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Classification of subtypes 
including LCNEC in lung cancer 
biopsy slides using convolutional 
neural network from scratch
Jung Wook Yang1,2,3, Dae Hyun Song2,3,4, Hyo Jung An2,3,4 & Sat Byul Seo5*

Identifying the lung carcinoma subtype in small biopsy specimens is an important part of 
determining a suitable treatment plan but is often challenging without the help of special and/
or immunohistochemical stains. Pathology image analysis that tackles this issue would be helpful 
for diagnoses and subtyping of lung carcinoma. In this study, we developed AI models to classify 
multinomial patterns of lung carcinoma; ADC, LCNEC, SCC, SCLC, and non-neoplastic lung tissue 
based on convolutional neural networks (CNN or ConvNet). Four CNNs that were pre-trained using 
transfer learning and one CNN built from scratch were used to classify patch images from pathology 
whole-slide images (WSIs). We first evaluated the diagnostic performance of each model in the test 
sets. The Xception model and the CNN built from scratch both achieved the highest performance with 
a macro average AUC of 0.90. The CNN built from scratch model obtained a macro average AUC of 
0.97 on the dataset of four classes excluding LCNEC, and 0.95 on the dataset of three subtypes of lung 
carcinomas; NSCLC, SCLC, and non-tumor, respectively. Of particular note is that the relatively simple 
CNN built from scratch may be an approach for pathological image analysis.

Lung cancer is most common cause of cancer death (18.0%) while it was the second most commonly diagnosed 
cancer (2,206,771; 11.4%) worldwide in 2020 behind female breast cancer (2,261,419; 11.7%)1. The operability 
of lung cancer is determined by the cancer stage. At the time of diagnosis, approximately 70% of lung cancer 
patients have advanced stages and are inoperable. In many cases, a final histological diagnosis is made from a 
small biopsy tissue. After a small biopsy, lung carcinomas are classified as adenocarcinoma (ADC), squamous cell 
carcinoma (SCC), small cell lung cancer (SCLC), large cell neuroendocrine carcinoma (LCNEC), or “non-small 
cell carcinoma (NSCC), not otherwise specified (NOS)”, etc. by additional special and/or immunohistochemical 
stains, if necessary. The classification “NSCC, NOS” is the diagnostic term used when a lung carcinoma cannot 
be classified into a specific type from a small biopsy specimen despite the use of the additional stains or when 
no stains are available2. Subtyping for lung carcinoma in small biopsy specimens is often challenging without 
these special and/or immunohistochemical stains.

Histological subtyping of lung carcinoma is a vital part of determining a suitable treatment plan. In cases of 
small cell lung cancer, chemotherapy is usually used alone without any surgical treatment because of the advanced 
cancer stage at the time of diagnosis; it is hard to meet surgical specimens of small cell lung cancer in practice. 
In the patients with NSCC, surgery is determined by the cancer stage, and the chemotherapy regimen depends 
on the histological subtype3,4.

With the emergence of digital pathology, there have been studies that attempt to analyze digital slide images 
of lung cancers using deep learning5–12. Deep learning-based pathology image analysis that can accurately diag-
nose and subtype lung carcinoma would be useful in daily practice as an auxiliary means. There are several deep 
learning studies that have proposed technologies that are capable of distinguishing non-neoplastic lung tissue 
and lung carcinoma subtype including adenocarcinoma, squamous cell carcinoma, and small cell lung cancer, 
which are frequently seen in lung biopsy8,10,12, however, LCNEC was not included in the studies.
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Previous studies mostly have used single or mixed open-sourced convolutional neural network (CNN) models 
such as AlexNet13, GoogLeNet14, ResNet15, VGGNet16, which were benchmarked on ImageNet dataset. A simple 
CNN model dedicated to a specific task, such as pathological image analysis, could produce more efficient results. 
In this study, we propose a CNN model built from scratch along with pre-trained CNN models for classification 
of subtypes including LCNEC in lung cancer biopsy slides as an efficient method for pathology image analysis.

