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ABSTRACT Respiratory specimen collection materials shortages hampers severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) testing. We compared specimen alterna-
tives and evaluated SARS-CoV-2 RNA stability under simulated shipping conditions. We
compared concordance of RT-PCR detection of SARS-CoV-2 from flocked midturbinate
swabs (MTS) in viral transport media (VTM), foam MTS without VTM, and saliva. Specimens
were collected between August 2020 and April 2021 from three prospective cohorts. We
compared RT-PCR cycle quantification (Cq) for Spike (S), Nucleocapsid (N), and the Open
Reading Frame 1ab (ORF) genes for flocked MTS and saliva specimens tested before and
after exposure to a range of storage temperatures (4–30°C) and times (2, 3, and 7 days).
Of 1,900 illnesses with $2 specimen types tested, 335 (18%) had SARS-CoV-2 detected in
$1 specimen; 304 (91%) were concordant across specimen types. Among illnesses with
SARS-CoV-2 detection, 97% (95% confidence interval [CI]: 94–98%) were positive
on flocked MTS, 99% (95% CI: 97–100%) on saliva, and 89% (95% CI: 84–93%) on
foam MTS. SARS-CoV-2 RNA was detected in flocked MTS and saliva stored up to
30°C for 7 days. All specimen types provided highly concordant SARS-CoV-2 results.
These findings support a range of viable options for specimen types, collection, and
transport methods that may facilitate SARS-CoV-2 testing during supply and personnel
shortages.

IMPORTANCE Findings from this analysis indicate that (1) self-collection of flocked and
foam MTS and saliva samples is feasible in both adults and children, (2) foam MTS
with VTM and saliva are both viable and reasonable alternatives to traditional flocked
MTS in VTM for SARS-CoV-2 detection, and (3) these sample types may be stored and
transported at ambient temperatures for up to 7 days without compromising sample
quality. These findings support methods of sample collection for SARS-CoV-2 detection
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that may facilitate widespread community testing in the setting of supply and personnel
shortages during the current pandemic.

KEYWORDS COVID-19, SARS-CoV-2, sensitivity, respiratory specimens, RT-PCR

Nucleic acid amplification tests (NAATs) such as PCR tests, for severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) are critical tools for controlling the

current coronavirus disease of 2019 (COVID-19) pandemic, but severe shortages of
specimen collection materials have hampered testing efforts globally (1, 2). Circulation
of SARS-CoV-2 variants of concern highlighted the ongoing need for timely and accu-
rate diagnostic testing (3).

The Centers for Disease Control and Prevention (CDC) recommends upper respiratory tract
specimens for initial diagnosis of SARS-CoV-2 infections (4). As of December 2021, CDC-recom-
mended specimen options include nasopharyngeal, nasal midturbinate, anterior nasal, and sa-
liva specimens. Compared to nasopharyngeal specimens, which require collection by trained
professionals, nasal midturbinate specimens, anterior nasal specimens, and saliva specimens
offer more flexibility because they may be self-collected and may be considered less invasive
and more acceptable by patients (5).

Flocked swabs in viral transport medium (VTM) have traditionally been used for both na-
sopharyngeal and other less invasive nasal midturbinate or anterior nasal specimen collec-
tion. However, intermittent shortage of flocked swabs and VTM highlighted the need for
valid alternative specimen materials and specimen storage options that do not require VTM.
Both dry foam midturbinate swabs (MTS) without VTM (6–8) and saliva specimens (7, 9–23)
are promising alternative specimen types for SARS-CoV-2 detection. Although recent publica-
tions demonstrated the clinical utility of dry foamMTS and saliva samples for the detection of
SARS-CoV-2, data from studies that include both adults and children and utilize consistent
methods of specimen collection are limited (14, 15, 24).

