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ABSTRACT

Motivation: A major challenge in systems biology is to reveal the

cellular pathways that give rise to specific phenotypes and behaviours.

Current techniques often rely on a network representation of molecular

interactions, where each node represents a protein or a gene and each

interaction is assigned a single static score. However, the use of single

interaction scores fails to capture the tendency of proteins to favour

different partners under distinct cellular conditions.

Results: Here, we propose a novel context-sensitive network model,

in which genes and protein nodes are assigned multiple contexts

based on their gene ontology annotations, and their interactions are

associated with multiple context-sensitive scores. Using this model,

we developed a new approach and a corresponding tool, ContextNet,

based on a dynamic programming algorithm for identifying signalling

paths linking proteins to their downstream target genes. ContextNet

finds high-ranking context-sensitive paths in the interactome, thereby

revealing the intermediate proteins in the path and their path-specific

contexts. We validated the model using 18 348 manually curated cel-

lular paths derived from the SPIKE database. We next applied our

framework to elucidate the responses of human primary lung cells

to influenza infection. Top-ranking paths were much more likely to

contain infection-related proteins, and this likelihood was highly cor-

related with path score. Moreover, the contexts assigned by the algo-

rithm pointed to putative, as well as previously known responses to

viral infection. Thus, context sensitivity is an important extension to

current network biology models and can be efficiently used to eluci-

date cellular response mechanisms.

Availability: ContextNet is publicly available at http://netbio.bgu.ac.

il/ContextNet.

Contact: estiyl@bgu.ac.il or michaluz@cs.bgu.ac.il

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Complex diseases and viral infections are among the major prob-

lems in human health today. In an effort to broaden our under-

standing of the molecular basis of these diseases, they are

increasingly interrogated using a variety of large-scale experi-

mental techniques. Major techniques include sequencing efforts

to reveal disease-related mutations, mRNA profiling to reveal

genes that are differentially expressed during disease and

siRNA screens to reveal disease-related proteins (e.g. Shapira

et al., 2009), thereby revealing distinct subsets of the genes and

proteins involved.

Recent studies demonstrate the strength of integrative

approaches in broadening our understanding of disease

processes (reviewed in Ideker and Sharan, 2008; Schadt, 2009).

Central to many integrative approaches is the molecular inter-

action network (interactome) paradigm, where interactome

nodes represent proteins or genes, and interactome edges repre-

sent their physical and regulatory interactions. Interactomes pro-

vide a convenient framework for exploring the context within

which disease genes operate, and they were successfully used to

illuminate new disease genes (e.g. Guan et al., 2012; Magger

et al., 2012), and their functions, as recently reviewed by

Barabasi et al. (2011).
Because of the importance of signalling paths in health and

disease, several computational efforts exploited the interactome

framework for their elucidation. By connecting mutated proteins

with their downstream differentially expressed targets, Yeang

et al. (2004) identified intermediate proteins in the paths and

assigned directionality to undirected protein–protein interactions

(PPIs). Later studies identified interactome sub-networks relating

the results of high-throughput genetic screening and mRNA pro-

filing (Suthram et al., 2008; Tuncbag et al., 2012; Yeger-Lotem

et al., 2009; Yosef et al., 2009). And yet another set of studies

computed putative signalling paths by connecting membrane

proteins to transcription factors (Bebek and Yang, 2007;

Steffen et al., 2002; Tuncbag et al., 2012), while limiting the

types and relative order of the proteins on the path (Scott

et al., 2006; Steffen et al., 2002; Tuncbag et al., 2012).