Results
Overview of AI models for classification of lung cancer subtypes.  We developed and evaluated AI 
models with a convolutional neural network structure for multi-classification of lung cancer subtypes (Table 2, 
Fig. 1c-1) either built from scratch on the Keras Sequential API (https://​keras.​io/) or based on four well-known, 
pre-trained CNNs using transfer learning (Fig. 1c-2). Pathology slides of lung or bronchus biopsies from 203 
patients and surgical specimens from 2 patients were collected at the Gyeongsang National University Hospi-
tal. Cancer regions on the 205 WSIs were annotated by pathologists, and the tumor areas in these images were 
extracted and used to generate non overlapping patches 256 × 256 pixels in size at a magnification of 20 × using 
DeepPATH7, as shown in Fig. 1a. Figure 1b shows the dataset containing a total of 5 classes; 21 of ADC, 14 of 
LCNEC, 22 of SCC, 21 of SCLC whole slide images (WSIs), and 127 of non-tumor WSIs. 10,049 sample patch 
images were generated from 205 WSIs to represent the four lung cancer subtypes as well as the negative case. 
Out of the total of 9849 patches, 7089 patches were used to construct a training set, 785 patches were selected 
for a validation set, and 2175 patches were assigned to the test set as shown in Table 1. Test set consisted of 168 
patches from 3 of ADC slides, 539 patches from 2 of LCNEC slides, 346 patches from 3 of SCC slides, 243 patches 
from 3 of SCLC slides, and 879 patches from 11 of non-tumor slides as shown in Table 1. The architecture of the 
CNN built from scratch is described in Table 2. Four pre-trained convolutional neural networks, ResNet15215, 
VGG1916, Xception17, and NASNETLarge18, were also used in this study. To compile the model for each CNN, 
nadam and categorical cross entropy were chosen as the respective optimizer and loss function. Each AI model 
diagnosed the images and output either one of the four types of lung cancer or the negative case using the two 
test sets, as shown in Fig. 1d.

Diagnostic performances of AI models for multi‑classification.  To evaluate the diagnostic perfor-
mance of each multi-classification AI model, confusion matrices and the area under the curve (AUC) of the 
receiver operating characteristic curve (ROC) for each model over the test sets were calculated as shown in 
Fig. 2. For the confusion matrices, each row of one of the matrices represents the number of patches in each 
predicted class according to the AI models, while each column represents the actual number of instances in 

Figure 1.   Workflow of AI model for multinomial pattern classification in lung cancer biopsies. (a) Digital 
slide data and preprocessing. Cancer regions on the whole slide images (WSIs) were annotated by pathologists, 
then the tumor areas were extracted and used to generate non-overlapping patches 256 × 256 pixels in size at a 
magnification of 20 × . (b) Dataset. The dataset contains a total of 5 classes with 21 of ADC, 14 of LCNEC, 22 of 
SCC, and 21 of SCLC WSIs, as well as 127 of non-tumor WSIs. 10,049 patches were generated from the original 
205 WSIs containing the four lung cancer subtypes and negative cases. (c-1) Convolutional Neural Network. 
The model takes a tensor with dimensions of (244, 244, 3) as input, the CNN consists of four convolution blocks 
with a max pool layer in each. The 1st and 2nd hidden layer have 16 and 32 filters, respectively, with a kernel 
size of (2, 2) and use a rectified linear unit (ReLU) as their activation functions. The 3rd and 4th hidden layer 
have 64 filters with a kernel size of (2, 2) and also use rectified linear units (ReLU). The CNN also contains a 
fully connected dense layer with 5 units that uses softmax as its activation function. When compiling the model, 
Nadam and categorical cross entropy were chosen as the optimizer and loss function, respectively. (c-2) Transfer 
Learning with pre-trained CNNs. Four pre-trained convolutional neural networks based on ResNet15215, 
VGG1916, Xception17, and NASNETLarge18 were evaluated in this study. After the pre-trained models were 
chosen, we repurposed their already learned knowledge and carried out fine-tuning for our task. (d) Diagnosis. 
The AI models diagnosed the input images from the test sets as either one of four types of lung cancer or as a 
negative case.