Using participant-collected specimens from three ongoing cohort studies of SARS-
CoV-2 infection among essential workers and households with adults and children, we
compared the performance of flocked MTS in VTM, foam MTS without VTM, and saliva
specimens for the identification of SARS-CoV-2 infection. In addition, we evaluated the
temporal stability of SARS-CoV-2 RNA from flocked MTS and saliva specimens under a
range of storage temperatures and times simulated to mimic a variety of shipping con-
ditions specimens may encounter.

RESULTS
Participant and COVID-like illness event characteristics. During August 2, 2020

to April 10, 2021, 2,903 out of 7,442 (39%) participants reported 3,476 COVID-like illness (CLI)
events; 1,616 participants reported 1,900 (55%) CLI events with $2 self-collected respiratory
specimens (1,896 flocked MTS; 1,035 foam MTS; and 1,866 saliva). Among these 1,616 partic-
ipants, the median age was 39 years (interquartile range [IQR]: 31–47 years; range: 0–72 years)
and 208 (13%) were children aged ,18 years. Most participants were from Arizona (47%) or
Utah (26%). Fever or feverishness was reported for 713 (38%) of the CLI events with $2 self-
collected respiratory specimens (Table 1).

Among the 1,900 CLI events with $ 2 specimens, all specimen types were collected a
median of 2 days after symptom onset (flocked MTS IQR: 0–4 days; foam MTS IQR: 1–4 days;
and saliva IQR: 0–4 days). The median time from sample collection to sample receipt at the
laboratory was 1 day (IQR: 1–2 days). Over half of flocked MTS and saliva (68% and 66%,
respectively) were tested using the TaqPath kit, while most of the foam MTS (100%) were
tested using the Lyra Direct Lysis assay (Table 2).

SARS-CoV-2 detection and concordance. Of the 1,900 SARS-CoV-2 CLI events
with$ 2 specimen types submitted for testing, 335 (18%) had SARS-CoV-2 detected in at least
1 specimen, including 14 (4% of 335) from children ,12 years, 8 (2% of 335) from children
ages 13–17 years, and 313 (93% of 335) from adults aged $18 years. Among these 335 CLI
events, 304 (91%) had concordant SARS-CoV-2 positive results across available specimen
types, including 12 (86% of 14) from children,12 years and 6 (75% of 8) from children ages
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13–17 years. Among 29 CLI events with discordant results between specimen types, SARS-
CoV-2 was detected in 24 (83%) saliva specimens and in 17 (59%) flocked MTS specimens in
VTM. Among CLI events with SARS-CoV-2 detected on any specimen, 97% (95% confidence
interval [CI]: 94-98%) were positive in flocked MTS in VTM, 99% (95% CI: 97–100%) in saliva,
and 89% (95% CI: 84–93%) in foam MTS (all k $ 0.93) (Table 3). In a sensitivity analysis con-
sidering inconclusive results as positive, the concordance rates between flocked MTS in VTM
and saliva (k = 0.97) or flocked MTS in VTM and dry foam MTS (k = 0.94) remained the
same (data not shown).

Four percent of all sample types were collected $10 days following symptom onset
(n = 83 flocked MTS in VTM; n = 45 dry foamMTS; n = 80 saliva). Among these samples, SARS-
CoV-2 was detected in 18 (23%) of saliva and 19 (23%) of flocked MTS in VTM (P = 0.95).

Evaluation of SARS-CoV-2 RNA stability.A total of 23 flocked MTS and 19 saliva pools
were exposed to 8 combinations of storage temperature and time conditions, representing
336 individual tests. The SARS-CoV-2 Cq values following exposure to experimental conditions

TABLE 1 Characteristics of participants with COVID-19-like illnessa and with at least 2
specimens submitted for SARS-CoV-2 RT-PCR testing, August 2020 to April 2021

Characteristics Totalb

Characteristics of participants
Total participants 1,616
Age (median, SD) 39 yr, 14.8
Age group
#12 yr 170 (11)
13–17 yr 38 (2)
18–49 yr 1,077 (67)
$50 yr 331 (20)