Although based on different computational techniques, each of

these studies relied on a typical network representation, where

each edge is assigned a single score based on its estimated reli-

ability (e.g. Szklarczyk et al., 2011) or relevance to a specific

cellular process (e.g. Cakmak and Ozsoyoglu, 2007; Myers

et al., 2005; Yeger-Lotem et al., 2009).
Yet, single edge scores fail to capture the complexity of biolo-

gical systems, where the activation of a specific protein may lead

to multiple responses, depending on the current cellular condi-

tion. We illustrate this phenomenon using the human protein

GRB2, an epidermal growth factor receptor-binding protein

that is known to mediate several cellular signalling cascades

(Fig. 1). Although GRB2 physically interacts with many different

proteins, recent experimental analysis of its physical interactions

has shown that its sub-network remodels itself dramatically in

response to different stimuli (Bisson et al., 2011). For example, in

the context of viral infection GRB2 tends to interact with inter-

feron regulatory factor IRF5, whereas in the context of insulin

signalling, it tends to interact with the insulin receptor substrate

IRS1. Thus, examining GRB2 physical interactions regardless of

cellular context will mask this important distinction.*To whom correspondence should be addressed.
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Here, we describe a novel computational framework that aims

to capture the context dependence of molecular interactions.

There are several methods that search for paths or transitions

between functional contexts in interactomes (e.g. Banks et al.,

2008; Pandey et al., 2007). In contrast, the novelty of our ap-

proach is not in the consideration of context but rather in the

proposed computational model that allows for the consideration

ofmultiple candidate context pairs for eachmolecular interaction.
We provide a context-sensitive algorithm that scores context-spe-

cific paths leading from a source protein to a differentially ex-

pressed gene. The algorithm selects a single context pair per

interaction, based on the context selected for the preceding inter-

action in the path. Paths are then scored according to the selected

context pairs, and high-scoring paths are reported.
Context dependence has often been associated with tissues or

cell types (Schaefer, 2012), and with different biological states,

such as cell cycle stages (de Lichtenberg et al., 2005) or response

to stimuli (Barrios-Rodiles et al., 2005). In this study, we dem-

onstrate our context-sensitive framework by using gene ontology

(GO) terms as the biological context. We first show the validity

of the proposed model by using a set of manually curated human

pathways (Paz et al., 2011). We then demonstrate the ability of

the framework to identify relevant interaction paths by analysing

the response of human primary lung cells to influenza infection

(Shapira et al., 2009). Notably, a significant fraction of the pro-
teins that the algorithm predicted were indeed found to affect the

infection process, and the success rate of the prediction was sig-

nificantly correlated with the path score. We implemented our

proposed framework as a tool, ContextNet, which is publicly

available at http://netbio.bgu.ac.il/ContextNet.

2 RESULTS

Our results include the proposed context-sensitive framework, its

implementation as a tool, a statistical assertion that known cel-

lular pathways in human are indeed context-sensitive and finally

the application of our framework to identify and interpret the

proteins and pathways underlying the response of human cells to

viral infection.

2.1 A context-sensitive framework for identifying

signalling paths

Our proposed framework consists of an interactome model, a

context-based scoring scheme and a path interpretation and scor-

ing algorithm.

2.1.1 Interactome model Our model of the human interactome
consists of distinct nodes that represent either human proteins or

genes, and edges that represent their experimentally detected

PPIs and protein–DNA interactions that were downloaded

from several databases (see Section 5), resulting in 176 849 inter-

actions among 14362 proteins and genes. We then added context

to the network by using GO annotations (Ashburner et al., 2000)

as follows. Each GO annotation was considered as a distinct

label and was associated with the corresponding gene and pro-

tein nodes. Each interaction was associated with the Cartesian

product of the labels of the interacting nodes.

2.1.2 Context-based scoring matrix We constructed a context-
transition scoring matrix, M, which assigns to each pair of labels

a score that reflects the likelihood of the pair in known pathways.

To compute the context-transition scores, we used the SPIKE

database of manually curated human pathways (Paz et al., 2011).

Specifically, we extracted from SPIKE all signalling paths that

connect a protein to a gene with the last edge in the path being a

transcription regulation edge. We then directed these 18 438

simple paths from the protein to the gene and combined them

into a set of 6762 unique directed interactions. From these inter-

actions, we calculated the conditional probability Pðlj j liÞ that

reflects the likelihood of observing a directed interaction pointing

from a node with label li to a node with label lj. We further fine-

tuned this context-transition scoring scheme as described in

Section 5.

