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T
he most popular hypothesis circulating within
and beyond the scientific community is that viral
infections enhance or elicit autoimmune disor-
ders such as type 1 diabetes. Indeed, viruses can

injure �-cells and have been isolated in pancreatic tissues
from diabetic patients. However, accumulating evidence
suggests that the opposite scenario, which is prevention or
amelioration of type 1 diabetes, might be at least as
common an outcome of viral infection. Here, we discuss
epidemiological and experimental evidence for the main
mechanisms accounting for the role of viruses in type 1
diabetes to better understand the complex relationship
between viral infections and autoimmune diabetes.

INSIGHT FROM EPIDEMIOLOGY AND CLINICAL

INVESTIGATIONS

The influence of the environment. Type 1 diabetes is a
genetic autoimmune disorder caused by autoreactive
CD4� and CD8� T-cells that recognize pancreatic antigens
such as insulin or GAD and subsequently destroy insulin-
producing �-cells. The subject of very active research is
the question of how endogenous �-cell antigens become
immunogenic. Infiltration of the islets of Langerhans,
where �-cells reside, by activated autoreactive T-cells is
considered to be the major driving force in type 1 diabetes
progression. The islet infiltrate in humans consists primar-
ily of CD8� T-cells and B-cells, followed by macrophages
and dendritic cells of different subtypes (1). Interestingly,
significantly fewer T-cells are found in human islets com-
pared with islets from nonobese diabetic (NOD) mice. The
reduced numbers of T-cells, and in this way a limited
autoreactive component in human islets, leads one to
consider whether other contributing factors may be in-
volved in disease development. Otherwise, sufficient insu-
litic infiltrate to destroy islet �-cells might not be easily
maintained in humans. Further supporting a role for
nongenetic factors in the control of type 1 diabetes is the
observation that disease concordance among monozygotic
twins is below 50% (2). Migrant studies also suggest the
involvement of an environmental factor in type 1 diabetes,
since disease incidence in migrating populations appears
to conform to the incidence of the region to which there is
migration (3). There is an ever-increasing body of litera-
ture suggesting that the significant environmental compo-

nent to type 1 diabetes development and progression is a
viral infection. However, this has not been clearly demon-
strated. In fact, viral infections appear to have both
detrimental and protective effects on type 1 diabetes
development, which might be contingent upon the nature
of the virus, but also the immune status of the host and
thus the timing of infection.
Certain viruses might promote autoimmunity. A sig-
nificant number of viruses have been associated with type
1 diabetes, including enteroviruses such as Coxsackievirus
B (CVB) (4), but also rotavirus (5,6), mumps virus (7), and
cytomegalovirus (8). Rubella virus has been suggested to
cause type 1 diabetes, but so far only congenital rubella
syndrome has conclusively been associated with the dis-
ease (9–11). The prime viral candidates for causing type 1
diabetes in humans are enteroviruses. Enterovirus infec-
tions are more frequent in siblings developing type 1
diabetes compared with nondiabetic siblings, and entero-
virus antibodies are elevated in pregnant mothers whose
children later develop type 1 diabetes (12). Interestingly,
studies in the Finnish population demonstrated that ap-
pearance of autoantibodies in genetically susceptible chil-
dren paralleled the seasonal pattern of enterovirus infections
(13). More specifically, a temporal association has been
observed between the appearance of the first autoantibodies
and signs of enterovirus infection both among siblings of
affected children and among children with increased HLA-
conferred diabetes susceptibility (14).

