective measurement of airflow limitation. However, spirometry has limitations as it reflects to a
lesser extent obstruction in peripheral airways and emphysema. Thus, there is an unmet need for
biomarkers that can identify individuals at pre-clinical stages of the disease.

Several biomarker candidates are being studied and some have been evaluated for clinical use in COPD,
e.g. fibrinogen and C-reactive protein (CRP) [7], but to date no single biomarker has been found to be a
clinically useful tool in diagnosing COPD, mainly because of large overlap between healthy and COPD
groups. Thus, even though patients with more severe COPD as a group have, for example, higher plasma
fibrinogen levels than those with mild-to-moderate disease, variation around group mean values is too high
to be clinically useful for the individual patient [8]. Nonetheless, inflammation in COPD is considered to
drive disease progression [9]. Several studies have observed an increase in the blood of certain
inflammatory mediators in COPD [7], some of which are so-called acute-phase proteins [10]. However,
profiling of cellular and inflammatory changes in the airway wall has yielded conflicting results on when,
during the disease course, and in what part of the airways different inflammatory cells and mediators either
increase or decrease during disease onset and progression [11].

Fibrinogen and CRP are both acute-phase proteins. Acute-phase proteins are produced by different cells
and tissues, most notably by immune cells and the liver, in response to an infection, inflammation or
trauma. There are two main categories of acute-phase proteins: positive acute-phase proteins and negative
acute-phase proteins. Positive acute-phase proteins, such as CRP, serum amyloid A and fibrinogen, are
increased in concentration during acute inflammation. Their levels rise rapidly in response to inflammation
and can serve as biomarkers for assessing the severity and progression of inflammatory conditions.
Negative acute-phase proteins, such as albumin and transferrin, are reduced in concentration during the
acute-phase response. This reduction occurs because the production of these proteins is suppressed while
the body focuses its resources on producing positive acute-phase proteins.

We speculated that the acute-phase response is triggered early during disease initiation and that
components of the response could serve as early indicators of airway obstruction before clinical symptoms
have manifested.

Advancements of proteomic technologies, such as protein arrays, two-dimensional gels and mass
spectrometry (MS) have enabled the identification of biomarker candidates from hundreds to thousands of
proteins in a short time using only small sample amounts. We previously developed a targeted multiplex
proteomics approach to the relative quantification of >100 proteins based on MS analysis of
protein-derived tryptic peptides [12]. Herein, we describe the application of this approach to two
independent cohorts: one CAL and one COPD. The aim of this investigation was to find candidate
biomarkers for the identification of CAL that could be replicated in a physician-diagnosed COPD cohort.

Materials and methods
Study population
The Burden of Lung Disease (BOLD) study has been described previously [13, 14]. Briefly, the study
objective was to estimate COPD prevalence in the general population globally. Participants were randomly
selected from people aged ⩾40 years [15]. BOLD subjects were classified as CAL based on airflow
limitation, defined using a fixed cut-off of 0.7 for FEV1/FVC after bronchodilation with 200 µg
salbutamol. Slightly more than 15% of BOLD subjects were classified as CAL (figure 1).