2.1.3 Algorithm for context-sensitive path interpretation and

scoring Our framework identifies top-scoring context-sensitive
paths connecting a protein to a differentially expressed gene. An

overall illustration of the framework is shown in Figure 2. Given

a source protein and a target gene, the algorithm first identifies in

the network all simple paths of lengths from 2 to k that connect

the source to the target, where k is a predefined user parameter.

Next, it uses the context-transition scoring matrix M (described

earlier in the text) to rank each path, favouring the strongest

contextual interpretation. Finally, the algorithm returns the top

scoring paths, along with the chosen label for each node in each

path.

We now turn to describe the labelling of a specific candidate

path, P (Fig. 3). As each node in P is associated with several

labels, the optimization problem at hand is that of selecting an

ordered set of labels, one label per each node in P, such that the

sum of context-transition scores for consecutive labels in this

ordered set is maximized. For this purpose, our method con-

structs for P a directed acyclic graph, denoted the ‘context-

label network’, as follows. Each potential functional label of a

node at index j of P, appears as a contextual-label vertex in the

j-th column of the corresponding context-label network. A dir-

ected edge is added between labels x and y in consecutive col-

umns of the context-label network, and its weight is set to the

context-transition score of the two labels, Mðx, y). Additional

‘skip’ edges with constant gap scores are added to the context-

label network, to increase interpretation flexibility by supporting

poor or lacking context annotations of some nodes. Each puta-

tive contextual interpretation of P then corresponds to a directed

path through its context-label network, where the path begins in

one of the vertices of the first column, ends in one of the vertices

Growth factor signalling
Ras/Rho cascade
DNA replication and repair
Angiogensis
Insuling signalling
Immune response to virus
Wnt pathway
Apoptosis and cellular prolifiration
Kinase cascade
Emryonic development and organ development 

Fig. 1. The human protein GRB2 interacts through high-confidence PPIs

with proteins from 10 distinct cellular processes
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of the last column and traverses through at most one vertex from

each column of the context-label network. Our method computes
a heaviest context-labelling path for P via a dynamic program-

ming algorithm, as described in Section 5.

2.1.4 ContextNet publicly available tool We implemented our

framework as an interactive internet tool and made it publicly
available in http://netbio.bgu.ac.il/ContextNet. Given an input

consisting of source proteins and target genes, our tool enumer-
ates simple paths in the human interactome connecting the two

sets, computes their interpretations and ranks them by their con-
text-labelling scores. The output reports the top-scoring paths

and their contextual interpretation.

3 APPLICATIONS OF THE FRAMEWORK TO THE
INTERPRETATION OF HUMAN SIGNALLING
AND VIRAL INFECTION PATHWAYS

3.1 Known cellular signalling pathways are context

sensitive

Our first step was to validate whether known cellular paths are

context sensitive. For this purpose, we exploited the SPIKE data-
base of manually curated pathway maps, where each map de-

scribes a specific cellular pathway composed of tens of proteins
(Paz et al., 2011). We applied our framework to 21 of these maps

in a leave-two-out statistical significance test. Specifically, we
computed a context-transition scoring matrix M based on the

paths included in 19 maps, and then used the matrix M and the
label-selection algorithm to calculate the best score for each sig-

nalling path in the two left-out maps. To estimate the statistical
significance of the context-labelling score of each path, we re-

peatedly randomized the set of labels associated with each node
and recalculated the path score (see Section 5). If the original

path was not context sensitive, one would expect that its original
score would be similar to its scores based on randomized labels.
However, if the original path was indeed context sensitive, then

its original score would be significantly higher than scores based
on randomized labels (P � 0:05). We found that for paths of

length two edges, 43% of the 195 paths scored significantly
better than random. Furthermore, 470% of the 650 paths of

length 3 and 485% of the thousands of paths of length 4–5

scored significantly better than random (Fig. 4). Based on this,

we conclude that most manually curated signalling paths of

length 3–5 are indeed context sensitive.