https://keras.io/
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each class according to the pathologists. Table 3 displays the classification results of CNN models over the test 
set; precision, recall, f1-score, and accuracy. The ResNet152 model achieved AUC of 0.65 for the macro-average 
ROC curve, its AUCs for classifying subtypes of lung cancer ranged from 0.15 to 0.90 on the test set, as shown 
in Fig. 2b. It produced the weighted average of precision, recall, and f1-score of 0.5384, 0.5237, and 0.4685 as 
shown in Table 3. The VGG19 model achieved AUC of 0.87 for the macro-average ROC curve, and its AUCs for 
classifying subtypes of lung cancer ranged from 0.79 to 0.95 on the test set, as shown in Fig. 2d. The weighted 
average of precision, recall, and f1-score of the VGG19 were 0.6767, 0.6161, and 0.6009, respectively. Figure 2e,f 
show the confusion matrix and AUROC of the Xception model. The Xception model achieved AUC of 0.90 for 
the macro-average ROC curve, which is the highest among the four pre-trained CNN models, and its AUCs for 
classifying each cancer subtype ranged from 0.79 to 0.95. The weighted average of precision, recall, and f1-score 
of the Xception were 0.6502, 0.6708, and 0.6485, respectively. The NASNetLarge model achieved the AUC of 0.86 
for the macro-average ROC curve, and its AUCs for classifying subtypes of lung cancer ranged from 0.77 to 0.93 
on the test set, as shown in Fig. 2d. The weighted average of precision, recall, and f1-score of the NASNetLarge 
were 0.6904, 0.6506, and 0.6293, respectively. Figure 2i,j showed diagnostic performance of the CNN built from 
scratch. It produced an AUC of 0.90 for the macro-average ROC curve, its AUCs for classifying subtypes of lung 
cancer ranged from 0.68 to 0.98. The weighted average of precision, recall, and f1-score of the scratch CNN were 
0.7632, 0.7503, and 0.7428, respectively. The model Xception and ResNet152 models had the highest and the 
lowest performance among the pre-trained CNNs. The CNN built from scratch showed similar performance 
to the model with Xception as the results of AUC, but showed better performance than the Xception model 
considering overall diagnostic performance (i.e. precision, recall f1-score, and accuracy). Table 4 displays the 
detailed classification results (i.e. the precision, recall, f1 score, and accuracy) of the CNN models for each class.

Predictive analysis of CNN from scratch for discriminating patterns.  We evaluated the diagnostic 
performance of the AI models for multinomial classification of lung cancer subtypes on the test sets. Dataset′ 
consisted of four classes excluding LCNEC from the original dataset, and dataset″ composed three classes with 
NSCLC (combining ADC, LCNEC, and SCC), SCLC, and non-tumor. The confusion matrices and the area 
under the curve (AUC) of the receiver operating characteristic curve (ROC)s were evaluated for the CNN model 
built from scratch over the test sets as shown in Fig. 3. Table 4 displays the classification results of the CNN from 
scratch over the test sets. The built from scratch CNN model produced the AUC of 0.90 for the macro-average 
ROC curve, its AUCs for classifying subtypes of lung cancer ranged from 0.68 to 0.98 in the original test set as 
shown in Fig. 3a,b. On the other hand, the macro-average AUC of the model raised up to 0.98 on the test set 

Table 1.   Summary of number of whole slide images (WSIs) and patches in the dataset: training, validation, 
and test set among four lung cancer subtypes and a negative case. ADC adenocarcinoma, LCNEC large cell 
neuroendocrine carcinoma, SCC squamous cell carcinoma, SCLC small cell lung cancer. *Surgical specimen.

Subtypes

Total (n) Training set Validation set Test set

WSIs Patches WSIs Patches Patches WSIs Patches

Tumor

ADC 21 1573 18 1265 140 3 168

LCNEC 14 1386 12 763 84 2* 539

SCC 22 1397 19 946 105 3 346

SCLC 21 1610 18 1231 136 3 243

Non-tumor 127 4083 116 2884 320 11 879

Total 205 10,049 183 7089 785 22 2175

Table 2.   Summary of 2D CNN model architecture.

Layer (options) Output shape Number of parameters

Input (None, 224, 224, 3) –

Conv2D (filters = 16, kernel_size = (2,2), activation = ‘relu’) (None, 223, 223, 16) 208

MaxPooling2D (None, 111, 111, 16) 0

Conv2D (filters = 32, kernel_size = (2,2), activation = ‘relu’) (None, 110, 110, 32) 2080

MaxPooling2D (None, 55, 55, 32) 0

Conv2D (filters = 64, kernel_size = (2,2), activation = ‘relu’) (None, 54, 54, 64) 8256

MaxPooling2D (None, 27, 27, 64) 0

Conv2D (filters = 64, kernel_size = (2,2), activation = ‘relu’) (None, 26, 26, 64) 16,448