The study Tools for Identifying Exacerbations (TIE) in COPD has been described previously [16]. All
subjects in TIE have a clinical diagnosis of COPD that was spirometry-verified, by post-bronchodilatory
FEV1/highest of forced or slow vital capacity <0.7 at inclusion in the study. Both studies were approved by
the regional ethics review board of Uppsala (Dnr 2006/146 (BOLD) and Dnr 2013/358 (TIE)).
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For the study described herein, serum samples from BOLD and TIE participants from Uppsala were used.
Only baseline (inclusion) data from the TIE participants was used. All TIE participants were sampled in a
stable disease phase, ⩾4 weeks after an exacerbation. We used healthy subjects from BOLD as matched
controls for TIE subjects, since the TIE cohort comprises COPD subjects only. Thus, 500 healthy BOLD
subjects that did not have CAL were sorted by age, sex and smoking status to identify 150 matched
controls for BOLD CAL and TIE COPD subjects. Study participants were characterised as never-, former
or current smokers. We categorised healthy subjects and CAL/COPD according to age and smoking status
using JMP software (version 15; SAS Institute, Cary, NC, USA) and then selected matched pairs (healthy
versus CAL/COPD subject). When more than one matched control was available for a CAL/COPD subject,
we applied random selection of the available controls. This resulted in 114 perfect matches. To complete
the selection of 150 controls perfectly matched for smoking status, the age difference was allowed to
increase to ±8 years resulting in 36 additional matches. Altogether, the selection procedure resulted in a
group of 150 controls from the BOLD cohort that match with 86 individuals from the TIE and 64
individuals from the BOLD cohort. In total, we selected 77 CAL subjects from BOLD, 142 COPD
subjects from TIE baseline visit and 150 healthy controls from BOLD.

Liquid chromatography-tandem MS analysis
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was done by a selected reaction
monitoring (SRM) approach, as described previously [12]. LC-MS/MS methods are described in detail in
the supplementary material. Briefly, >100 LC-MS-based biomarker assays were optimised individually to
yield a list of 123 peptides representing 100 proteins (the final 123 peptides and the 100 proteins they
represent are listed in supplementary table S1). Each single assay consists of one heavy isotope-labelled
synthetic peptide and its corresponding endogenous tryptic peptide. Single SRM assays were subsequently
combined into a multiple reaction monitoring assay where all heavy peptides were pooled and then added
to all clinical samples prior to LC-MS/MS analysis. Peptides were used as surrogates for determining
protein marker levels in the clinical serum samples. BOLD and TIE serum samples selected for LC-MS/
MS analysis were digested with trypsin, whereafter the specific peptides for each marker were measured by
LC-MS/MS. Peptides were identified by co-eluting light- and heavy-labelled transitions in the
chromatographic separation. Identified peptide sequences and fragmentation ions, transitions, for each
peptide detected, were summed and the ratio between endogenous transitions and internal standard
transitions sum was calculated and used as an arbitrary unit for the subsequent statistical analysis.

Statistical analysis
Receiver operating characteristic (ROC) curve, area under the ROC curve (AUC) and random forest
analyses were done using R software to evaluate the diagnostic performance of the biomarkers and explore
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Sample selection for MS

analysis

Statistical analysis
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600 subjects in total;

100 CAL and 500 healthy
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142 subjects;
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BOLD healthy

(BOLD matched)
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(TIE matched 

“TIE controls”)
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TIE COPD versus TIE controls

(BOLD healthy controls)
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BOLD CAL versus BOLD healthy controls
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FIGURE 1 A total of 369 samples were selected for liquid chromatography-tandem mass spectrometry (LC-MS/
MS) analysis from a chronic airflow limitation (CAL) (Burden of Obstructive Lung Disease (BOLD)) and a COPD
(Tools for Identifying Exacerbations (TIE)) cohort, both from Uppsala, Sweden. Healthy controls were matched
to CAL and COPD subjects, with regards to age, sex and smoking status. TIE lacks healthy controls, why a set
of healthy controls from BOLD were matched against TIE samples. The TIE study comprises samples collected
at an inclusion visit and at follow-up visits. Only inclusion visit samples were included in the LC-MS/MS analysis
described herein.
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the best predictors of CAL/COPD. Comparisons between CAL/COPD and controls were performed using
Wilcoxon’s rank sum test. Further details on statistical methods and analyses are described in the
supplementary material.

Results
Study cohort characteristics
In this study, 369 samples were selected for LC-MS/MS analysis from two cohorts: BOLD and TIE.
BOLD is a population-based cohort and TIE a physician-diagnosed COPD cohort. The population
characteristics for both cohorts are summarised in table 1. In the TIE COPD group, 32% reported ever
having received an asthma diagnosis, while the corresponding figure in the BOLD CAL group was 19%.
The TIE COPD group had a higher prevalence of current smoking, as well as cumulative smoking history
(pack-years) and more often severe airflow obstruction (GOLD 3 and 4) than the BOLD CAL group.