CVB4 is the most common enteroviral strain found in
pre-diabetic and diabetic individuals. CVB RNA has been
detected in blood from patients at the onset or during the
course of type 1 diabetes (15,16). Furthermore, cellular
immune responses to CVB antigens were found to be
enhanced in type 1 diabetic patients after the onset of the
disease (17). One CVB4 strain was isolated from the
pancreas of a deceased diabetic child, passaged through
murine �-cells, and found to induce diabetes after inocu-
lation in mice (18). Recently, Dotta et al. (19) also detected
CVB4 in pancreatic tissue specimens from three of six type
1 diabetic patients. Elshebani et al. (20) recently found
that enterovirus isolates obtained from newly diagnosed
type 1 diabetic patients could infect and induce destruc-
tion of human islet cells in vitro. Recently, Oikarinen et al.
(21) have isolated enteroviruses from intestinal biopsy
samples in 75% of type 1 diabetes cases versus 10% of
control patients, possibly reflecting persistent enterovirus
infection of gut mucosa in type 1 diabetic patients. In sum,
isolation of enteroviral antigens from diabetic individuals,
particularly after recent onset, is becoming a fairly repro-
ducible finding, supporting a role for these viruses in
disease development. However, it is still unclear whether
this phenomenon is indeed a common etiology for the
majority of patients diagnosed with type 1 diabetes, or
whether it can be found only in a particular subpopulation
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of individuals with perhaps higher genetic susceptibility to
infection.

The molecular means by which enteroviruses could
enhance type 1 diabetes is a topic of significant inquiry.
Virus infections activate strong immune responses. CVB4
infection of islet cells was indeed reported to induce
strong inflammation mediated by natural killer (NK) cells
within the islets (19). If the virus can, in addition, promote
direct cytolysis of �-cells, autoantigens are introduced in a
context of heightened immune response and inflamma-
tion. This might be the case after direct infection of �-cells
by the virus. Enteroviruses might target �-cells via surface
molecules such as the poliovirus receptor and integrin
�v�3. Both of these molecules are expressed on human
�-cells and can act as enterovirus receptors in established
cell lines (22). Infections by viruses that target �-cells and
promote strong inflammation within the islets may thus
represent the initial step in the induction of autoimmunity.
However, studies on human pancreata or cultured islets
have shown that there are considerable variations in the
adverse effects of enteroviruses on �-cells, not only be-
tween various viral serotypes, but also between strains of
the same serotype (23–25). While the mechanism by which
viruses might induce autoimmunity is not understood,
viral infections might be capable of “unmasking” �-cells
for recognition by CD8� T-cells by promoting interferon
production and upregulation of major histocompatibility
complex (MHC) class I molecules on �-cells. These events
combined may be sufficient to condition the pancreatic
islets for autoimmune attack. In this respect, Foulis et al.
(26) described MHC class I upregulation and interferon
induction in noninfiltrated islets obtained from presum-
ably pre-diabetic individuals. Although this may possibly
be a postmortem artifact, such findings should prompt
larger-scale investigations, for example, on freshly ob-
tained tissues via nPOD (Network for Pancreatic Organ
Donors with Diabetes; www.jdrfnpod.org). Access to fresh
pre-diabetic pancreata is needed to conduct valid viral
studies.
Viruses may be wrongly accused. The possibility that
enteroviruses promote autoimmunity suggests that vacci-
nation, which will impair viral infection of the islets, may
provide protection against type 1 diabetes. Accordingly, an
earlier report suggested that lower type 1 diabetes inci-
dence in Estonia compared with Finland may be associ-
ated with polio vaccination schedule, resulting in stronger
immunity to diabetogenic enterovirus infections (27). Sim-
ilarly, while a significant increase in the number of type 1
diabetes cases was observed in Finland 2–4 years after a
mumps epidemic (7), the incidence of type 1 diabetes
reached a plateau 6 years after introduction of the mumps-
measles-rubella vaccine (28). However, there is significant
epidemiological data contradicting the involvement of
viruses as causative agents in type 1 diabetes. There exists
a geographical north-south gradient indicative of an in-
verse correlation between “hygiene” and incidence of
autoimmune disease (as well as allergy). Countries such as
Finland versus Venezuela/China, or wider regions such as
Northern versus Southern Europe (with the exception of
Sardinia), represent areas where socioeconomics corre-
late closely with type 1 diabetes prevalence. Reduced type
1 diabetes incidence is observed in countries of lower
socioeconomic status, which is associated with a higher
rate of infection. This phenomenon may also be related to
the use of particular vaccine strategies in countries exhib-
iting different sanitary standards. It is also interesting to

