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Can Hamilton’s rule be violated?
Matthijs van Veelen*

CREED, University of Amsterdam, Amsterdam, The Netherlands

Abstract How generally Hamilton’s rule holds is a much debated question. The answer to that

question depends on how costs and benefits are defined. When using the regression method to

define costs and benefits, there is no scope for violations of Hamilton’s rule. We introduce a

general model for assortative group compositions to show that, when using the counterfactual

method for computing costs and benefits, there is room for violations. The model also shows that

there are limitations to observing violations in equilibrium, as the discrepancies between Hamilton’s

rule and the direction of selection may imply that selection will take the population out of the

region of disagreement, precluding observations of violations in equilibrium. Given what it takes to

create a violation, empirical tests of Hamilton’s rule, both in and out of equilibrium, require the use

of statistical models that allow for identifying non-linearities in the fitness function.

DOI: https://doi.org/10.7554/eLife.41901.001

Introduction
Hamilton’s rule (Hamilton, 1964a; Hamilton, 1964b) states that pro-social, altruistic behaviour will

be selected for if rb>c, where b are the benefits to the recipient, c the costs to the donor, and r is

the relatedness between them. There is however no consensus concerning how generally this rule

applies. Some claim that Hamilton’s rule is completely general (Abbot et al., 2011). Others claim

that is almost always wrong (Nowak et al., 2010). Recently it has been suggested that the reason

why there is disagreement about the generality of Hamilton’s rule, is that different participants in

the debate have different definitions of costs and benefits (Birch, 2014; Birch and Okasha, 2015;

van Veelen et al., 2017). Some define costs and benefits using the regression method

(Gardner et al., 2011; Marshall, 2011). With this definition, Hamilton’s rule is claimed to always

hold, and this version of Hamilton’s rule therefore is also referred to as the general version of Hamil-

ton’s rule, or HRG (Birch, 2014). Others use the counterfactual method to determine costs and ben-

efits (Karlin and Matessi, 1983; Matessi and Karlin, 1984; Matessi and Karlin, 1986; van Veelen

et al., 2017). With this definition, Hamilton’s rule is claimed to hold only if the interaction is charac-

terized by ‘generalized equal gains from switching’, or, in other words, if the fitness effects of one

individual changing from defection to cooperation are independent of the behaviour of the others,

including the recipient (van Veelen et al., 2017).

In what follows, we will consider both definitions, and explore the scope for violations. With the

regression method, we will see that there is an identification problem; there are cases in which there

are actually multiple linear specifications, leading to multiple Hamilton’s rules, all of which hold.

Hamilton’s rule, using the regression method, therefore is not necessarily uniquely defined. For every

given specification, however, Hamilton’s rule cannot be violated. This is a short summary of a point

made in Section 4 of van Veelen et al., 2017.

In the main part of the paper, we will present a general model of assortative group compositions,

which we combine with the counterfactual method for computing costs and benefits. For this model,

we define population structure profiles, which reflect the distribution of group compositions that the

population structure puts typical mutants in. In combination with the shape of the fitness function,

these population structure profiles determine whether invading co-operators, or invading defectors,

have a selective advantage. We will find that this allows for violations of Hamilton’s rule. Part of the

van Veelen. eLife 2018;7:e41901. DOI: https://doi.org/10.7554/eLife.41901 1 of 38

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.41901.001
https://doi.org/10.7554/eLife.41901
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


reason why these violations can occur, is that relatedness r in Hamilton’s rule is a one-dimensional

measure for population structure, while the population structure profile that is relevant for the direc-

tion of selection is a richer description of population structure. Violations in equilibrium, however,

may not always be possible, because selection can also take a population out of the region where

Hamilton’s rule and the direction of selection disagree. This happens, for instance, in examples with

synergies.

In the final section, we discuss implications for empirical tests of Hamilton’s rule. The empirical lit-

erature is regularly lacking a precise description of what violations would look like, or how to identify

them in the data. Because the regression method does not allow for violations, an empirical test of

Hamilton’s rule, using the regression method, is not a meaningful exercise. With the counterfactual

method, violations are possible, although observing them either requires studying out-of-equilibrium

dynamics, or studying systems that allow for in-equilibrium violations. In both cases non-linear statis-

tical models should be allowed for.

The regression method
The regression method defines costs and benefits according to an ordinary least squares regression.