Targeted mass spectrometry analysis of BOLD and TIE cohorts
BOLD and TIE serum samples were prepared as described earlier and analysed using LC-MS/MS. This
enabled a relative comparison of peptide signals with CAL and COPD samples versus healthy controls and
was used as a measure of the level of each peptide, and a surrogate measure of the corresponding protein.
Out of a total of 123 peptides included in the MS analysis, 73 peptides representing 61 proteins were
successfully detected by LC-MS/MS analysis. ROC curve analysis was done to sort peptides and select the
ones showing the greatest AUC. The 10 peptides with the largest AUC are presented in figure 2, where
peptides corresponding to histidine-rich glycoprotein (HRG), α1-acid glycoprotein (AGP1), and
α1-antitrypsin (α1AT) showed the highest performance. We considered an AUC ⩾0.7 as the threshold for
being a promising biomarker candidate.

TABLE 1 Characteristics of the population

BOLD TIE

No CAL CAL# No COPD¶ COPD

Subjects 64 77 86 142
Women 28 (44) 33 (43) 51 (59) 87 (61)
Age years 66±11 65±11 62±7 66±7
BMI kg·m−2 27±4 27±4 27±4 27±5
Current smokers 10 (16) 15 (19) 24 (28) 40 (28)
Former smokers 27 (42) 35 (45) 62 (72) 102 (72)
Never-smokers 27 (42) 27 (35)
Smoking pack-years 3.0 (0–21) 11 (0–30) 13 (5–26) 34 (23–41)
FEV1 % predicted 101±14 83±18 97±15 60±18
Educational level
Elementary 18 (28) 31 (40) 25 (29) 63 (45)
High school 33 (52) 29 (38) 40 (47) 47 (33)
University or college 13 (20) 17 (22) 21 (24) 31 (22)ƒ

mMRC ⩾2 1 (1.6) 7 (11) 5 (6.6) 65(46)
GOLD stage+

1 0 48 (62) 0 25 (18)
2 0 24 (31) 0 73 (51)
3 0 5 (6.5) 0 39 (27)
4 0 0 0 5 (3.5)

Ever diagnosed with asthma 7 (11) 15 (19) 10 (12.0) 46 (32)
ICS use 3 (4.7) 14 (18) 5 (5.8) 89 (63)
Heart disease§ 12 (19) 17 (22) 9 (10) 27 (19)
Hypertension 23 (36) 27 (35) 28 (33) 67 (47)
Diabetes 3 (4.7) 1 (1.3) 4 (4.6) 14 (9.9)ƒ

Data are presented as n, n (%), mean±SD or median (interquartile range). BOLD: Burden of Obstructive Lung
Disease; TIE: Tools for Identifying Exacerbations; CAL: chronic airflow limitation; BMI: body mass index; FEV1:
forced expiratory volume in 1 s; mMRC: modified Medical Research Council dyspnoea scale; GOLD: Global
Initiative for Chronic Obstructive Lung Disease; ICS: inhaled corticosteroid. #: defined by presence of FEV1/forced
vital capacity <0.7; ¶: BOLD controls matched to TIE COPD subjects; +: GOLD stages (only in subjects with CAL):
1: FEV1 ⩾80% predicted, 2: ⩾50% predicted but <80% predicted, 3: ⩾30% predicted but <50% predicted, 4:
<30% predicted; §: defined as suffering from at least one of angina, myocardial infarction, heart failure or atrial
fibrillation; ƒ: information missing for one individual.
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As the measurement levels vary across peptides, the values were subsequently transformed to a 0–1 scale
to facilitate a boxplot covering the 10 peptide measurements with the greatest AUC (figure 3a), as well as
all peptide measurements by group (CAL versus controls) for the BOLD cohort (supplementary figure S1).
Several peptides showed a higher mean LC-MS/MS signal for CAL compared to controls, where HRG and
AGP1 were shown to exhibit the highest ratio: 2.1 and 2.0, respectively (table 2).