note that many type 1 diabetic patients are first born of
large families, possibly indicative of lower exposure to
infections. In addition, while congenital infections have
been proposed to account for type 1 diabetes development
in the offspring, the use of antimicrobials by mothers
before pregnancy and subsequently by the child was
suggested to be associated with higher risk for type 1
diabetes (29). Increased diabetes incidence in the Western
world may thus be reflective of the “ultra-clean living”
phenomenon. In the “hygiene hypothesis,” reduced rates
of infection contribute to increased type 1 diabetes inci-
dence, not supporting a disease-inductive role for viruses.
Alternatively, it has been argued that reduced frequencies
of infection may result in increased susceptibility to the
effect of diabetogenic viruses (30,31). Regardless, although
there is significant evidence for viral penetration of pan-
creatic tissue from type 1 diabetic patients, exposure to
viruses does not appear to be necessarily causative of type
1 diabetes and may in fact be beneficial in some cases. This
could be an indication that the immune system can be
educated to better deal with inflammatory disorders by
being frequently exposed to inflammatory events over life.

INSIGHT FROM EXPERIMENTAL WORK

While epidemiological studies have shed important insight
into the association between viral infections and autoim-
mune diabetes in humans, a significant body of evidence is
derived from investigations using animal models for type 1
diabetes. Notably, NOD mice are susceptible to spontane-
ous type 1 diabetes that develops slowly over several
weeks and mimics most aspects of human type 1 diabetes
(32). In NOD mice, nondestructive insulitis develops in the
pancreas during the pre-diabetic phase and, although this
period is variable, most mice go on to develop T-cell–
mediated destruction of �-cells leading to overt diabetes.
NOD mice thus constitute a critical tool to address how
exposure to viral infection during the pre-diabetic phase
will affect subsequent disease development. In humans,
the prime candidates for infectious causes of type 1
diabetes are enteroviruses such as CVB. In mice, and most
notably in NOD mice, CVB also appears associated with
the development of autoimmunity. Early studies have
shown that infection of normal mice with CVB4 causes a
diabetic state associated with low insulin levels consistent
with islet cell destruction (33). CVB4 has since been
shown to be tightly associated with the initiation of type 1
diabetes in the NOD mouse. However, the influence of the
virus appears to be contingent upon the precise point in
time at which infection occurs (34). The B3 strain of CVB3,
in contrast, mediates significant protection against type 1
diabetes development in NOD mice regardless of the time
of infection (35). However, as discussed below, CVB3 and
CVB4 differ regarding tropism for pancreatic tissue, which
may account for the differential effect of these two stains
in autoimmune diabetes. Importantly in that respect, there
might be fundamental difference between rodents and
humans regarding tropism of enteroviruses for pancreatic
�-cells. One should thus be cautious when extrapolating
rodent data to human type 1 diabetes in the context of
enterovirus infections. Interestingly, other viruses that are
also thought to be associated with the pathogenesis of
type 1 diabetes in animals have been shown to mediate
protective effects in some instances. For example, the D
variant of encephalomyocarditis virus (EMC-DV) was
found to induce �-cell destruction and subsequent type 1
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diabetes in the mouse, but this was found to occur in a
T-cell–independent fashion. EMC-DV was also reported to
diminish autoimmunity in diabetes-prone NOD mice (36–
38). In the BioBreeding diabetes-resistant (BB-DR) rat,
however, it was shown that infection with Kilham’s rat
virus induces autoimmune diabetes (39). But while the use
of animals has clearly established that particular viruses
are capable of inducing autoimmune diabetes, it has also
evidenced that these viruses can play a preventive role in
the development of the disease. Two different, yet non–
mutually exclusive, mechanisms have been proposed to
account for the causative role of viruses in type 1 diabetes.
Detailed insight into these mechanisms could provide
better understanding of the dual roles played by viral
infections in autoimmune diabetes.
Molecular mimicry might enhance but not initiate
autoimmunity. One of the two mechanisms by which
viruses may be capable of initiating type 1 diabetes is
termed molecular mimicry. If the T-cell receptors ex-
pressed by particular autoreactive T-cells enable these
cells to recognize viral antigens (or vice versa), both
autoreactive and antiviral T-cells have the potential to
become activated as a consequence of presentation of
viral antigens by antigen-presenting cells (APCs). Activa-
tion of autoreactive T-cells upon CVB4 infection was
proposed to occur by molecular mimicry, since the P2-C
protein sequence of the virus partially resembles that of
human GAD, a protein expressed in the islets as well as
other nervous tissues (40). T-cells from patients at risk for
type 1 diabetes were found to recognize a GAD determi-
nant that shares significant sequence similarity with the
P2-C protein of CVB4, and patients whose T-cells re-
sponded to this particular GAD determinant were found to
also respond to a Coxsackie viral peptide (41). However,
antibodies present in GAD-positive sera from patients with
type 1 diabetes were not found to cross-react with P2-C
(42). Cross-reactivity between GAD and P2-C was further
assessed using the NOD mouse model for type 1 diabetes,
where it was determined that the common region of these
two proteins is immunodominant and presented to cross-
reactive T-cells only in the context of a NOD diabetes
susceptibility MHC allele (43). Cross-reactivity between
P2-C and GAD was thus proposed to account for the
capacity of CVB4 to induce type 1 diabetes in genetically
predisposed humans. However, Horwitz et al. (44) found
that congenic B10.H2g7 mice, which carry the NOD MHC
allele but lack other type 1 diabetes susceptibility factors,
do not develop diabetes upon CVB4 infection. Moreover,
infection of BDC2.5 transgenic mice, which express a
T-cell receptor specific for an islet antigen that does not
cross-react with the CVB4 P2-C protein was able to induce
type 1 diabetes in the majority of these otherwise non–
diabetes-prone mice. Therefore, cross-reactivity between
P2-C and GAD may not by itself account for initiation of
type 1 diabetes but might act as an essential enhancer of
disease once autoimmune attack of �-cells has been
initiated.