3.2 The context-sensitive framework successfully

identifies proteins associated with influenza

infection of human cells

During infection, influenza proteins were shown to interact with

human proteins to recruit the cellular mechanism for viral pro-

liferation. However, the pathways and the intermediate proteins

involved in the infection process are just beginning to emerge. In

an effort to identify these critical pathways, several large-scale

analyses were recently performed. In particular, (Shapira et al.,

2009) reported a large-scale analysis of influenza infection of

human primary lung epithelial cells, in which they identified

PPIs between 10 influenza proteins and 87 human proteins and

performed extensive mRNA profiling of the infected human

cells. Based on these data, Shapira et al. (2009) predicted the

involvement of 1756 human genes in the infection process,

which they tested by RNA silencing. They found that 616 of

the 1756 tested genes were indeed siRNA positive, namely, had

a significant effect on viral propagation and interferon produc-

tion when silenced. Here, we took advantage of this wealth of

information to assess our context-sensitive framework and to

identify potential signalling paths through which viral proteins

may modify the cellular transcriptional program. To this end, we

calculated the set of all simple paths linking the human interac-

tors of the viral proteins to each of the human genes exhibiting

differential expression after infection (see Section 5). We then

scored each path using our context-sensitive algorithm, focusing

on paths of length three to five.

Figure 5A demonstrates the biological relevance of the top 5%

scoring paths compared with a background set consisting of all

paths of same length. The biological relevance was measured by

the percentage of paths that contained at least one connecting

intermediate protein (not source or target) that was found to be

siRNA positive in the experiment described earlier in the text. As

S u T

S vu T
Skip

vA

B

C

Fig. 3. (A) A sample path P connecting a source node S to a target

node T. (B) Below each node is the set of its labels, where shades of

colours are used to denote label similarity according to the context-tran-

sition scoring matrix. Edges connect labels corresponding to consecutive

nodes in P, and a dashed edge demonstrates a legitimate context gap

(Skip step). (C) The best-scoring label assignment for P

Fig. 2. A high-level overview of our framework for computing context-

sensitive molecular interaction paths

i212

A.Lan et al.



shown, in all paths of lengths three to five, the top-scoring paths

were more likely to include a biologically relevant protein. The

advantage of top-scoring context-sensitive paths was also

observed when compared against shortest paths of similar

lengths (Supplementary Fig. S1). We then extended this analysis

to test whether the context-labelling score was also correlated

with the biological relevance. Indeed, we found that paths of

higher scores were also more likely to contain a connecting bio-

logically relevant protein. Figure 5B shows the correlation for

paths of length four (Pearson r¼ 0.98, P510–12), and similar

statistically significant correlations were obtained for paths of

length three and five (Supplementary Fig. S2). Figure 5C exem-

plifies a top-ranking path connecting the viral interacting protein

TRAF2 to the differentially expressed gene IRF7. This path

ranked best of the 998 connecting paths for this source and

this target. Notably, two of the three intermediate proteins in

this path were found to be siRNA positive, and the contexts

that our framework selected for them were indeed related to

viral infection as shown in Figure 5C. These results demonstrate

again that our context-sensitive framework helps identify bio-

logically relevant proteins and contexts.

3.3 Highlighting and interpreting the multi-faceted

functionality of the viral protein PB2

The PB2 protein is a subunit of the influenza virus RNA poly-

merase, and it is known to be a major virulence determinant of

influenza viruses. It was recently demonstrated that PB2 regu-

lates interferon expression during infection (Graef et al., 2010;

Shapira et al., 2009). However, the molecular mechanisms by

which it acts are just beginning to emerge (Graef et al., 2010).