MaxPooling2D (None, 13, 13, 64) 0

Global Average Pooling2D (None, 64) 0

Dense (unit = 5, activation = ‘softmax’) (None, 5) 325
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Figure 2.   Confusion matrices and areas under the curve (AUC) for the receiver operating characteristic curves 
(ROC) achieved by the AI models for the multi-classification. To evaluate the performance of each multi-
classification model, normalized confusion matrices (a,c,e) and areas under the curve (AUC) for the receiver 
operating characteristic curve (ROC) (b,d,f) were calculated for each model on the test set [ResNet152 (a,b), 
VGG19 (c,d), Xception (e,f), NASNetLarge (g,h), CNN from scratch (i,j)]. Each row of each matrix represents 
the number of patches in a predicted class by the corresponding AI model, while each column represents the 
actual instances in each class according to pathologists.
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from the dataset′, which excluded the class of LCNEC (see in Fig. 3c,d). Table 3 showed that the weighted aver-
age of precision, recall, and f1-score of the scratch CNN raised from 0.7632 to 8788, from 0.7503 to 8674, and 
from 0.7428 to 8708, respectively as the dataset was excluded LCNEC. The prediction analysis of the scratch 
CNN for the test set from the dataset reconstructed into new classes (NSCLC, SCLC, and non-tumor; dataset″) 
were evaluated as shown in Table 4 and Fig. 3e,f. The scratch CNN model produced the AUC of 0.96 for the 
macro-average ROC curve, its AUCs for classifying subtypes of lung cancer ranged from 0.90 to 0.99 as shown 
in Fig. 3e,f. The weighted average of precision, recall, and f1-score of the scratch CNN model for the dataset″) 
were 0.9099, 0.8920, and 0.8964, respectively as Table 3.

Discussion
In this work, we generated various deep learning-based AI models for classification of subtypes in lung cancer 
biopsy slides. The AI models for the classification of subtype lung carcinoma proceeded with the flow of digital 
WSI data preparation, convolutional neural networks, loss functions, and diagnostic performance evaluation. 
Previous research involving lung cancer image analysis with deep learning has focused on differentiating between 
non-cancer tissue and lung cancer5,6 to distinguish adenocarcinoma, squamous cell carcinoma7, or looked to 
identify small cell carcinoma in addition to the cancers previously mentioned8,10. Gonzalez et al. attempted to 

Table 3.   Performance of the CNN models. ADC adenocarcinoma, LCNEC large cell neuroendocrine 
carcinoma, SCC squamous cell carcinoma, SCLC small cell lung cancer, Precision the fraction of relevant 
instances among the retrieved instances, Recall the fraction of relevant instances that were retrieved, f1-score 
a measure of test set’s accuracy and the harmonic mean of the precision and recall, Support number of test set 
for each label and total, weighted average averaging the support-weighted mean per label, macro average the 
arithmetic mean of individual classes’ precision, recall, and f1-scores.

Models Classification Precision Recall f1-score Accuracy Support

ResNet152

ADC 0.0000 0.0000 0.0000

0.5237

168

LCNEC 0.7015 0.0872 0.1515 539

SCC 0.2833 0.7746 0.4149 346

SCLC 0.7143 0.3498 0.4696 243

Non-tumor 0.7119 0.8407 0.7710 879

Macro avg 0.4822 0.4105 0.3621 2175

Weighted avg 0.5384 0.5237 0.4685 2175

VGG19

ADC 0.2917 0.5000 0.3684

0.6161

168

LCNEC 0.9326 0.3080 0.4630 539

SCC 0.4428 0.4249 0.4336 346

SCLC 0.6310 0.7037 0.6554 243

Non-tumor 0.6980 0.8730 0.7778 879

Macro avg 0.5992 0.5630 0.5417 2175

Weighted avg 0.6767 0.6161 0.6009 2175

Xception

ADC 0.5024 0.6190 0.5547

0.6708

168

LCNEC 0.6229 0.5447 0.5868 539

SCC 0.4419 0.1647 0.2400 346

SCLC 0.6096 0.8354 0.7049 243

Non-tumor 0.7885 0.9204 0.8493 879

Macro avg 0.5931 0.6189 0.5871 2175

Weighted avg 0.6502 0.6708 0.6485 2175

NASNetLarge

ADC 0.3960 0.2381 0.2974

0.6506

168

LCNEC 0.8446 0.3204 0.4454 539

SCC 0.4240 0.6850 0.5238 346

SCLC 0.6116 0.8230 0.7018 243

Non-tumor 0.7789 0.8817 0.8271 879

Macro avg 0.6110 0.5860 0.5591 2175

Weighted avg 0.6904 0.6506 0.6293 2175

CNN from scratch

ADC 0.4307 0.6845 0.5287

0.7503

168

LCNEC 0.7895 0.5009 0.6129 539

SCC 0.6583 0.5289 0.5865 346

SCLC 0.6862 0.9177 0.7852 243

Non-tumor 0.8733 0.9568 0.9131 879

Macro avg 0.6876 0.7178 0.6853 2175

Weighted avg 0.7632 0.7503 0.7428 2175



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1830  | https://doi.org/10.1038/s41598-022-05709-7

www.nature.com/scientificreports/

distinguish LCNEC from small cell carcinoma using deep learning, however, this is based on cytology images 
as the input information9. We could not find any studies that have attempted to classify the major carcinoma 
subtypes including LCNEC, using lung biopsy images as the input.