City/region
Arizona 769 (47)
Florida 75 (5)
Minnesota 137 (8)
New York 50 (3)
Oregon 111 (7)
Texas 60 (4)
Utah 414 (26)

Occupationc

Health care personnel 709 (44)
Front line worker 554 (34)
Other employment 108 (7)
Age,18 yrd 208 (13)
Missing 44 (3)

Characteristics of CLI events
Total CLI 1,900
CLI with 3 specimens requestede: flocked MTS, foamMTS, saliva 1,057 (56)
CLI with 2 specimens requested: flocked MTS and saliva 843 (44)

Fever or feverishness reported
Yes 713 (38)
No 363 (19)
Missing 824 (43)

Specimens tested
Flocked MTS 1,886 (99)
Foam MTSe 1,010 (96)
Saliva specimen 1,760 (93)

aCriteria for CLI included presence of at least one of the following: fever or feverishness, cough, shortness of
breath, sore throat, diarrhea, muscle aches, chills, or change in taste or smell.

bValues are n (%) unless noted otherwise. CLI, COVID-19-like illness; MTS, midturbinate swab; SARS-CoV2, severe
acute respiratory syndrome coronavirus 2; C-HEaRT, the Coronavirus Household Evaluation and Respiratory
Testing; AZ HEROES, the Arizona Healthcare, Emergency Response, and Other Essential Workers Study;
RECOVER, the Research on the Epidemiology of SARS-CoV-2 in Essential Response Personnel study.

cOccupation criteria are not mutually exclusive.
dParticipants were not asked about their occupation.
eFor the C-HEaRT and RECOVER cohorts, participants were asked to collect flocked MTS, foamMTS, and saliva
specimens upon symptom onset. For the AZ HEROES cohort, participants were only asked to collect flocked
MTS and saliva specimens.
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remained consistent with pretest Cq values across both the MTS and saliva specimen collec-
tions (Fig. 1 and 2; Table S1 in supplemental material). Across the experimental conditions,
the N gene exhibited the greatest stability with mean DCq values of 0.18 and 0.66 for flocked
MTS and saliva compared with 0.48 and 1.04 for ORF, and 1.83 and 1.09 for the S gene,
respectively (P , 0.05; Table S1; Fig. S2). All three viral gene targets had an average DCq of

TABLE 2 Specimen collection, transport, and SARS-CoV-2 RT-PCR testing timeline for COVID-19-like illness events where at least two
specimens were submitted, August 2020 to April 2021a

Characteristics Flocked MTS, n (%) FoamMTS, n (%) Saliva specimen, n (%)
Total specimens collected 1,896 1,035 1,866

Days from symptom onset to specimen collection (median, IQR) 2 days, 0–4 days 2 days, 1–4 days 2 days, 0–4 days
0–2 days 1,180 (62) 649 (63) 1,166 (63)
3–4 days 319 (17) 174 (17) 307 (16)
$5 days 343 (18) 187 (18) 335 (18)
Missing date 54 (3) 25 (2) 58 (3)

Days from specimen collection to specimen receipt at laboratory (median, IQR) 1 day, 1–2 days 1 day, 1–2 days 1 day, 1–2 days
0–2 days 1,575 (83) 854 (82) 1,562 (84)
3–4 days 201 (11) 144 (14) 199 (11)
$5 days 66 (3) 28 (3) 65 (3)
Missing date 54 (3) 9 (1) 40 (2)

Days from specimen collection to testing (median, IQR) 2 days, 1–3 days 32 days, 20–50 days 2 days, 1–3 days
0–2 days 1,287 (68) 15 (1) 1,184 (63)
3–4 days 446 (24) 15 (1) 477 (26)
$5 days 102 (5) 991 (97) 107 (6)
Missing date 61 (3) 14 (1) 98 (5)

Assay platform
Quidel Lyra SARS-CoV-2 Assay 598 (31) 1,032 (100) 576 (31)
Thermo Fisher TaqPath COVID-19 Combo Kit 1288 (68) 0 (2) 1,228 (66)
Specimen not tested 10 (1) 3 (0) 62 (3)

aIQR, interquartile range.