LC-MS/MS analysis was also performed with samples from the TIE COPD cohort, using matched BOLD
samples as controls (figure 1). Six out of the seven peptides from the BOLD cohort ROC curve analysis
with an AUC ⩾0.7 were also shown to have an AUC ⩾0.7 in the TIE cohort ROC curve analysis (table 2).
Interestingly, HRG and AGP1 peptides showed the largest AUC for both the BOLD and TIE cohorts
(table 2 and supplementary table S2; supplementary table S2 also shows additional peptides identified
from the TIE cohort analysis). Overall, several peptides showed an increase in mean LC-MS/MS signal for
the COPD group compared to controls (figure 3b and supplementary figure S2), where HRG, AGP1 and
α1AT were 1.6-, 1.5- and 1.3-fold higher, respectively, in COPD compared to controls (table 2).

For some proteins, more than one peptide was included in the LC-MS/MS analysis. AGP1 and α1AT were
both represented by two peptides. Correlation between peptides representing the most important predictors
of CAL (AGP1, HRG and a1AT) are presented in supplementary figure S3.

Smoking and inhaled corticosteroid use
There was no correlation between current smoking and the top three peptides for BOLD CAL or TIE
COPD when analysed separately, and the results were consistent for both cohorts also after we adjusted for
pack-years (data not shown).

Inhaled corticosteroid (ICS) use varied between groups, ranging from 5% for controls to 18% for BOLD
CAL and 63% for TIE COPD. Since ICS use may impact biomarker concentrations, the top 10 biomarkers
were also analysed by an adjusted ROC curve to adjust for impact of ICS use. For the BOLD cohort,
adjusted (a)AUC for the top three peptides were very similar to the un-adjusted AUC, while aAUC for TIE
were slightly higher than AUC (table 2). Thus, the diagnostic performance for CAL and COPD versus
controls remain after adjustment for ICS.
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FIGURE 3 Selected reaction monitoring assay results for the 10 peptides with the highest area under the curve (AUC) from analysis of Burden of
Obstructive Lung Disease (BOLD) chronic airflow limitation (CAL) versus BOLD controls. a) Peptide levels in BOLD CAL and BOLD controls, sorted by
AUC; b) peptide levels in Tools for Identifying Exacerbations (TIE) COPD and TIE controls. Data are presented as median (interquartile range (IQR))
and range (no further than 1.5×IQR from the boxes). Outliers are plotted individually. p-values are from Wilcoxon rank sum (asymptotic) tests of
the hypothesis that there is no location shift in distribution of peptide levels a) between BOLD-CAL and BOLD-control or b) between TIE-COPD and
TIE-control. ***: p<0.001

TABLE 2 Summary of multiple reaction monitoring assay results for Burden of Obstructive Lung Disease (BOLD) chronic airflow limitation (CAL)
and Tools for Identifying Exacerbations (TIE) COPD top 10 peptides sorted based on area under the curve (AUC) from BOLD and TIE receiver
operating characteristic curve analysis, respectively, along with mean CAL/mean control and mean COPD/mean control ratios, respectively, for the
10 peptides

Uniprot ID Short name Peptide sequence BOLD CAL TIE COPD

AUC Ratio aAUC AUC Ratio aAUC

Histidine-rich glycoprotein# P04196 HRG DGYLFQLLR 0.91 2.09 0.91 0.81 1.61 0.84
α1-acid glycoprotein 1# P02763 AGP1 YVGGQEHFAHLLILR 0.90 2.02 0.89 0.79 1.50 0.85
α1-antitrypsin