In this study, we took two approaches to developing AI models that distinguish multinomial patterns of 
lung carcinoma: transfer learning with pre-trained CNNs and a built from scratch CNN. First, we used trans-
fer learning with pre-trained convolutional neural networks based on ResNet15215, VGG1916, Xception17, and 
NASNETLarge18. Among those pre-trained CNN models, Xception achieved the highest overall performance and 
ResNet152 produced the lowest performance. These results demonstrate that transfer learning with pre-trained 
CNNs on ImageNet19 is relatively easy to access and ensures obtaining a certain level of verified accuracy. How-
ever, these results also imply, even among the pre-trained CNN models, the performances of each model may vary 
in pathology image analysis, as shown in Table 3. The model with ResNet152 achieved the lowest performance 
despite being known as proven performance. ResNet152 showed significantly lower performance, especially for 
ADC and LCNEC, than the results of other models. In addition, an interesting result is that ResNet15 misclassi-
fied the SCLC cases as well as most cases of ADC and LCNEC, while the other models easily diagnosed the class 
of SCLC. ResNet152 may require more fine-tuning to analyze for pathology images. The previous studies have 
tended to use pre-trained CNNs on a large benchmark dataset, for example, ImageNet19. However, our dataset 
consisted only of the scanned hematoxylin–eosin stained pathology slides, which is away from the ImageNet19. 
Our results imply that using a pre-trained CNN with proven performance is one method, but it does not neces-
sarily guarantee high performance. In other words, it may be crucial to choose an appropriate model for the 
specific task, such as analyzing pathological images.

The second approach was to customize a new convolutional neural network model. The built from scratch 
CNN model performed similar or better than the transfer learning using pre-trained CNNs on a large benchmark 
dataset. The CNN built from scratch showed similar performance to the model with Xception as the results of 
AUC, but showed better performance than the Xception model considering overall diagnostic performance (i.e. 
precision, recall f1-score, and accuracy). These results imply that the built from scratch CNN model fitted to the 
specific task at hand with a certain amount of data, such as pathological diagnosis of lung cancer subtypes, could 
be expected to produce better performances rather than that of transfer learning using the pre-trained CNNs.

For each class, Xception, NASNetLarge, and CNN from scratch were relatively good at distinguishing the 
classes of SCLC and non-tumor tissue, but not at distinguishing NSCLC subtypes (ADC, LCNEC, SCC; see in 
Table 3). Although it did not show that the performance of the scratch CNN was superior for ADC, LCNEC, and 
SCC to others, overall, those were similar or better than the performance of the other models.

The AUC for LCNEC on the CNN from scratch was exceptionally low (AUC = 0.68) compared to others (see in 
Fig. 2j). Although the reason for the low AUC for LCNEC on our model is not clearly known, the use of surgical 
specimens in the test set may be one possible reason. Further studies are needed for degree of performance on 
deep-learning models trained with lung cancer biopsy slides depending on sample subtypes.

Table 4.   Performance of the CNN from scratch model for test sets. ADC adenocarcinoma, LCNEC large cell 
neuroendocrine carcinoma, SCC squamous cell carcinoma, SCLC small cell lung cancer, Dataset′ the dataset 
excluding the class LCNEC, Dataset″ the dataset consisting of NSCLC (ADC, LCNEC, SCC), SCLC, and non-
tumor, Precision the fraction of relevant instances among the retrieved instances, Recall the fraction of relevant 
instances that were retrieved, f1-score a measure of test set’s accuracy and the harmonic mean of the precision 
and recall, Support number of test set for each label and total, weighted average averaging the support-weighted 
mean per label, macro average the arithmetic mean of individual classes’ precision, recall, and f1-scores.