The fitness of individuals is regressed on two or more variables. One of those variables is their own

level of cooperation, which may be a binary value, in case there are only co-operators and defectors.

We will denote this variable by xse – with se for self – and minus the regression coefficient of that var-

iable is then defined as the cost of cooperation. The other variables are levels of cooperation for dif-

ferent types of interactants – such as, for instance, xsi for siblings and xco for cousins. The benefits of

having a cooperative sibling then is the regression coefficient of xsi, and the benefits of having a

cooperative cousin is the regression coefficient of xco. Many models and many empirical studies

focus on one type of interaction – such as interactions between siblings only – but here we also want

to discuss the issue of model specification, and therefore it will be useful to allow for the possibility

that there are different types of interactions happening at the same time – as Hamilton did in the

original paper (Hamilton, 1964a; Hamilton, 1964b). This allows us to consider different specifica-

tions. In what follows, we will think of an example in which both siblings and cousins may have an

effect, where roman numeral I refers to a linear specification that includes siblings only, and II to a

linear specification that includes both siblings and cousins.

The relatedness between siblings in this version of Hamilton’s rule is the covariance of xse and xsi,

divided by the variance of xse, and the relatedness between cousins is defined in the same way. With

this definition of costs, benefits and relatedness, Hamilton’s rule always holds, but it is important to

realize that it does so regardless of the linear specification that is chosen (van Veelen et al., 2017).

In our example, with siblings and cousins, that means that for any two time periods, be it in a model

or in a dataset, the change in average cooperativeness Dx equals both

Dx¼ rsibsi;I � cI

and

Dx¼ rsibsi;II þ rcobco;II � cII

The costs and benefits of cooperation carry and index I or II in the subscript, because the value of

the regression coefficients may depend on the specification (see Figure 1). Not including cousins in

the specification means that bco;I is set to 0. It is important to realize that Hamilton’s rule holding

does not mean that the specification chosen accurately reflects the way in which fitness’s depend on

whether one is a co-operator oneself, and on how many siblings and how many cousins are co-oper-

ators. Neither specification might represent the true fitness function, and still Hamilton’s rule will

hold for both. Relatednesses here do not depend on the model specification (see Section 4 of

van Veelen et al., 2017 for a formal derivation).

Hamilton’s rule according to the regression method therefore is not necessarily uniquely defined;

only if it happens to be the case that bco;II ¼ 0 do both versions coincide in this example. To make it

uniquely defined, the regression method would need to be combined with a way to choose between

specifications – and with data, applying statistical tests seems to be a natural way to do that. Such a

way to choose should then also be applied, not just when choosing between linear specifications,
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but also when choosing between linear and non-linear ones, and between different non-linear ones.

Hamilton’s rule according to the regression method therefore cannot both be uniquely defined, and

fully general, because having it well-defined would imply that in some cases non-linear specifications

would have to be chosen, while Hamilton’s rule being general crucially depends on the specification

being linear. But even if Hamilton’s rule is not always uniquely defined, it still holds for any given lin-

ear specification. Whichever linear specification is chosen, this should therefore never lead to a

violation.

The counterfactual method, applied to a general model of
assortment in groups of equal size
With the counterfactual method, the cost of cooperation is defined as the difference between an

individual’s fitness if it defects, and its fitness if it cooperates. Similarly, the benefits to another indi-

vidual are defined as the difference cooperation makes for that other individual’s fitness. In the rela-

tively simple setup considered here, we assume that individuals interact within groups of size n,

which implies that a model of dyadic interactions would mean n ¼ 2. Their fitnesses will depend on

the number of co-operators in their interaction group, and on whether they are a co-operator or a

defector themselves; pC ið Þ is the fitness of a co-operator in a group that contains i co-operators,

including the individual itself, and pD ið Þ is the fitness of a defector in a group that contains i co-oper-

ators. The cost of cooperation an individual faces, as well as the benefits cooperation confers on the

others, thereby may also depend on what the rest of the group it finds itself in consists of.

A population structure here is a function that represents how the composition of the population

depends on the overall frequency p of co-operators; fi pð Þ is the fraction of groups with i co-operators

in it, at overall frequency p. These have to be defined consistently, so that these frequencies always

add up to one (
Pn

i¼0
fiðpÞ ¼ 1), and so that p is indeed the overall frequency of co-operators

(
Pn

i¼0

i
n
fiðpÞ ¼ p). The cost of cooperation in a population is now the average cost, given the distribu-

tion of group types, and these may very well vary with p.