The rat insulin promoter (RIP)–lymphocytic choriomen-
ingitis virus (LCMV) system is a mouse model in which
diabetes is initiated by viral infection (45–47). In this
model, RIP-LCMV mice transgenically express the glyco-
protein or nucleoprotein of LCMV as a target antigen in
their islets under the control of the RIP. Infection of these
mice with LCMV breaks peripheral responsiveness to
glycoprotein/nucleoprotein, leading to attack of �-cells by
T-cells and eventual development of type 1 diabetes.

Importantly, this model suggests that viral infection is able
to induce autoimmunity only if homology between viral
and �-cell antigens is 100%, since a single amino acid
change flanking a cytotoxic T-lymphocyte (CTL) epitope
was found to interfere with the development of type 1
diabetes (48). These data further support the hypothesis
that molecular mimicry alone might not be capable of
inducing type 1 diabetes but rather be an essential precip-
itator once autoimmunity has been initiated. Indeed, we
previously reported that an LCMV mimic ligand can accel-
erate preexisting autoimmunity by inducing autoreactive
T-cells to proliferate and localize in the islets, yet does not
generate sufficient autoreactive T-cells to initiate disease
in naive mice (49). We propose that viral infections alone
will not initiate autoimmunity but rather act to provide a
“fertile field” for further expansion of activated autoreac-
tive T-cells, leading to autoimmune disease (50).
Bystander mechanisms induce APC activation and
initiate autoimmunity. While molecular mimicry may
enhance autoimmune responses, the central role in induc-
tion of autoimmunity by viruses might be played by the
proinflammatory/inflammatory mediators produced upon
infection. Hence, bystander activation of autoreactive T-
cells could occur during a viral infection with heterolo-
gous antigenic specificity and result in autoimmune
disease. This might be the consequence of inflammation
inducing tissue damage and release of sequestered islet
antigens, leading to enhanced autoantigen presentation by
APCs. Accordingly, CVB4-induced type 1 diabetes was
found to be associated with initial phagocytosis of CVB4-
infected �-cells by macrophages, leading to increased
presentation of islet antigens, which promoted type 1
diabetes (51). Limited injury to �-cells using the islet-
damaging agent streptozotocin was found to induce type 1
diabetes in BDC2.5 mice similar to CVB4 infection, as a
consequence of release of �-cell antigens followed by their
presentation by macrophages (52). Of note, injection of
insulin along with poly-IC (polyinosinic-polycytidylic
acid), which mimics double-stranded viral RNA, was found
to induce anti-islet autoimmunity (53). Thus, virally in-
duced release of �-cell antigen under inflammatory condi-
tions might promote type 1 diabetes through activation of
APCs such as macrophages, which have been shown to
play a crucial role in the development of spontaneous
diabetes (54,55). In particular, APCs themselves can re-
lease inflammatory and proinflammatory mediators as a
result of viral infection. Likewise in the RIP-LCMV model,
in the absence of infection, the glycoprotein/nucleoprotein
protein is not expressed by costimulation-competent
APCs, and the autoimmune process is only initiated when
sufficient numbers of activated autoreactive T-cells are
generated, after activation of APCs in the pancreas (56,57).
Interestingly, activated T-cells from BDC2.5 mice are
unable to induce diabetes in the mouse in the absence of
CVB4 infection, which supports the possibility that by-
stander activation of APCs through virally mediated in-
flammation is necessary for efficient activation of
autoreactive T-cells (44). Accordingly, we reported that
type 1 diabetes develops in the absence of infection in the
RIP-LCMV system when APCs are rendered costimulation-
competent through transgenic expression of the B7–1
(CD80) costimulatory molecule (58). Importantly, in the
RIP-LCMV system, APCs presenting self-antigens not only
mediate priming of autoreactive T-cells, but also help
maintain a peripheral immune response in the pancreatic
islets (59). Thus, antigen presentation appears to play a
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crucial role not only in inducing but also sustaining the
diabetogenic response.
Viral infection and local �-cell injury. Initial damage to
�-cells and uptake of autoantigen by APCs appear crucial
in the initiation of autoimmunity upon viral infection. If a
particular virus is highly lytic for �-cells, insulin deficiency
and type 1 diabetes will result when more than 90% of
�-cells are destroyed (60,61). This scenario can notably be
observed after high-dose infection with EMC-DV, in which
case type 1 diabetes is nonautoimmune in nature (62,63).
However, limited injury to �-cells, caused by the virus or
antiviral mechanisms, can lead to initial release of seques-
tered self-antigens and ultimately their presentation by
APCs, which in turn promote further �-cell damage by
activating autoreactive T-cells. Inflammatory cytokines
produced during viral infection may play a crucial role in
initial destruction of �-cells. Using the RIP-LCMV model,
we found that upon viral infection, systemic production of
interferon (IFN)-� can directly cause �-cell destruction in
the islets (64). Furthermore, inflammatory cytokines such
as type I and II interferons may indirectly contribute to
�-cell death by inducing upregulation of MHC class I by
these cells, thereby “unmasking” them for recognition by
autoreactive T-cells. It was reported that immunization
with an LCMV-derived peptide does not induce type 1
diabetes in RIP-LCMV mice in the absence of IFN-�
production and MHC class I upregulation in the islets (65).
Furthermore, our work has shown that upregulation of
MHC class II and activation of APCs within the pancreatic
islets is required for �-cell destruction by activated auto-
reactive T-cells (56). Thus, cytokines produced upon in-
fection by viruses exhibiting pancreatic tropism might be
capable of preconditioning the islets for initial autoim-
mune attack of �-cells, similar to the possible scenario in
humans.