TABLE 3 Concordance of SARS-CoV-2 RT-PCR detections in flocked MTS in viral transport media, dry foam MTS, and saliva specimens with
detection by any specimen type during COVID-19-like illness episodes, August 2020 to April 2021a

SARS-CoV-2 detection
comparisonsb No. (%)

Percent detectionc no. positive
by specimen type/composite
positive (%; 95% CI)

Negative predictive
value (%; 95% CI)

Percent agreementd

(Kappa, 95% CI)
Individual specimens
Flocked MTS (n = 1,829)
Positive 320 (18%) 320/334 (97%; 94–98%) 1,495/1,506 (99%; 99–100%)
Negative 1,506 (82%)
Inconclusive 3 (0%)

Foam MTS (n = 1,010)
Positive 179 (18%) 179/202 (89%; 84–93%) 808/830 (97%; 96–98%)
Negative 830 (82%)
Inconclusive 1 (0%)

Saliva (n = 1,757)
Positive 323 (18%) 323/327 (99%; 97–100%) 1,428/1,432 (100%; 99–100%)
Negative 1,432 (82%)
Inconclusive 2 (0%)

Specimen pairs
Flocked MTS vs. foam MTS (n = 1,002) 0.94 (0.92–0.97)
Flocked MTS vs. saliva (n = 1,746) 0.97 (0.96–0.99)
Foam MTS vs. saliva (n = 930) 0.93 (0.90–0.96)

aExcludes SARS-CoV-2 CLI events where sample viability precluded testing (e.g., unable to amplify internal control or not enough specimen volume for testing) thus
resulting in,2 specimen results per CLI event.

bExcludes specimens with invalid or missing results: flocked MTS specimen (n = 2 missing results), foam MTS specimen (n = 18 invalid results and n = 2 missing results), and
saliva specimen (n = 20 invalid results and n = 7 missing results).

cSARS-CoV-2 percent detection defined as the proportion of specimen type-specific detections among CLI episodes with a detection identified in any specimen collected for
that CLI event (composite positive). Excludes specimens with invalid, or missing results. CI, confidence interval.
dDiscordant results between available and tested specimen types included: 11 negative flocked MTS, 22 negative foamMTS, and 4 negative saliva specimens.
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FIG 1 Midturbinate nasal swab cycle quantification (Cq) values before and after exposure to a range
of experimental storage temperatures and times using real-time RT-PCR for severe acute respiratory
syndrome coronavirus 2 (SARS-CoV2) Nucleocapsid (N), Open Reading Frame 1ab (ORF1ab) (ORF), and
Spike (S) gene targets.
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FIG 2 Saliva cycle quantification (Cq) values before and after exposure to a range of experimental
storage temperatures and times using real-time RT-PCR for SARS-CoV-2 Nucleocapsid (N), Open
Reading Frame 1ab (ORF), and Spike (S) gene targets.
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, 1 among MTS pools with pretest Cq values,28 (flocked MTS pools 1–17). Among flocked
MTS pools with pretest Cq values .28, the S gene fell below the limits of detection (LoD);
however, these pools retained positive test interpretations based on N and ORF gene detec-
tion (Fig. 1). The N gene result for one pool had a DCq of 1.84 (pool 21) (Table S1). While we
observed more variation among saliva specimens, the mean DCq was#1 for the majority of
saliva pools (Table S1).

Only one flocked MTS experimental sample with a high baseline Cq value of 31.89 returned
an inconclusive result after the pool was exposed to 4°C for 7 days followed by 30°C for 2
days. Under these conditions, the DCq for all three target genes in the flocked MTS samples
were slightly higher, although the difference was not significant (Fig. 1; Fig. S3). In saliva
specimens, exposure to elevated temperatures (30°C) for 7 days led to DCq values of .1
(1.77, 1.17, and 1.85) in the S, N, and ORF genes, respectively, compared to their baseline
DCq values (P, 0.05; Fig. 2; Fig. S3).