The counterfactual method dates back to Karlin and Matessi, 1983, Matessi and Karlin,

1984, and Matessi and Karlin, 1986, who in their evaluation of whether or not Hamilton’s rule holds

Figure 1. The value of coefficients bse and bsi may depend on the specification chosen. If xco is included (as in specification II), these values will be

different from when xco is not included (specification I). Including an interaction term (III) or a quadratic term (IV) will also make a difference for the value

of bse and bsi. All specifications that are linear, result in Hamilton’s rules, all of which agree with the direction of selection. Hamilton’s rule with

specification I says that rsibsi;I � cI>0 if and only if Dx>0 – where bsi;I is the value of bsi, and cI is minus the value of bse in this specification. Hamilton’s

rule with specification II says that rsibsi;II þ rcobco;II � cII>0 if and only if Dx>0 – where bsi;II is the value of bsi, bco;II is the value of bco, and cII is minus the

value of bse in this specification.

DOI: https://doi.org/10.7554/eLife.41901.002
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moreover did not allow for costs to vary with p. We do allow for costs and benefits to depend on p.

Section 3 in van Veelen et al., 2017 also discusses some additional differences between the original

definition and the one used here.

Selection
In order to answer the question whether or not mutant co-operators will be able to invade a popula-

tion of defectors, one would have to consider the type of group the average mutant co-operator

would find itself in, given the population structure. The probability that a mutant co-operator finds

itself in a group with in total i co-operators is

ui ¼
p#0
lim

i
n
fiðpÞ

p
; i¼ 0; :::;n

The vector u, with elements as defined above, could be called the “population structure profile”

at p¼ 0. Its counterpart u at p¼ 1 will be defined in the same way:

ui ¼
p"1
lim

n�i
n
fi pð Þ

1� p
; i¼ 0; :::;n

Co-operators can invade defectors if their average fitness at p¼ 0 is larger than the average fitness

of defectors, who at p¼ 0 only find themselves in groups with defectors only, for any population

structure.

X

n

i¼1

uipC ið Þ>pD 0ð Þ (1)

Defectors on the other hand can invade co-operators if their average fitness at p¼ 1 is larger than

the average fitness of co-operators, who at p¼ 1 only find themselves in groups with co-operators

only.

X

n�1

i¼0

uipD ið Þ>pC nð Þ (2)

Hamilton’s rule
Hamilton’s rule says that cooperation will be selected for if rb>c. We will rewrite this, at p ¼ 0 and at

p ¼ 1, so as to get inequalities that look more like Equations 1 and 2. Relatedness r measures how

much more likely co-operators are to be matched with other co-operators, compared to how likely

defectors are to be matched with co-operators; r ¼ P CjCð Þ � P CjDð Þ. In the limit of p # 0, the share

of defectors that is matched with co-operators goes to 0, whatever the population structure. With

population structure, the average mutant co-operator however might encounter fellow mutant co-

operators. This therefore reduces to r ¼ P CjCð Þ, which one can rewrite as r ¼
Pn�1

i¼0
ui

i�1

n�1
. With the

counterfactual method, aggregate benefits at p ¼ 0 are n� 1ð Þ pD 1ð Þ � pD 0ð Þ½ �, while costs are

pD 0ð Þ � pC 1ð Þ. With those, one can rewrite Hamilton’s rule at p ¼ 0 as follows (see Appendix 1 for

more details):

X

n

i¼1

ui pC 1ð Þþ i� 1ð Þ pD 1ð Þ�pD 0ð Þ½ �f g>pD 0ð Þ (3)

Comparing the equation that indicates when cooperation is selected for (Equation 1) and the

one for Hamilton’s rule (Equation 3), we first of all find that they are one and the same equation if

the fitness function satisfies pC ið Þ ¼pC 1ð Þþ i� 1ð Þ pD 1ð Þ�pD 0ð Þ½ �. In this case, every additional co-

operator increases the payoff of a fellow co-operator by just as much as the first co-operator

increased the payoff of the defectors in an otherwise all-defector group. Hamilton’s rule will then

hold at p¼ 0 for any population structure profile u.