Studies in the mouse further indicate that activation of
Toll-like receptor (TLR) signaling might play a crucial part
in the process. TLR ligation was shown to induce type 1
diabetes by increasing IFN-� and MHC class I expression
in the islets of RIP-LCMV mice immunized with an LCMV-
derived peptide (65). Similarly, in the BB-DR rat, initiation
of autoimmune diabetes by Kilham’s rat virus was found to
be enhanced through activation of TLR signaling and
induction of inflammatory cytokine production by APCs
(66,67). More recently, Kim et al. (68) reported that
activation of the TLR2 signaling pathway by secondary
apoptotic �-cells might participate in the initiation of type
1 diabetes by inducing tumor necrosis factor-� (TNF-�)
production by macrophages. However, TLR2 signaling was
also recently suggested to enhance immune regulation
(69), and it was previously reported that limited apoptosis
of �-cells decreases diabetes incidence in NOD mice (70).
In addition, as discussed below, TNF-� may have a pro-
tective function in type 1 diabetes depending on the time
of action. Yet, regardless of the underlying mechanism, the
observation by Kim et al. suggests that the mode by which
initial injury to �-cells occurs is a crucial determinant in
the induction of autoimmunity. Therefore, direct viral
tropism for �-cells could play a major role in the capacity
of viruses to mediate type 1 diabetes. Of note, CVB4 has a
direct tropism for �-cells and exhibits a differential effect
in type 1 diabetes depending on the time of infection,
whereas CVB3 infects the acinar cells of the exocrine
pancreas and prevents disease regardless of the time of
infection (34,35). Although CVB4 infection of �-cells may
not directly cause their demise (51), CVB3 and CVB4 do