DISCUSSION

In this prospective community study that identified 1,900 CLI events among adults and
children who self-collected and shipped respiratory specimens at illness onset under real-
world conditions, flocked MTS in VTM, dry foam MTS, and saliva specimens yielded compa-
rable SARS-CoV-2 detection rates. Under experimental conditions, SARS-CoV-2 RNA was also
highly stable across a wide range of storage times and temperatures with N and ORF gene
targets exhibiting more stability than the S-gene target when starting Cq values were higher.
Dry foam MTS, which were frozen upon arrival, had an approximate 10% lower sensitivity
compared to flocked MTS in VTM and saliva but underwent an additional freeze/thaw cycle
and still represents an acceptable alternative if critical. These findings provide additional sup-
port for the validity of self-collected dry foam MTS and saliva as alternatives to flocked MTS
in VTM. These findings support a range of viable options for specimen types and collection
and transport methods that may facilitate large-scale testing for SARS-CoV-2 during supply
and personnel shortages.

Our finding that flocked MTS in VTM, foam MTS without VTM, and saliva produced
comparable results for detection of SARS-CoV-2 is consistent with published studies. In a
pooled analysis of data from studies comparing SARS-CoV-2 detection from MTS in transport
media or saliva specimens versus nasopharyngeal swabs, MTS were 95% sensitive (95% CI 83–
99%) and saliva specimens collected without coughing were 90% sensitive (95% CI 85–93)
(24). Few studies have directly compared SARS-CoV-2 detection from MTS versus saliva
(25, 26). An analysis of 31 SARS-CoV-2 positive episodes in which MTS in transport media
or saliva were self-collected by adults demonstrated that the two sample types had simi-
lar sensitivity for SARS-CoV-2 detection (26). Our analysis expands upon previous studies
by assessing flocked MTS in VTM and saliva specimens among both adults and children
and documenting that flocked MTS in VTM and saliva had comparable performance in
samples collected$10 days after symptom onset.

Studies evaluating SARS-CoV-2 RNA stability among spiked, mock specimens with
predetermined viral dilutions or health care worker collected specimens from hospitalized
patients or at-risk health care workers (27–30) demonstrated that SARS-CoV-2 RNA in saliva
samples can remain stable for up to 25 days at room temperature. Furthermore, one study
concluded that degradation at higher temperature does not impede nuclease activity (28).
Our laboratory experiment using self-collected flocked MTS in VTM and saliva from infected
individuals demonstrated that SARS-CoV-2 viruses can remain stable during shipping periods
of up to 7 days at 20–23°C or up to 30°C for 3 days. Overall pretest and experimental condition
Cq were consistent, demonstrating variability for all three viral gene targets in both specimen
types with Cq values .28 and only upon exposure to higher environmental temperatures
(Fig. 2). Taken together, the laboratory experiment results coupled with the high SARS-CoV-2
detection rate demonstrate that self-collection and shipping of specimens are feasible and via-
ble alternatives for individuals experiencing COVID-19 symptoms.

Several limitations should be considered when interpreting our findings. First, our
analysis was limited to specimens collected during symptomatic SARS-CoV-2 infections and
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may not be generalizable to specimens collected from asymptomatic persons. Second, we
were unable to assess in-home participant adherence to specimen self-collection instructions;
however, our findings are more likely to reflect specimen performance under real-world condi-
tions. Third, assessment of SARS-CoV-2 RNA stability under varying storage conditions did not
include RNA from dry foam MTS because foam MTS were subjected to one additional freeze-
thaw cycle that could have affected pretest Cq values. Furthermore, unlike flocked MTS and sa-
liva samples, dry foam MTS were tested in a reverse transcription-PCR (RT-PCR) platform with
limited LoD that could have impacted sample sensitivity. Fourth, our analysis was limited to
specimens collected between August 2020 and April 2021, prior to Delta and Omicron variant
circulation. A review of recently collected specimens has not identified a difference from the
findings reported here (data not shown), but experimental conditions were not replicated.
These results many not be generalizable to specimen performance with new variants such as
Omicron, which may have different viral loads in different sample types (31).