To illuminate these mechanisms, we applied our framework to

identify and interpret PB2 downstream interactions. Therefore,

we ranked, by context-sensitive scores, the millions of paths con-

necting the 28 human proteins that were found to interact with

PB2 to the 527 target genes that were found to be differentially

expressed during influenza infection (see Section 5). We com-

bined the 1% top-ranking paths into the network shown in

Figure 6. Importantly, the network we obtained clearly

highlights the role of PB2 in interferon regulation. The four

human proteins that interact with PB2 through top-ranking

paths were all found as likely upstream regulators of interferon

expression (Fig. 6, red sub-network). Moreover, for five of the

eight differentially expressed genes in the PB2-induced sub-net-

work, our framework selected interferon-related context labels.
Notably, the assignment of interferon labels to these genes is stat-

istically significant, as only 39 of the 527 target genes are asso-

ciated with interferon (Fisher exact test P ¼ 8:2�10�5). Thus, our
framework correctly uncovered the key downstream effect of PB2

and suggested the cellular pathways by which it acts.

4 DISCUSSION

A well-known limitation of current computational models of PPI

networks is the weak handling of interaction context. PPI net-

work models are typically constructed by combining interactions
from various measurements, regardless of the biological context

in which they were measured, such as specific stimuli, tissues,

cellular components and disease states. Previous context-sensitive

approaches to network interpretation limited molecular inter-

action pathways to a single context, such as a single tissue or

cell type (Schaefer, 2012), or followed a predefined context-tran-

sition template, e.g. defining a flow from membrane to nucleus
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Fig. 5. (A) The biological relevance (y-axis) of the top 5% scoring paths

(filled bars) comparedwith a background set consisting of all paths of same

length (striped bars), for lengths 3–5 edges (x-axis). Top-scoring paths were

more likely to include a biologically relevant protein. (B) A graph showing

the correlation between context labelling score of a path (x-axis, in score-

ranking percentiles) and its likelihood to contain a biologically relevant

intermediate protein apart from the source and target (y-axis), for paths of

length four. The x-axis shows the percentile of top-scoring paths of the

49 002 scored paths, which constitute 1.24% of the simple paths of length

four between the sources and targets. A dotted line marks the background

distribution over all simple paths of length four. Top-scoring paths were

more likely to contain a biologically relevant intermediate protein (Pearson

r ¼ 0:98, P-value 510�12). Similar statistically significant correlations

were obtained for paths of lengths three and five (Supplementary

Fig. S1). (C) A top-ranking path connecting the viral interacting protein

TRAF2 to the differentially expressed gene IRF7. This path ranked best of

the 998 connecting paths for this source and this target. Two of the three

intermediate proteins in this path were found to be siRNA positive (red

border). Proteins in the path have closely related labels relevant for infec-

tion, as shown below each protein

195

650

3252 14341

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 3 4 5

shtap
evitisnestxetnoc

fo
egatnecrep

egarevA

Path length

Fig. 4. Results of the SPIKE randomization test for paths of lengths two

to five edges are shown. The bars indicate the percentage of paths, per

length, that scored significantly higher than random
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(Scott et al., 2006). Here, we presented a novel framework that

assigns biological context to molecular interaction pathways

while allowing for context variations and switches that may

not be obvious to the outside observer before our analysis.

Our framework also computes a context-sensitivity score for

the context-annotated pathway, which can be used to prioritize

pathways.