not mediate similar injury to these cells, which may
account for their differential role in type 1 diabetes (68).
Modulation of autoimmune diabetes by viruses may thus
depend in part on their capacity to influence the mode and
extent of �-cell death, which both appear as crucial factors
influencing the course of the disease (71).
The importance of timing. Another major component
determining virally mediated modulation of autoimmunity
appears to be the time at which infection occurs during the
pre-diabetic phase. Whereas type 1 diabetes is enhanced in
8-week-old NOD mice infected with CVB4, infection of
younger mice has no effect on disease outcome (34). This
suggests that the status of autoimmune progression is a
crucial determinant in the diabetogenic potency of the
virus. Importantly, just like viral infections, inflammatory
cytokines appear to play a dual role in autoimmune
diabetes. Previous work has shown that expression or
neutralization of cytokines commonly produced during
viral infections has opposing effects on type 1 diabetes
outcome depending on the time of expression. For in-
stance, we found that early neutralization of TNF-� abro-
gates type 1 diabetes in RIP-LCMV mice, while at later time
points, this cytokine appears to play a beneficial role by
diminishing the number and activity of autoreactive T-cells
(72,73). Thus, the capacity of particular viral infections to
modulate autoimmunity at a certain point in time might be
the direct consequence of their ability to promote inflam-
mation during the pre-diabetic process beyond a particular
autoimmune threshold. Accordingly, it was reported that
enhancement of diabetes by CVB4 infection occurs only
after a critical mass of activated autoreactive T-cells has
accumulated in the islets (74). However, CVB3 was re-
ported to prevent disease in both young and older mice
(35). This suggests that while timing is important, the state
of advancement of autoimmunity at the time of infection is
not the sole explanation for the dual role of viruses in type
1 diabetes.
Impairment of autoimmunity may occur through by-
stander effects. APC activation and associated inflamma-
tion, whether or not induced by viral infection, may not
always have detrimental consequences in autoimmune
diabetes. As discussed above, epidemiological studies
provide evidence that infectious events occurring during
early childhood might have the ability to prevent or delay
type 1 diabetes development (75). The ability of viral
infections to abrogate autoimmune diabetes was also
reported in different animal models using not only CVB3
(35), but also LCMV (46,76,77), EMC-DV (38), mouse
hepatitis virus (78), and lactate dehydrogenase virus (79).
Interestingly, both acute and persistent viral infections
appear capable of modulating the immune system in a
diabetes-preventive fashion. While the mechanisms ac-
counting for the beneficial effect of viruses on the immune
system are poorly understood and may vary from one
individual to the next (or one mouse model to the next), a
feature common to viral infections is their paradoxical
capacity to induce inflammation. This is also the case for
a number of nonviral infections, vaccines, or treatments
reported to protect NOD mice against diabetes (80–89). In
fact, in some cases, type 1 diabetes can be inhibited by
direct treatment of pre-diabetic mice with proinflamma-
tory or inflammatory cytokines such as type I interferons,
IFN-�, or interleukin-2 (81,90–93), or by inducing the
production of similar factors via stimulation of innate
immunity (81,82,85,94). In the RIP-LCMV system, although
viral infection represents the event initiating autoimmu-
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nity and diabetes, we have shown that inflammation
mediated upon viral challenge can prevent type 1 diabetes.
Our results indicate that secondary infection of RIP-
nucleoprotein mice with a different strain of LCMV during
the pre-diabetic phase completely abrogates diabetes de-