Dataset Classification Precision Recall f1-score Accuracy Support

Dataset

ADC 0.4307 0.6845 0.5287

0.7503

168

LCNEC 0.7895 0.5009 0.6129 539

SCC 0.6583 0.5289 0.5865 346

SCLC 0.6862 0.9177 0.7852 243

Non-tumor 0.8733 0.9568 0.9131 879

Macro avg 0.6876 0.7178 0.6853 2175

Weighted avg 0.7632 0.7503 0.7428 2175

Dataset′

ADC 0.5442 0.7321 0.6244

0.8674

168

SCC 0.8405 0.7312 0.7821 346

SCLC 0.9187 0.9300 0.9243 243

Non-tumor 0.9467 0.9295 0.9380 879

Macro avg 0.8125 0.8307 0.8172 1636

Weighted avg 0.8788 0.8674 0.8708 1636

Dataset″

NSCLC 0.9379 0.8604 0.8975

0.8920

1053

SCLC 0.6257 0.9424 0.7521 243

Non-tumor 0.9549 0.9158 0.9350 879

Macro avg 0.8395 0.9062 0.8615 2175

Weighted avg 0.9099 0.8920 0.8964 2175
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In additional analyses, the CNN from scratch showed better performance for distinguishing 4 classes (exclud-
ing LCNEC) and 3 classes (NSCLC, SCLC, and non-tumor) as shown in Table 4. For classification excluding 
LCNEC, the CNN from scratch showed similar AUCs (0.94 for ADC, 0.96 for SCC, and 0.99 for SCLC) with 
Kanavati’s study10 (0.814–0.987 for ADC, 0.959–0.989 for SCC, and 0.994–0.999 for SCLC). The performance 
change when LCNEC is not classified can be interpreted as follows. One possible reason is that classification of 
LCNEC makes prediction of other cancer subtypes difficult. Actually, distinguishing among poorly differenti-
ated ADC, poorly differentiated SCC, and LCNEC is challenging without immunohistochemistry, and LCNEC 
may also be difficult to distinguish from SCLC in biopsy in some cases. Travis et al. reported that unanimous 
agreements in LCNEC and SCLC were 40% and 70% of cases, respectively, and the most common disagreement 
occurred between LCNEC and SCLC in surgically resected pulmonary neuroendocrine tumors reviewed inde-
pendently by five pulmonary pathologists20.

Another possibility is increasing the number of classes may cause the prediction to be more challenging in 
general.

Figure 3.   Confusion matrices and areas under the curve (AUC) for the receiver operating characteristic curves 
(ROC) achieved by the CNN from scratch on the three data sets. The diagnostic performance of the CNN model 
built from scratch in multinomial classification of lung cancer subtypes was evaluated on the test sets. Dataset 
consisted of five classes; ADC, LCNEC, SCC, SCLC, and non-tumor. Dataset′ consisted of four classes excluding 
LCNEC from the dataset. Dataset″ composed three classes with NSCLC (combining ADC, LCNEC, and SCC), 
SCLC, and non-tumor. The area under the curve (AUC) of receiver operating characteristic curve (ROC) 
achieved by the scratch CNN model on each dataset are shown [Dataset (a,b), Dataset′ (c,d), Dataset″ (e,f)].
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There are some limitations to our study. First, our data set may be a relatively small number of samples to 
train and test the models for classifying into five classes. The number of samples in each class might be small, 
especially in the class of LCNEC. In addition, LCNEC cases in the test set were surgical specimens. However, 
even with relatively small data, a similar rate of performance results was obtained compared to previous studies 
with large amounts of data. This suggests that, in the development of AI models, finding a quantitative criterion 
of data for training and performance testing should be conducted in future research. Secondly, our study was 
conducted at patch level compared to the actual pathological diagnosis performed at slide level. The diagnoses 
of biopsy are more difficult than that of surgical specimens for pathologists. Therefore, it appears that NSCLC 
classification performance is lower than expected, as it may be more difficult to differentiate cancer subtypes 
at the patch level than at the slide level. Diagnosis of AI models at slide-level is generally performed first at the 
patch level. A class is determined first at the patch level, and then diagnosed at slide level by the proportion of 
the certain class patches on the slide. Thus, the performance of AI models at the slide level should be similar or 
better than that of at the patch level. In previous studies10 have shown that the prediction rate of the AI model 
at the patch level was similar to or lower than the prediction rate at the slide level. This study was conducted 
to evaluate the optimal diagnostic performance at the patch level. The third limitation of our study is that our 
dataset is “controlled’ data, not “real-world” data. The dataset consisted of lung or bronchus biopsy slides from 
Gyeongsang National University Hospital in 2012. Due to the relatively small number of LCNEC biopsy cases 
(n = 2) in 2012, we added more LCNEC biopsy cases from 2013 to 2018 to ensure appropriate analysis for LCNEC 
and to balance among the diagnoses. Our dataset does not represent real-world distribution of diagnoses, so this 
may produce lower performance on real-world dataset. However, small-scale research is impossible if only real-
world data is used when AI pathology studies for cancers with a low incidence rate such as pulmonary LCNEC. 
Lastly, our models were built using an intra-hospital dataset. In other studies, public data such as the TCGA 
dataset was used to classify lung cancer versus normal tissue or the multinomial classification of the various 
cancer subtypes4,5, however, at the time of writing, there are no public databases that include LCNEC and small 
cell carcinoma slides available.