To capture the dynamic context of molecular interaction net-

works, we added another dimension to the PPI network model,

which takes into account, for each node, a set of labels corres-

ponding to its potential functions. We also added edges to con-

nect these labels, and set the weights of these edges to reflect the

probability of transitions between the connected labels. The

weights of these transitions were inferred from known human

pathways. Our model is also flexible enough to provide some

support for poorly annotated proteins by leaning on the labels

assigned to their upstream and downstream neighbours. This is

achieved via special skip edges, thus enabling the inclusion and

interpretation of the 16% of the interacting proteins that are not

yet annotated.
The proposed framework can be generalized to handle various

contexts. In this study, we used GO terms as context labels and

known human pathways as guides for constructing the label-

transition–scoring matrix. Our analysis of SPIKE maps revealed

that proteins in known pathways were mostly associated with

GO biological process terms (76%) and not with molecular func-

tion (14%) or cellular component GO terms (10%). Therefore,

we focused our analysis on GO biological process terms, which

we further filtered to remove high-entropy, low–information-

content terms. The remaining terms were associated with a rela-

tively small number of genes (median of 19 genes per term,

including genes associated with descendent terms), indicating

the high specificity of these terms.
We validated our framework using thousands of known

human pathways. We found that470% of the known paths of

lengths three to five edges were indeed context sensitive (Fig. 4).

We proved the use of our framework by applying it to reveal the

molecular interaction paths involved in viral infection. Using our

method, we successfully identified biologically relevant context-

sensitive paths connecting viral proteins with the downstream

human transcriptional response. We implemented our frame-

work as an interactive internet tool and made it publicly avail-

able in http://netbio.bgu.ac.il/ContextNet.
We have shown the value of introducing GO context to the

analysis of signalling pathways. Future work could include op-

timization variants of this problem that will be applicable to

longer paths and to a wider scope of context. For example, the

current algorithm selects the context of an interaction based on

the context selected for the preceding interaction in the path.

Important extensions would be to reflect longer contextual his-

tories that go beyond the first-order neighbourhoods and to

extend the sought context units from linear paths to networks.

Another extension would be to integrate additional context

schemes, such as pathway context enrichment (Pandey et al.,

2007), network schemas (Banks et al., 2008), semantic similarity

(Pesquita et al., 2009), tissue associations (Barshir et al., 2013) or

protein localization (Scott et al., 2006), and to enhance them with

interaction-confidence scores. The new framework we presented

and its extensions may be applied to a variety of network-related

problems where context-sensitive relationships are meaningful.

5 METHODS

5.1 Human interactome model

Experimentally detected human undirected PPIs were assembled

from four major PPI databases, including BIOGRID (Stark

et al., 2011), DIP (Salwinski et al., 2004), IntAct (Aranda

et al., 2010) and MINT (Ceol et al., 2010). Directed transcription

regulation interactions between transcription factors and their

target genes were downloaded from the TRANSFAC database

(Matys et al., 2006). We also included manually curated directed

and undirected interactions from the SPIKE database (Paz et al.,

2011). GO terms and annotated human proteins and genes were

downloaded from the GO database (Ashburner et al., 2000),

February 2012 release. To increase the specificity and reliability

of the GO data used in this study, we filtered out GO terms

assigned to 4600 genes and GO annotations with evidence

codes IPI, NAS and ND. Each GO term was denoted by a dis-

tinct label ‘.

5.2 Learning the label-transition scoring matrix M

To study the frequency of label transitions in signalling paths, we

exploited the manually curated pathway maps from the SPIKE

database (Paz et al., 2011). From each map we extracted the set

of all simple paths linking a protein to a gene with the last edge in

the path being a transcription regulation edge. We then directed

each path from the upstream protein to its downstream target

gene, and combined all paths per map into one set of unique

directed edges. For each node v, we denote as Lv the set of all

labels of v (GO annotations in this study). For each edge ðu, vÞ in

some path, and for each x 2 Lu and y 2 Lv, we computed the

label pairwise frequency by counting how many times y appears

after x in some edge in the set of all edges. This yielded the set F,

Fig. 6. The PB2 network was computed by merging the top 1% scoring

paths connecting PB2 interactors and genes that were differentially ex-

pressed on infection. Full lines represent direct physical interactions;

dashed lines represent indirect interactions, computed by omitting the

intermediate nodes along the path. Triangle nodes represent transcription

factors, square nodes represent differentially expressed genes and circular

nodes represent direct viral interactors. The labels chosen by our frame-

work are depicted next to nodes. The interferon-labelled nodes are shown

in red, and nodes and edges leading from PB2 to these nodes have a red

border
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consisting of pairs of consecutive labels, annotated by their

frequencies.
We observed that some labels in P are non-specific, for ex-

ample, ‘Transcription Factor activity’, which always appears as

the target node in every edge pointing to a transcription factor.