velopment (95). This phenomenon is dependent on IFN-�
and TNF-� production and results from the recruitment of
activated T-cells away from the islet infiltrate toward the
pancreatic draining lymph node, as a consequence of
selective expression of the chemokine IP-10 (CXCL10). In
these studies, the LCMV strain used to prevent diabetes
shares a homologous nucleoprotein sequence with that
used to initiate diabetes, and thus the two infections
activate comparable T-cell responses. Therefore, inflam-
matory cytokines and chemokines produced during viral
infection might play a crucial part in controlling the
location of virally activated autoreactive T-cells and their
subsequent capacity to infiltrate pancreatic islets.
Antiviral T-cell memory and autoimmune diabetes.
Previous reports suggest that part of the T-cells activated
during viral infection can cross-react with new infectious
agents or allo-antigens and modulate immunity to unre-
lated antigens (96–98). Consequently, such heterologous
immunity might result in the accumulation of memory
T-cells of specificity unrelated to the original viral agent
(99). It is thus possible that the memory T-cell pool
generated during life comprises autoreactive/cross-reac-
tive T-cells induced nonspecifically as a consequence of
cumulative or chronic viral infections. Since stimulated
memory T-cells respond to antigen more rapidly and
efficiently than naive cells, repeated or sustained antiviral
immunity during life may eventually favor autoimmunity.
While in most cases, this phenomenon will not result in
autoimmune disease, it might be a prerequisite for overt
diabetes in genetically predisposed individuals. As dis-
cussed above, in different mouse models, initiation of
diabetes by viral infection requires a critical mass of
autoreactive T-cells along with activated APCs (34,56–
58,100), and it is possible that, in humans, such a mass is
provided progressively over life by repeated or sustained
viral infections. In other words, autoimmunity might not
be induced de novo at type 1 diabetes onset, and the
autoreactive T-cell pool is likely comprised of cells that
have already responded to antigenic stimulation during
viral infection in the past. On the other hand, previous
work suggests that repeated or sustained encounters with
viral antigen during chronic infection is associated with
protection against type 1 diabetes (46,77). This may be due
in part to exhaustion of T-cell immunity, which is com-
monly found in chronic viral infection and was notably
reported in protracted LCMV infection (101). Alternatively,
or in addition, diabetes abrogation during chronic viral
infection may be the consequence of virally induced
regulatory mechanisms suppressing antiviral immunity
and possibly autoimmunity as well (102,103). In this
respect, a number of chronic as well as acute infections
have been reported to induce the activation of regulatory
T-cells (Tregs), in particular naturally occurring Tregs
(CD4�CD25� Tregs), which are known to play a crucial
role in the control of autoimmunity (104–108). Thus,
repeated exposure to viral antigen during life may not
necessarily be pathogenic in autoimmunity. Nonspecific
activation of autoreactive T-cells as a consequence of
repeated or protracted viral infections may even be bene-
ficial in some cases. Notably, CD4�CD25� Tregs, which
are selected in the thymus and thought to react to self-

antigens in the periphery (109,110), can in essence be
considered “autoreactive” and may thus be beneficially
activated in heterologous immunity. In fact, we found that
CD4�CD25� Tregs are modulated during viral infection
and become capable of halting the course of type 1
diabetes (C.M.F., unpublished data). In addition, our re-
sults suggest that resemblance between viral and �-cell
antigens can, in some cases, promote activation of diabe-
tes-preventive CD4�CD25� Tregs.

CLINICAL IMPLICATIONS: DO VIRAL INFECTIONS

INDUCE OR PREVENT TYPE 1 DIABETES?