If the fitness function satisfies pC ið Þ � pC 1ð Þ þ i� 1ð Þ pD 1ð Þ � pD 0ð Þ½ � for all i ¼ 1; :::; n, then Hamil-

ton’s rule can be violated at p ¼ 0. Many cases with synergies would fall under this category. In this

case Hamilton’s rule can, however, still not be violated by a population that is in equilibrium at

p ¼ 0. If cooperation is selected against at p ¼ 0, then that by definition means that Equation 1 does
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not hold. The left hand side of Equation 3 now is even smaller than the left hand side of Equation 1,

so if Equation 1 does not hold, and co-operators are selected against at p ¼ 0, also Equation 3

does not hold, and rb<c. This implies that there is no violation. If, on the other hand, cooperation is

selected for at p ¼ 0, then, by definition, Equation 1 does hold. Now it is possible that Equation 3

does not hold, and rb<0, but since cooperation is selected for, the population moves away from

p ¼ 0, and therefore it moves away from where the violation is. Therefore the violation at p ¼ 0 can-

not be observed in equilibrium.

At the other end, where p ¼ 1, Hamilton’s rule can be rewritten in a similar way. Here, rb<c if

X

n�1

i¼0

ui pD n� 1ð Þ� n� i� 1ð Þ pC nð Þ�pC n� 1ð Þ½ �f g>pC nð Þ (4)

Figure 2. Within each panel, the fitness functions are depicted in the upper part. In panels A, B and C the bottom part depicts population structure

profiles of mutant co-operators at p ¼ 0 (blue) and of mutant defectors at p ¼ 1 (red). In panel D the bottom part depicts the distribution of what group

types co-operators (blue) and defectors (red) find themselves in, both at the same intermediate equilibrium value for p. No violations of Hamilton’s rule

with equal gains from switching. In panels A and B, the fitness function is pC ið Þ ¼ 0:6þ 2 i=nð Þ and pD ið Þ ¼ 1þ 2 i=nð Þ. In panel A the difference in

average fitness between co-operators and defectors is pC � pD ¼ �0:128, both at p ¼ 0 and at p ¼ 1. Cooperation therefore is selected against at both

ends. Inclusive fitness is also �0:128 at both ends. Panel B has a more assorted population structure, for which this difference, as well as inclusive

fitness, is þ0:16 at both ends, and cooperation is selected for. No violations in equilibrium with synergies. Panel C has the same population structure

profiles as panel B, but a different fitness function: pC ið Þ ¼ 0:5þ 2 i=nð Þ2 and pD ið Þ ¼ 1þ 2 i=nð Þ2. Here cooperation is selected against at p ¼ 0, where

pC � pD ¼ �0:33, and selected for at p ¼ 1, where pC � pD ¼ þ0:45. Inclusive fitness is �0:48 at p ¼ 0 and þ0:6 at p ¼ 1. Violation in a mixed

equilibrium. In panel D, the fitness function is pC ið Þ ¼ 0:5þ 2 i=nð Þ0:5 and pD ið Þ ¼ 1þ 2 i=nð Þ0:5. Here, pC � pD ¼ 0 at p ¼ 0:473 – which makes it an

equilibrium – while inclusive fitness is 0:113 6¼ 0. Details are in Appendix 1, as are computations of inclusive fitness with costs and benefits according to

the regression method instead of the counterfactual method.

DOI: https://doi.org/10.7554/eLife.41901.003
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Here, Equation 2 and Equation 4 are one and the same equation if the fitness function satisfies

pD ið Þ ¼pD n� 1ð Þ� n� i� 1ð Þ pC nð Þ�pC n� 1ð Þ½ �. In this case, every additional defector decreases the

payoff of a fellow defector by just as much as the first defector did to the co-operators in an other-

wise all-co-operator group. If this is true, then Hamilton’s rule will hold at p¼ 1 for any population

structure profile �u.

If the fitness function satisfies pD ið Þ � pD n� 1ð Þ � n� i� 1ð Þ pC nð Þ � pC n� 1ð Þ½ � for all

i ¼ 0; :::; n� 1, then Hamilton’s rule can be violated at p ¼ 1, but, again, not in equilibrium. If defec-

tion is selected against at p ¼ 1, then Equation 2 by definition does not hold. Under the condition

on the fitness function, the left hand side of Equation 4 is now even smaller than the left hand side

of Equation 2, so if defectors are selected against at p ¼ 1, then also Equation 4 does not hold, and

rb> c. This, again, implies that there is no violation. If, on the other hand, defection is selected for at

p ¼ 1, there can be a violation, but this cannot be observed in equilibrium, because defectors being

selected for means that the population actually moves away from where the violation is.