# P01009 α1AT ITPNLAEFAFSLYR 0.86 1.57 0.85 0.75 1.30 0.78
Fibronectin P02751 FN LGVRPSQGGEAPR 0.75 1.27 0.60 0.51 1.15 0.59
α1-antitrypsin

# P01009 α1AT LSITGTYDLK 0.73 1.16 0.73 0.75 1.18 0.76
Clusterin# P10909 CLU ASSIIDELFQDR 0.71 1.08 0.68 0.71 1.10 0.79
Mannosyl-oligosaccharide 1.2-α-mannosidase IA# P33908 Mannosidase 1 GLPPVDFVPPIGVESR 0.71 1.10 0.65 0.77 1.16 0.84
Angiotensinogen P01019 Serpin A8 SLDFTELDVAAEK 0.69 1.11 0.68 0.57 1.05 0.45
Haemopexin P02790 HPX LWWLDLK 0.68 1.08 0.67 0.75 1.13 0.81
Fibrinogen α-chain P02671 FGA GSESGIFTNTK 0.68 1.13 0.57 0.77 1.36 0.76

aAUC: AUC adjusted for inhaled corticosteroid use. #: AUC ⩾0.7 in both populations.
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Multivariate analysis of MS data
In addition to the univariate AUC method, a multivariate analysis by random forest was done to search for
the peptides that were most useful to predict outcome (table 3; CAL versus control). The operating
characteristics presented in table 4 are from a typical random forest analysis including all 73 peptides that
were successfully detected using LC-MS/MS. Correct classification (i.e. accuracy) occurred in 84% of
cases with a tendency to be better at correctly classifying subjects with CAL (88% sensitivity) than
controls (78% specificity). The result of the random forest indicated that three of the peptides clearly stood
out as the most important ones for predicting outcome in BOLD (based on mean decrease in Gini;
supplementary figure S4A), in order of importance: AGP1 peptide YVGGQEHFAHLLILR, HRG peptide
DGYLFQLLR and α1AT peptide ITPNLAEFAFSLYR. For TIE, the three most important peptides were
AGP1 peptide YVGGQEHFAHLLILR, HRG peptide DGYLFQLLR, and α1AT peptide LSITGTYDLK
(supplementary figure S4B).

To investigate if the set of peptides used for model prediction can be reduced from 73 while maintaining a
high accuracy, three separate random forest models were performed on BOLD data, based on the top one,
three and 10 peptides as ranked by AUC. Table 5 shows the accuracy of the three random forest models to
correctly predict each subject as belonging to BOLD CAL or BOLD controls. The results indicate
that maximum accuracy, 85%, is already achieved when only including the top three peptides ranked by
AUC: HRG peptide DGYLFQLLR, AGP1 peptide YVGGQEHFAHLLILR and α1AT peptide
ITPNLAEFAFSLYR.

TABLE 3 Analytical performance based on a multivariate random forest analysis: classification of chronic
airflow limitation (CAL) versus controls based on random forest

Reference

BOLD CAL BOLD control

Predicted
BOLD CAL 67 14
BOLD control 9 50

BOLD: Burden of Obstructive Lung Disease.

TABLE 4 Analytical performance based on a multivariate random forest analysis: test performance based on
random forest including all 73 peptides detected in the liquid chromatography-tandem mass spectrometry
analysis of Burden of Obstructive Lung Disease (BOLD) chronic airflow limitation versus BOLD matched controls

Test performance with 73 peptides

Accuracy 84%
Sensitivity 88%
Specificity 78%
Positive predictive value 83%
Negative predictive value 85%

One sample was removed due to missing data.

TABLE 5 Analytical performance based on a multivariate random forest analysis: accuracy of random forest
models based on a combination of different sets of peptides (selection of top one, three and 10 peptides
according to Burden of Obstructive Lung Disease area under the curve)

Top 1 (HRG) Top 3 (HRG, AGP1, α1AT) Top 10#

Accuracy 72% 85% 85%

To improve the stability of the accuracy calculation each model was run through a three-fold cross-validation 10
times and the average accuracy was used HRG: histidine-rich glycoprotein; AGP1: α1-acid glycoprotein; α1AT:
α1-antitrypsin.