Therefore, we applied an entropy measurement criterion to filter

out non-specific labels from F (i.e. labels with high entropy). For

this, we calculated for every ordered pair, ðx, yÞ 2 F, the forward

conditional probability Pðy j xÞ ¼ (Occurrences of y after

x)/(Total occurrences of x), as well as the backward conditional

probability Pðx j yÞ ¼ (Occurrences of x prior to y)/(Total occur-

rences of y). It is important to note that Pðx j yÞ and Pðy j xÞ are

not necessarily the same. Therefore, for each label x, we com-

puted its forward individual entropy hðY j xÞ across all occur-

rences of consecutive label pairs ðx, yÞ 2 F, as

hðY j xÞ ¼
P

y2Y�Pðy j xÞlogðPðy jxÞÞ. Note that, in the afore-

mentioned formulation, x is a specific label (thus denoted by a

lowercase letter) and Y is a random variable (thus denoted by an

uppercase letter). All pairs ðx, yÞ 2 F, such that the forward in-

dividual entropy of label x was found to exceed a threshold (0.7),

were filtered out from F. Similarly, we calculated the backward

individual entropy hðX j yÞ ¼
P

x2X�Pðx j tÞlogðPðx j tÞÞ for

each label y and filtered out all pairs ðx, yÞ 2 F such that

the backward individual entropy of label y was found to

exceed a threshold (0.7). In-between filtration steps, both

individual and pairwise label frequencies were re-calculated

based on the remaining labels in F. Finally, we set

Mðx, yÞ ¼ log10ð1� Pðy j xÞÞ, for all ðx, yÞ 2 F.
We used 1428 terms, covering 7001 genes, which constitute

48.7% of the interactome. These terms were then filtered based

on their entropy, leaving 1203 terms covering 5919 genes, which

are 41.2% of the interactome. To examine the level (within the

GO hierarchy) of terms that is useful for context definition, we

computed the size of each GO term appearing inM. The size of a

GO term was defined as the number of genes associated with it,

including the genes associated with its descendant GO terms. We

found that the GO terms in the entropy-filtered M had a median

size of 19 genes. This indicates that GO terms that have a small

size, and, therefore, are low level, are more informative than

high-level, non-specific terms that are associated with many

genes. The GO terms participating in M, their entropy and the

number of genes they cover, are provided in the ContextNet

website at: http://netbio.bgu.ac.il/ContextNet/SuppTable1.xlsx.

5.3 The dynamic programming algorithm for path

interpretation

To compute the strongest contextual interpretation of paths

from the PPI graph, our algorithm uses the pre-computed con-

text-transition scoring matrix M computed as described in the

previous section. Given, as input, a path P and the context-tran-

sition scoring matrix M, the algorithm computes an output con-

sisting of the score for the strongest contextual interpretation of

P, as well as the corresponding annotation of the nodes of P, in

form of a sequence of pairs 5ðS, ‘sÞ, ðv2, ‘2Þ::ðvk, ‘kÞ, ðT, ‘tÞ4,

where S denotes the source node, T denotes the target node

and ‘i denotes the label assigned to node vi in P, selected from

among all possible context labels suggested for node vi.