So far we have an inequality that prevents violations in equilibrium at p ¼ 0, and another one that

prevents violations at p ¼ 1. Both concern only the fitness function. If, on top of that, the population

structure and the fitness function combined imply that the difference in fitness between co-operators

and defectors increases in p, then the system does not allow for any violations in equilibrium. The

reason is that the latter condition would imply that there simply are no stable interior equilibria.

Many systems with synergies will satisfy all three conditions, and therefore preclude in-equilibrium

violations of Hamilton’s rule. Systems with anti-synergies are much more conducive to violations in

equilibrium, especially in mixed equilibria, in which co-operators and defectors coexist. Both Fig-

ures 2 and 3 illustrate that.

The fitness function used in panels A and B of Figure 2 is linear in the number of co-operators in

the group. This makes Equation 1 and Equation 3 coincide, as well as Equation 2 and Equation 4.

With the quadratic fitness function in panel C, both pC ið Þ � pC 1ð Þ þ i� 1ð Þ pD 1ð Þ � pD 0ð Þ½ � and

pD ið Þ � pD n� 1ð Þ � n� i� 1ð Þ pC nð Þ � pC n� 1ð Þ½ � hold, which implies that there can be no violation

in equilibrium, either at p ¼ 0 or at p ¼ 1. This fitness function would be unambiguously synergistic;

benefits from cooperation increase, and costs decrease with i. Combined with a simple population

structure, elaborated on in Appendix 1, pC pð Þ � pD pð Þ moreover increases in p, precluding any in-

equilibrium violation. Panel D gives an example of a fitness function with anti-synergies, where coop-

eration is selected for at p ¼ 0, and selected against at p ¼ 1, and where there is an equilibrium fre-

quency of co-operators in between 0 and 1. At that equilibrium p, inclusive fitness is not 0, which

makes Hamilton’s rule disagree with the direction of selection.

Games with 2 players and 2 actions are naturally subsumed under this framework, and they allow

for whole trajectories to be depicted (Figure 3). A natural way to define population structures with 2

players and constant relatedness r would be to choose f0 pð Þ ¼ 1� rð Þ 1� pð Þ2þr 1� pð Þ;

f1 pð Þ ¼ 1� rð Þ2p 1� pð Þ; and f2 pð Þ ¼ 1� rð Þp2 þ rp. In this case u ¼ 0; 1� r; r½ � – implying that a

mutant co-operator never finds itself in a group with 2 defectors, obviously; faces a defector with

probability 1� r; and another co-operator with probability r – and u ¼ r; 1� r; 0½ �. This is combined

with two prisoners dilemma’s; one with synergies for panel A:

C D

C 3 0:1

D 3:1 2

and one with the opposite for panel B:

C D

C 3 1:9

D 4:9 2

In the first one, selection always takes the population out of the region where inclusive fitness dis-

agrees with the direction of selection. In the second one there are mixed equilibria, where neither

co-operators or defectors are selected for, while inclusive fitness is not 0.

A similar point is made with Figures 30 and 31 in van Veelen et al. (2017). The conclusion there

– that there is ‘no scope for finding violations in equilibria where either one has gone to fixation’ – is

too strong though; with anti-synergies, violations at p ¼ 0 and p ¼ 1 are possible.
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Whether or not Hamilton’s rule will hold, with costs and benefits defined according to the coun-

terfactual method, depends on the combination of fitness function and population structure. How

often we should expect Hamilton’s rule to hold therefore depends on what we think the distribution

of fitness functions and population structures is. Whether reasonable assumptions concerning these

distributions lead to many or not so many violations of Hamilton’s rule is an interesting question for

further research that we do not pursue here.