#: table 2.
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BOLD versus TIE
To explore any differences between BOLD and TIE, a random forest was applied to TIE data (together
with their matched controls from BOLD). The results show that the most important peptides were not as
clearly separated as for BOLD (supplementary figure S4A and B), although the operating characteristics
for a typical random forest analysis of TIE showed 84% accuracy, 90% sensitivity and 74% specificity,
which was similar to BOLD.

The outcome for the TIE data was also predicted using the BOLD model. This only achieved an accuracy
of 67% (53% sensitivity and 89% specificity). Notably, TIE subjects had lower peptide levels on average
than CAL subjects in BOLD.

The 10 peptides with highest AUC were somewhat different based on TIE data compared to BOLD
(compare table 2 and supplementary table S2). However, running two separate random forest models on
TIE data, one for each set of 10 peptides, showed the accuracy was ∼83% for both models, indicating that
the most important peptides are shared between the two datasets.

Discussion
We have used LC-MS/MS to identify potential biomarkers for CAL confirmation and COPD diagnosis,
from a panel of 100 biomarker candidates. The biomarkers were identified in a population-based study and
subsequently replicated with an independent COPD cohort. The most promising results were seen with
AGP1, HRG and α1AT peptides to discriminate both CAL and COPD from control subjects. Within the
BOLD cohort, the biomarkers identified herein could discriminate subjects with an FEV1/FVC <0.7 from
subjects with a ratio ⩾0.7, i.e. those that did not have an airflow limitation. Since BOLD is a population
study where subjects were classified as CAL based on a post-bronchodilatory FEV1/FVC <0.7 [13], only a
few individuals had a physician-diagnosed COPD [17]. Therefore, BOLD subjects with CAL probably
represent a group with COPD that did not have manifest clinical symptoms, while all TIE subjects have
physician-diagnosed COPD. The findings were stronger in CAL in BOLD subjects than in patients with
established COPD from TIE, when applying a cut-off derived from BOLD. The reason is that COPD
subjects in TIE had lower peptide levels on average than CAL subjects in BOLD and therefore fewer
subjects will be predicted as COPD in TIE, when using a cut-off from BOLD. Altogether, HRG, AGP1
and α1AT may potentially be best used for the assessment of subjects with clinical suspicion of COPD
and perhaps also for population screening to look for individuals at risk of developing COPD.

AGP1 is a major acute-phase protein in humans. Its serum concentration is known to increase in response
to systemic tissue injury, inflammation or infection [18, 19], but the physiological function of AGP1 in the
human body remains unknown. Expression of the AGP1 (or ORM-1) gene is known to be upregulated by
glucocorticoids and cytokines interleukin (IL)-1β [20], tumour necrosis factor-α and IL-6 [21]. ORM1
gene expression and plasma levels of AGP1 protein were shown to be increased in acute exacerbations of
COPD [22]. Branching of AGP glycans was shown to increase in COPD, which would indicate an
inflammatory reaction that differs from a normal acute-phase response, in which there is a decrease in
branching of AGP [20].

α1AT is an inhibitor of neutrophil proteases and other pro-inflammatory responses [23] and thus an
important regulator of the immune response. α1AT is also a major acute-phase protein and a well-known
marker of α1AT deficiency, a genetic condition characterising one distinct COPD endotype [24]. Lower
plasma α1AT levels due to genetic deficiency have been shown to be associated with increased risk of
COPD exacerbations [25]. However, this genetic condition is rare and unlikely to influence our results.
Some studies have shown a higher α1AT plasma protein mean level in COPD patients [26], while other
studies failed to see an association between exacerbations or GOLD stage and α1AT serum protein levels
[27, 28]. The reason for the discrepancy is possibly due to the small observed actual differences in α1AT
level between healthy versus COPD groups, where any variation in inflammation at the time of sampling
would influence the result. The small actual differences between healthy versus COPD groups make it
seem logical that α1AT could instead form part of a composite score with inclusion of other relevant
biomarkers, rather than a standalone test [27], a concept we believe the study herein has corroborated.