A number of epidemiological studies support the hy-
pothesis that viral infections play a causative role in
type 1 diabetes. However, systematic review of control
studies published between 1966 and 2002 has shown no
convincing evidence for or against an association be-
tween type 1 diabetes and the prime candidate for
infectious cause, CVB (111). In animal models for type 1
diabetes, solid evidence supporting an inductive role for
viruses is faced with just as solid evidence supporting a
protective effect of viral infections. Based on mouse
studies alone, there is no doubt that association be-
tween viruses and type 1 diabetes is extremely complex:
while belonging to the same enteroviral group, CVB3
and CVB4 have opposing effects on type 1 diabetes in
the same mouse model; LCMV initiates diabetes in the
RIP-LCMV model but prevents disease in the NOD
model; and to make matters more complicated, CVB4
and LCMV are capable of both inducing and preventing
diabetes in the same mouse model depending on the
time of infection. Thus, the reason for current failure to
associate a particular virus with induction of autoim-
mune diabetes likely is that such an association might
be impossible to make. Certain viruses might be capable
of inducing diabetes and others of preventing diabetes,
and type 1 diabetes inducers might be capable of
preventing disease under certain conditions. This will
depend of course on the nature of the considered virus
(resemblance with �-cell antigens; tropism for �-cells;
induction of a chronic infection), but also on the state of
advancement of autoimmunity at the time of infection
(generation of sufficient numbers of autoreactive T-
cells; nature of the cytokine milieu systemically and in
the islets). A given viral infection could thus be an
essential disease precipitator once required predispos-
ing events have occurred, but could on the other hand
disrupt accumulation of these events.

Most important is the indication from animal studies
that modulation of autoimmunity during viral infection
does not depend merely on inherent properties of the
virus, but also significantly on intrinsic factors of the
host. The close interplay between the two will dictate
whether enhancement or abrogation of autoimmune
diabetes occurs. While molecular mimicry might acti-
vate autoreactive T-cells, it could also segregate these
cells away from the islets and/or induce the activation of
protective Tregs. While inflammatory cytokines might
promote bystander activation of APCs and autoreactive
T-cells, infection could occur at a time where inflamma-
tion will induce the relocation or demise of these cells.
Whereas �-cell lysis and presentation of islet antigen
might promote activation of autoreactive T-cells, it
could also suppress the function of these cells by
promoting Treg activity. Whereas repeated/sustained
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infections might lead to the accumulation of autoreac-
tive T-cells within the memory pool, they could also
induce suppressor mechanisms that will hinder autoim-
munity. These possibilities are illustrated in Fig. 1.

Based on current evidence, it thus appears impossible
to assess the capacity of viruses to modulate type 1
diabetes without knowledge of the state of advancement
of autoimmunity and infection history of affected indi-
viduals. This is no easy task, but tremendous effort is
currently being made in the U.S. and Europe to closely
monitor exposure to infections in individuals at risk for
type 1 diabetes. In particular, the TEDDY (The Environ-
mental Determinants of Diabetes in the Young) study is
currently assessing the influence of environmental fac-
tors, among which are viral infections, on the develop-
ment of autoimmune diabetes. In this study, blood from
children with increased genetic risk for type 1 diabetes
is assessed for viral exposure every 3 months for the
first 4 years of life, and then every 6 months until the age
of 15 years. Stool samples are also assessed for viral
exposure at monthly intervals for the first 4 years of life
and then biannually until the age of 15. Importantly, as
the period of time between a particular viral infection
and the initiation of autoimmunity appears variable,
occurrence of a possibly critical infectious event might
be extremely hard to detect. It thus appears crucial that
children with increased genetic risk for type 1 diabetes
are monitored not only at regular intervals, but also
whenever they are undergoing a viral infection. Closer
monitoring of individuals with high risk for type 1
diabetes should give us more convincing evidence for
the contribution of an infectious agent to progression
toward autoimmunity. In addition, newly obtained
mechanisms from experimental investigations will be
useful for the development of novel immunotherapy for
type 1 diabetes.
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