Implications for empirical tests of Hamilton’s rule
There is a number of studies that explicitly set out to test Hamilton’s rule empirically. A recent survey

by Bourke (2014) includes Bourke (1997); Emlen and Wrege (1989); Gadagkar (2010);

Hogendoorn and Leys (1993); Krakauer (2005); Loeb (2003); Metcalf and Whitt (1977);

Nonacs and Reeve (1995); Noonan (1981); Pfennig et al. (1999); Queller and Strassmann (1988);

Richards et al. (2005) and Stark (1992). These studies typically consider a behaviour that is present,

and therefore presumably selected for, estimate its benefits and costs by linear regression, estimate

relatedness, and decide that Hamilton’s rule holds if rb>c, and is violated if rb<0, where the r, b and

c now refer to the estimated values of relatedness, costs and benefits. Although intuitively appeal-

ing, it is worth realizing that this does not constitute a test of either of the two versions of Hamilton’s

rule – where it should be noted that these empirical studies were done before it was even recog-

nized that there are different ways to define costs and benefits to begin with.

Figure 3. Dynamics for two 2-player games. Every point in the simplex represents a population state f0; f1; f2ð Þ. The left down corner is 1; 0; 0ð Þ, which

has only groups with 0 co-operators; the right down corner is 0; 0; 1ð Þ, which has only groups with 2 co-operators; the top corner is 0; 1; 0ð Þ, which has

only groups with 1 co-operator. The grey lines represent different population structures, all with constant relatedness. Any given grey line gives a

population state for every overall frequency p of co-operators. Dynamics make populations move along the line that represents the population structure

it faces. All grey lines go through the left down corner, where p ¼ 0, and the right down corner, where p ¼ 1. The straight line on the bottom reflects a

totally assorted population that has no mixed groups. The higher up, the more mixed groups there are, and the less assortment there is. The highest

up grey line represents a well-mixed population. No violations of Hamilton’s rule in equilibrium with synergies. In panel A, pC 1ð Þ ¼ 0:1, pC 2ð Þ ¼ 3,

pD 0ð Þ ¼ 2 and pD 1ð Þ ¼ 3:1. The regions where cooperation is selected for (green), and where inclusive fitness is positive (blue) are not the same, but

selection always takes populations out of the parts where they disagree. Violations with anti-synergies. In panel B pC 1ð Þ ¼ 1:9, pC 2ð Þ ¼ 3, pD 0ð Þ ¼ 2

and pD 1ð Þ ¼ 4:9. Here populations can settle at mixed equilibria, while inclusive fitness is not 0. Violations at p ¼ 0 and p ¼ 1 are also possible for more

extreme choices of r.

DOI: https://doi.org/10.7554/eLife.41901.004
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If we think of Hamilton’s rule with costs and benefits defined according to the regression method,

then we have seen that this version of Hamilton’s rule will hold for any linear specification, applied to

any thinkable way in which fitnesses in reality could depend on the behaviour of individuals them-

selves, and on the behaviour of those they interact with. In other words, if we were to treat Hamil-

ton’s rule being valid as the hypothesis, then the hypothesis covers everything, and the null

hypothesis is void, as no true way in which fitness would be determined by the behaviour of self and

others would go with Hamilton’s rule not holding (see also Nowak et al., 2017). This would also

inevitably hamper a good statistical analysis, because, given that there is no true model for which

Hamilton’s rule does not hold, there is no meaningful way to define the distribution of inclusive fit-

nesses (values of rb� c) under the null hypothesis, which one then would want to use to test if rb� c

really is larger than 0.

On the other hand, if we think of Hamilton’s rule with costs and benefits defined according to the

counterfactual method, then estimating costs and benefits in a linear model without considering the

possibility of non-linearities would not allow us to uncover violations, because those, as we have

seen, require the fitnesses to be non-linear. One solid way to decide that Hamilton’s rule is not vio-

lated would be to allow for a non-linear model, and reject all non-linearities, in favour of a linear

model. That, however, is not what these papers do.

Our observations therefore first of all imply that meaningful empirical tests would have to con-

sider the version of Hamilton’s rule that uses the counterfactual method for computing costs and

benefits, and that they should use statistical models that allow for non-linearities. Our observations

moreover indicate where to look for violations, and where not to look, as there is a variety of settings

in which violations are not expected. First of all, one should look at systems where how much being

a co-operator instead of a defector contributes to the fitness of others, and takes away from the fit-

ness of oneself, depends on what the others do. Moreover, if we consider a system that is in equilib-

rium, we would not observe violations if the three ’synergy-conditions’ are satisfied, while systems

that (also) have anti-synergies do allow for in-equilibrium violations (see Figure 4). The presence of

polymorphisms, where co-operators and defectors coexist, can be a good indication that such anti-

synergies are present.