In conclusion, we compared two types of deep learning-AI models for classification of subtypes including 
LCNEC in lung cancer biopsy slides. The first type of model was a CNN pre-trained using transfer learning, 
and our experiments showed that this model was able to consistently classify the various classes of lung cancer 
type at a certain level of verified accuracy using actual pathological data as the input. The performance achieved 
in the experiments conducted demonstrates that a CNN model has the potential to be the basis for developing 
diagnostic workflow systems of the diagnosis and subtyping of lung cancers. However, the pre-trained CNNs on 
ImageNet19 are generally complicated and it requires a time-consuming process to run. In addition, expensive 
equipment and lots of electrical energy are indispensable for experiments. This seems to be challenging for AI 
models to apply and practical use to all hospitals immediately. Nevertheless, studies on AI in pathology have been 
actively conducted, and it will be expected to continue and produce a lot of progress. The information gathered 
in this study suggests that one approach to pathology image analysis is to use a relatively simple CNN built from 
scratch model fitted to the specific task, like the model demonstrated in this paper.

Materials and methods
Patients.  We collected hematoxylin–eosin stained pathology slides from the pathology reports of 171 
patients that underwent lung or bronchus biopsies at Gyeongsang National University Hospital, Jinju, Korea, 
in 2012, and the pathology slides of 12 patients diagnosed with large cell neuroendocrine carcinoma in their 
biopsy at Gyeongsang National University Hospital from 2012 to 2018. Out of the patients, the pathology slides 
were taken from 18, 19, and 18 of patients were respectively diagnosed with adenocarcinoma, squamous cell 
carcinoma, and small cell carcinoma, while other slides (n = 116) all came from non-tumor cases. Those slides 
were constructed as the training and validation in the dataset as shown in Table 1. The test set was composed 
of additional cases from 2013 and 2015 (3 of ADC, 2 of LCNEC, 3 of SCC, 3 of SCLC, and 11 of non-tumor 
slides). Among these slides, the two cases of LCNEC (one was from 2013, the other was from 2015) were surgi-
cal specimens. The biopsy was not done for the two cases, and those were entirely independent cases from the 
slides in the training and validation set. Each diagnosis was histopathologically confirmed by two experienced 
pathologists. This study was approved by the Institutional Review Board of Gyeongsang National University 
Hospital with a waiver for informed consent (2021-04-016), and all methods were performed in accordance with 
the relevant guidelines and regulations.

Data preprocessing.  A total of 205 WSIs were acquired from 205 pathology slides with an Aperio AT2 
slide scanner (Leica Biosystems Division of Leica Microsystems Inc., IL, USA) and 400 ×. Two experienced 
pathologists annotated the cancer regions on the WSIs with Aperio ImageScope v12.4.3 (Leica Biosystems Divi-
sion of Leica Microsystems Inc., IL, USA). Tumor areas were extracted from the annotated whole slide images 
(WSIs), the extracted areas were used to generate non-overlapping patches 256 × 256 pixels in size at a magnifi-
cation of 20 × using DeepPATH based on the OpenSlide library in Python (Fig. 1a)7. The patches were removed 
if the percentage of background in the patch was above 25% according to the DeepPATH7 program. In this 
process, 10,049 patches were generated from the original 205 WSIs containing either one of the four lung cancer 
subtypes or a negative case, as shown in Table 1.

Patch dataset.  The dataset consisted of slides from patients in one of 5 classes with 21 of ADC, 14 of 
LCNEC, 22 of SCC, and 21 of SCLC whole slide images (WSIs) of lung cancer subtypes as well as 127 of non-
tumor WSIs. The training and validation set contained 3 of ADC, 2 of LCNEC, 3 of SCC, 3 of SCLC, and 11 of 
non-tumor slides. These WSIs generated 7089 of patches and 785 of patches in the training and validation set, 
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respectively. The test set was generated by the additional slides; 3 of ADC, 2 of LCNEC, 3 of SCC, 3 of SCLC, and 
11 of non-tumor slides independent from the training and validation set. The test set consisted of 2175 patches 
in five classes. The detailed information of the dataset is seen in Table 1. To compare the performance of AI 
models, we reconstructed the dataset into dataset′ and dataset″. Dataset′ consisted of only four classes excluding 
LCNEC from the original dataset in Table 1. Dataset″ is the dataset consisting of three classes; NSCLC, SCLC, 
and non-tumor. The class of NSCLC was generated by combining ADC, LCNEC and SCC patches from the 
dataset in Table 1.