To this end, a ‘context-label network’ is constructed for P, as
described in the Section 2, in the form of a directed acyclic grid

graph G0 (see Fig. 3 for an illustration), where the j-th column of
vertices in G0 (presented in the figure under the corresponding j-

th node of P) represents all the potential context labels for that

node.
We define two edge types within the possible context transi-

tions. A Switch edge represents a transition from label x to label
y in an adjacent column in G0; it is added to the graph if the

context-transition score of the ordered pair of labels it connects is

above a given threshold, and its weight is set to Mðx, yÞ. A Skip
edge (shown in dashed lines in the figure), skips over an adjacent

column in the grid to a label in the next one. A Skip edge con-
nects two similar labels: x in column i of G0 and y in column iþ 2

of G0, if column iþ 1 does not contain any label z such that

Mðx, zÞ4Threshold. The weight of the Skip edge is set to
Mðx, yÞ þ SkipPenalty. When reconstructing an optimal solution

interpreting P (i.e. the optimal context-label assignments to the

nodes of P), the skipped node is assigned the same label as the
one chosen for the source node of the skip edge (for example, in

Figure 3C, node v is green even though it does not have a green
label in its column). The Skip edge allows us to deal with poorly

annotated genes and to suggest an overall context-acceptable

path interpretation.
We can now reduce the problem of label assignment to that of

finding the heaviest path in an edge-weighted–directed acyclic
graph, with a predefined constraint dmax on the maximum

number of Skip edges allowed. Dynamic programming is then

applied to solve the reduced problem, implementing the recur-
sion later in the text (Fig. 7), where x and y denote label nodes

in G0, PredecessorsðyÞ denotes the set of vertices that have
edges leading to y in G0, and Labels(v) denotes the set of

labels of v. The final context-labelling score is reported as

maxy2LabelsðTÞSðy, dmaxÞ.
The dynamic programming algorithm traverses all the nodes

in the context-label network (G0) in increasing column order and
applies the recursion given in Figure 7 to compute the score for

each label node. Therefore, the time and space requirements of

the dynamic programming algorithm implementing this recur-
sion is OðEþ VÞ, where E and V denote the number of edges

and vertices in G0, respectively.

5.4 Evaluating the context sensitivity of known cellular

paths in SPIKE

We conducted 10 trials as follows. In each trial, we computed a

context-transition scoring matrix as described earlier in the text

by using 19 of the 21 SPIKE maps. We then used the matrix to

Fig. 7. The recursion for computing optimal label assignment
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calculate the score of paths extracted from the two left-out maps.
To test the significance of the score of each path, we shuffled the
label assignments between nodes in the human interactome and
re-scored the path. We repeated the randomization 40 times per

path. Paths whose original score was better than the score ob-
tained in at least 38 of the 40 shuffles (P� 0.05) were considered
statistically significant and were marked as successful paths.

5.5 Inferring influenza infection pathways

We extracted from (Shapira et al., 2009) the following data sets:

(i) the 36 human proteins that interact with influenza proteins
and that are annotated with a GO term that appeared in M,
which we denoted as sources; (ii) the 527 infection-related differ-

entially expressed genes (as defined in Shapira et al.) that are
connected to at least one of the source proteins, which we
denote as targets; and (iii) 1756 genes that were silenced and

their effect on infection was measured, which we denote as
siRNA positive. Using our framework, we identified and
scored all paths of lengths three to five edges in the interactome
that connect these sources to these targets. We did not consider

paths of length two because only 40% of them were context-
sensitive according to the SPIKE analysis (Fig. 4). We used a
context-sensitive scoring matrix M that we computed based on

all SPIKE maps. Annotations based on IEA evidence codes,
which are less reliable, were considered to increase the number
of annotated genes in the interactome; however, they were

weighted 50% lower than annotations based on other evidence
codes. We then counted the fraction of paths per length that
contained a predicted intermediate protein (other than the
source and target) that was found to be siRNA positive.

5.6 PB2 analysis

We computed all paths connecting the 28 annotated human pro-

teins that interact with PB2 (source proteins) and to the 527
differentially expressed genes that are on a path of length 56
edges from a source protein (target genes). The annotation of 39

of the 527 differentially expressed genes was associated with
interferon.
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