Self-collected flocked MTS in VTM, foam MTS without VTM, and saliva specimens
were comparable for the detection of SARS-CoV-2 among both adults and children in
our study. In addition, SARS-CoV-2 RNA from flocked MTS and saliva was stable at up
to 20–23°C for up to 7 days under simulated conditions. Giving individuals a choice of sam-
ple collection types (i.e., saliva or swab) and transport options may increase the acceptability
of SARS-CoV-2 screening programs and reduce the burdens associated with material cost
and supply-chain limitations for SARS-CoV-2 detections.

MATERIALS ANDMETHODS
Participants and Setting. This analysis includes data from participants in three prospective cohorts:

the Coronavirus Household Evaluation and Respiratory Testing (C-HEaRT) study (32), the Arizona
Healthcare, Emergency Response, and Other Essential Workers Study (AZ HEROES) (33), and the
Research on the Epidemiology of SARS-CoV-2 in Essential Response Personnel (RECOVER) study (34). The
C-HEaRT study included 1,361 participants from 357 households with at least 1 child aged ,18 years in
New York City and selected counties in Utah. The AZ HEROES and RECOVER cohorts included 3,226 and
2,855, health care, first responder, and essential/frontline workers, respectively, across six geographic
areas in the United States: Arizona, Florida, Minnesota, Oregon, Texas, and Utah.

Design. In all three studies, participants self-collected upper respiratory tract specimens at the onset
of symptoms consistent with CLI defined as at least one of the following symptoms: fever or feverishness,
cough, shortness of breath, sore throat, diarrhea, muscle aches, chills, or change in taste or smell. In C-HEaRT,
adult caregivers collected specimens for children unable to self-collect respiratory samples. In C-HEaRT and
RECOVER, participants self-collected two MTS (with a flocked swab placed in VTM and dry foam swab) and sa-
liva. In AZ HEROES, participants collected one flocked MTS placed in VTM and saliva. Participants with CLI
events also completed questionnaires about their illness symptoms and the date of onset.

At study enrollment, participants received a verbal orientation to specimen self-collection and preas-
sembled specimen collection kits, including all collection supplies, shipping materials, and printed self-
collection instructions. Participants were asked to collect specimens at onset of CLI symptoms. Participants
were instructed to blow their nose, wash their hands, and not eat, drink, smoke or chew gum for 30 min prior
to specimen collection. Participants self-collected MTS from both nostrils with the same flocked swab and
placed the swab in a vial containing 3 mL of VTM. Participants in C-HEaRT and RECOVER cohorts also self-col-
lected a second MTS from both nostrils with a foam swab and placed it in a sterile vial without VTM. Finally,
participants were instructed to spit repeatedly without coughing, into a sterile saliva collection container (IBI
Scientific, SK-150; and Miraclean Technology Co., Ltd., MSC-001) without VTM until the amount of liquid saliva
reached the fill line (;2 mL). Participants either shipped specimens on the same day using padded envelopes
with frozen gel packs via overnight courier or stored specimens in biohazard bags at 4°C for up to 72 h and
shipped in padded envelopes with frozen gel packs to a centralized laboratory.