Convolutional neural networks.  A deep neural network (DNN) is a supervised classifier that contains 
multiple layers between input and output layers21. A convolutional neural network (CNN, or ConvNet) is a spe-
cialized kind of a DNN, CNNs are known to perform particularly when analyzing images19–22. We constructed a 
convolutional neural network model for the multinomial classification of lung cancer biopsies with the possible 
outputs being the four lung cancer types or the negative case. Our CNN was built on the Keras Sequential API 
(https://​keras.​io/), written in Python and running on TensorFlow (https://​www.​tenso​rflow.​org/)23. CNN models 
take tensors of a certain shape as input, for image analysis CNNs the shape of these tensors are dictated by the 
height of input images, width, and color channels. Our model takes inputs with dimensions of 244 × 244 × 3 and 
consists of four convolution blocks with a max pool layer in each. The 1st and 2nd hidden layers of the model 
have 16 and 32 filters, respectively, with a kernel size of (2, 2) and use a rectified linear unit (ReLU) as their acti-
vation functions. The 3rd and 4th hidden layers have 64 filters with a kernel size of (2, 2) and use a rectified linear 
unit (ReLU) as their activation functions, as shown in Table 2. The fully connected dense layer of the model has 5 
units and uses a softmax activation function. Batch size of 200 and 100 epochs were determined as the optimum 
values for the model when considering both time and computational costs. When compiling the model, Nadam 
was chosen as the optimizer and categorical cross entropy was selected for the loss function.

Transfer learning with pre‑trained ConvNets.  We evaluated four AI models that used transfer learn-
ing to implement state-of-the-art pre-trained convolutional neural networks. Transfer learning is a subfield of 
machine learning and artificial intelligence which uses the learned weights of an already trained model to solve a 
different problem instead of starting the training process of a model over from scratch, this approach saves time 
and computational costs24. Transfer learning for computer vision problems is normally executed by applying 
pre-trained ConvNet architectures (e.g. VGG, ResNet, Xception etc.) that were trained on large benchmark data-
sets (e.g. ImageNet19) to solve a particular problem. The pre-trained convolutional neural networks (ConvNets) 
allow us to build AI models for image classification with relatively high accuracy and diagnostic performance 
even if the target dataset is small or if the people tackling the problem do not have the required expertise to train 
a CNN from scratch. Pre-trained image classification networks are trained on a subset of the ImageNet database 
used in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)25. Four pre-trained convolutional 
neural networks; ResNet15215, VGG1916, Xception17, and NASNETLarge18 were used in this study. ResNet152 
is a newer version of ResNet (Residual Network), which is a convolutional neural network built and trained 
by Microsoft15. VGG19, which has a depth of 19 layers, was established by the University of Oxford in 201416. 
Xception which was built and trained by Google, is a novel deep convolutional neural network inspired by 
Inception17. It slightly outperformed InceptionV3 (GoogLeNet)26 on the ImageNet database. Lastly, NASNET-
Large is a state-of-art neural image classification model built and trained by Google in 201818. The pre-trained 
models are freely accessible through the Keras Application (https://​keras.​io/​api/​appli​catio​ns/), which is a deep 
learning library. After the pre-trained models were chosen, we repurposed the knowledge that had already been 
learned; the layers, features, weights, and biases by fine-tuning to generate the correct outputs for our problem. 
Batch sizes of 20 and 10 epochs were determined as the optimum values for the pre-trained CNNs in considera-
tion of time and computational costs. When compiling each model, Nadam was chosen as the optimizer and 
categorical cross entropy was selected for the loss function.

Statistical analysis.  To evaluate the classification performance of the AI models, area under the curve 
(AUC) of the receiver operating characteristic curve (ROC), precision, recall with accuracy, and f1-score were 
utilized.

True positive (TP): the number of cases where the class was correctly identified versus the rest of classes.
False positive (FP): the number of cases where the class was incorrectly identified versus the rest of classes.
True negative (TN): the number of cases correctly identified as healthy or other cancer type.
False negative (FN): the number of cases incorrectly identified as healthy or other cancer type.

Accuracy =
TP + TN

TP + TN + FP + FN

precision =
TP

TP + FP

recall =
TN

TN + FP

https://keras.io/
https://www.tensorflow.org/
https://keras.io/api/applications/
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All statistical analyses were performed using the scikit-learn library (https://​scikit-​learn.​org/) from Python 
version 3.8.3 (https://​www.​python.​org/).

Data availability
The dataset used in this study might be shared upon reasonable request to Jung Wook Yang, MD, PhD.
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