HRG is an abundant blood protein with a multidomain structure. HRG interacts with many ligands and
may regulate cell adhesion and migration, fibrinolysis and coagulation, complement activation, immune
complex clearance and phagocytosis of apoptotic cells [29]. There are a few reports on HRG in the context
of COPD. According to TITZ et al. [30], HRG levels decrease in early-stage COPD (GOLD stage 1–2 and
current smokers) in sputum, in contrast to our findings that show an elevation in HRG levels in CAL.
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Additional acute-phase and other proteins identified in this study as upregulated in CAL and COPD were
fibronectin, clusterin, mannosyl-oligosaccharide 1,2-α-mannosidase IA, angiotensinogen, haemopexin and
fibrinogen. Several acute-phase proteins have previously been proposed as diagnostic biomarkers, such as
CRP, α-2-macroglobin, haptoglobin, fibrinogen and IL-6 [31, 32]. However, only a few have made it into
clinical diagnostic use where CRP is considered as the most important acute-phase protein [33, 34]. The
specificity of CRP for COPD assessment is limited, and additional biomarkers are needed to enable
objective identification of COPD and monitoring of disease progression [35, 36]. Assuming inflammation
is part of disease onset in COPD, some acute-phase proteins may serve as early indicators of the disease. A
potential barrier for using these acute reactant proteins for diagnosing COPD is the disease specificity since
inflammation is activated in a plethora of diseases. This could limit the use of acute phase proteins as
diagnostic markers of a specific disease. However, the combination of several acute-phase proteins might
be a way to deal with this as using three acute-phase proteins increased specificity and sensitivity
compared to using one or two markers.

The purpose of this study was to identify biomarkers of CAL and COPD. Such biomarkers would be
valuable since there is no curative medication for COPD, early symptoms are subtle, and diagnosis
currently only occurs after lung impairment has manifested. This may enable diagnosis at a point when
nonpharmacological interventions like smoking cessation and avoiding hazardous environments could
prevent disease progression.

A strength of the study is that we have tested our entire biomarker panel on a population cohort, as well a
physician-diagnosed COPD cohort. This enabled us show that the most useful biomarkers for CAL were
also the best predictors of COPD. The fact that we could demonstrate that the biomarkers worked slightly
better in the population-based cohort suggests that these biomarkers should be useful if they are used in a
screening setting, compared to if our findings would have been based only on a COPD cohort. A
limitation of the SRM approach described was that, for some proteins in our initial panel of biomarkers, it
was not possible to identify unique, non-homologous peptides that would give a satisfactory signal in the
LC-MS/MS analysis. Thus, some proteins could not be included in the study. Another limitation is that
some of the subjects in BOLD may have CAL because of other causes than COPD, such as asthma [17],
and that we used a lower bronchodilator dose than generally recommended by the American Thoracic
Society (ATS)/European Respiratory Society (ERS) 2005 guidelines [37]. Other potential limitations are
that the assessments were done at only one time point and that we only assessed biomarkers in the blood
and did not include biomarkers from sputum. Repeated measurements would have given us more
information on the association between biomarkers and disease progression and/or lung function
trajectories, and it is possible that airway biomarkers would be better related to CAL and/or COPD than
circulating molecules.

In summary, we have identified AGP1, HRG and α1AT as three promising biomarker candidates capable
of distinguishing CAL, identified from a general population, and replicated our findings with a
physician-diagnosed COPD patient cohort. All three biomarkers by themselves exhibit very good clinical
performance with high sensitivity and specificity, but interestingly seem to complement each other since an
even better test performance was observed when combining the three biomarkers. The combined
performance suggests these biomarkers may be useful for identifying individuals with CAL and COPD.
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