At the central laboratory, all samples underwent RNA extraction using the MagMAX Viral/Pathogen
Nucleic Acid Isolation Kit on a KingFisher Flex (Thermo Scientific) instrument followed by a real-time RT-PCR
detection method using the Quidel Lyra SARS-CoV-2 Assay for (prior to November 2020) or the TaqPath COVID-
19 Combo Kit (Applied Biosystems). The TaqPath RT-PCR amplifies and detects regions of three SARS-CoV-2 tar-
gets: Spike (S), Nucleocapsid (N), and ORF1ab (ORF) genes. LoD differed between the two RT-PCR assays with
TaqPath having a lower LoD than Quidel Lyra SARS-CoV-2 platform for SARS-CoV-2 viral RNA (35, 36). Both RT-
PCR platforms were approved under Emergency Use Authorization for the diagnosis of SARS-CoV-2 infection
prior to use in this study (37). Flocked MTS in VTM and saliva specimens were processed and tested upon arrival.
Foam MTS were stored at 220°C and batch tested on a dry lysis platform, resulting in one potential additional
freeze/thaw cycle.

Simulated storage temperatures and times testing. Using specimens that tested positive for all
three SARS-CoV-2 gene targets, we combined specimens based on Cq values into separate pools of flocked MTS
specimens and saliva that represented a discrete range of Cq values from approximately 10 to 32 (Table S1).
Pooling ensured sufficient sample volume for testing all experimental conditions. A total of 24 flocked MTS pools
were created from 192 individual specimens, and 20 saliva pools were created from 120 total specimens. Each
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pool was retested (“pretest”) to confirm the Cq value the pool represented. Eight 250-mL aliquots were created
from each specimen pool and exposed to one of the time and temperature conditions and stored at280°C until
RNA extraction. We exposed sample aliquots from flocked MTS in VTM and saliva to eight different storage tem-
perature and time conditions (4°C, 20°C [room temperature], and 30°C for combinations of 2, 3, and 7 days, and
280°C storage) to evaluate the stability of SARS-CoV-2 viral RNA as measured by cycle quantification (Cq) values
(Fig. S1). All pretest and experimental specimens were tested using the ThermoFisher TaqPath platform.

Statistical analyses. All CLI events with $2 specimen types collected were included in the analysis.
Participant demographic and clinical characteristics were described using frequencies for categorical var-
iables and means with standard deviations for continuous variables. Similar to previous studies of influenza virus
(38), in the absence of a recognized gold standard for SARS-CoV-2 detection, we defined detection by any of the
three specimen types as a true positive. For each specimen type, we calculated the proportion of true positives
that were detected as the number of positive samples divided by the number of true positives. We compared
the proportion of true positives detected by each specimen type using Chi-square tests. Percent agreement
between specimen type pairs was compared using kappa (k ) statistics, excluding inconclusive results (39).
Flocked MTS and saliva specimens were retested if they yielded inconclusive results on the first round of testing
and those with final inconclusive results to.1 SARS-CoV-2 targets were reported as inconclusive. As a sensitivity
analysis, specimens with inconclusive results (3 flocked MTS, 1 foam MTS, and 2 saliva specimens) were analyzed
as positive results.

To evaluate stability of flocked MTS in VTM and saliva in simulated shipping conditions, we calculated the
change in Cq (DCq) from the pretest to the experimental specimens for viral N, ORF, and S genes. A maximum
Cq value of 40 was given to experimental specimens without SARS-CoV-2 detection. All negative DCq values
were given a value of 0 (40). We compared the average DCq for each specimen type and gene target across all
experimental conditions and for each condition across all specimens using a Student’s t test. SAS V9.4 software
(SAS Institute Inc., Cary, NC) and Microsoft Excel were used for all statistical analyses.

Ethical review. The study protocol was reviewed and approved by the University of Utah Institutional
Review Board (IRB) acting as the single IRB for the C-HEaRT study and by the IRBs at all participating sites for
AZ HEROES and RECOVER studies. The CDC IRB relied on the review of external IRBs. Informed consent was
obtained from all study participants aged $18 years. Parents or legal guardians of children aged ,18 years
provided written informed consent on behalf of their children, and children aged 12–17 years also provided
assent to study participation.
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