Distinct types
We would also not expect violations in cases where the level of help is a continuous trait, the fitness

function is smooth, and where the levels of cooperation across individuals are relatively homoge-

neous, making fitness effects approximately linear. In models with continuous levels of help, popula-

tions can then settle at an equilibrium value of cooperation, where Hamilton’s rule is satisfied,

provided that there are no branching events (see Section 6 in van Veelen et al., 2017). What is

needed for violations, therefore, is that there are distinct types; co-operators and defectors. Some

behaviours or properties are binary by nature; one either jumps into a river in an effort to save some-

one, or not. Also eating a fellow brood member is an all or nothing trait (Pfennig et al., 1999).

When the level of cooperation is a continuous trait, one can however also get distinct types to

evolve after a branching event (Doebeli et al., 2004). Notice that also at a singular point where the

system branches, Hamilton’s rule, which predicts no change, does not agree with what happens

(Doebeli and Hauert, 2006).

Spurious violations
When b and c are estimated linearly, we should not expect violations of Hamilton’s rule. This makes

it all the more surprising that 4 out of the 12 explicit tests of Hamilton’s rule, surveyed in

(Bourke, 2014), all of which estimate costs and benefits with a linear model, do find apparent viola-

tions. A natural question to ask is where those violations come from. One prime candidate has to do

with the fact that the result that Hamilton’s rule always holds, if costs and benefits are defined using

the regression method, depends on using the cooperativenesses of the individuals involved, not just

for computing costs and benefits, but also in the formula for relatedness. The relatedness between

siblings, for instance, in this version of Hamilton’s rule, would be cov xse; xsið Þ=var xseð Þ, where xse refers

to the cooperativeness of self and xsi to the cooperativeness of the sibling. Here it is good to notice

that if these variables refer to data, this is best described, not as relatedness itself, but as an estima-

tor of relatedness. If a different estimator of relatedness is used, for instance based on gene
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sequencing, then that would include genes for traits other than cooperative behaviour. The differ-

ence between these two estimators can make for a violation. The probability of this happening

decreases as sample size increases. For all sample sizes, large and small, Hamilton’s rule, using

cov xse; xsið Þ=var xseð Þ for relatedness, will hold. With small samples, costs, benefits, and relatedness

may all vary quite a bit – although only in concert, because Hamilton’s rule will still have to hold –

and with cov xse; xsið Þ=var xseð Þ possibly being far away from the true relatedness, the discrepancy

between it and another estimator for relatedness might be large enough to create an apparent viola-

tion of Hamilton’s rule. Other reasons for finding violations when estimating costs and benefits line-

arly are also possible (see Section 8 of van Veelen et al., 2017), and all of them are spurious.

Smith et al., 2010
In order to be able to find violations of Hamilton’s rule, with benefits and costs defined according to

the counterfactual method, one must allow for a non-linear statistical model. The study that comes

closest to that ideal is Smith et al., 2010 (see also Chuang et al., 2009; Chuang et al., 2010). This

experiment does a non-linear estimation of sporulation efficiency of Myxococcus xanthus, resulting

in fitness functions that would imply that, already in a well-mixed population, co-operators can

invade defectors, and defectors can invade co-operators. Combined with a range of population

structures, this would make a population settle at mixed overall frequencies of co-operators. This

study however also has a few conceptual imperfections. Most of the non-linearity it picks up, results

from considering Wrightian fitness’s (numbers of offspring) rather than Malthusian fitness’s (growth

rates); see Wu et al. (2013). For small fitness effects that would not matter too much, but the

Figure 4. A road map for empirical tests of Hamilton’s rule. The three synergy conditions are that pC ið Þ � pC 1ð Þ þ i� 1ð Þ pD 1ð Þ � pD 0ð Þ½ � for all

i ¼ 1; :::; n, that pD ið Þ � pD n� 1ð Þ � n� i� 1ð Þ pC nð Þ � pC n� 1ð Þ½ � for all i ¼ 0; :::; n� 1, and that pC pð Þ � pD pð Þ increases with p.

DOI: https://doi.org/10.7554/eLife.41901.005
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aggregate fitness effects are not small here. Another drawback is that the experiment does not

include an independent observation of a population structure. For the experiment, a combination of

group compositions is chosen. The growth rates at these different group compositions are used to

estimate the fitness function – which it is perfect for. The group compositions themselves, as chosen

by the experimenter, are also the sole input for calculations characterizing population structure,

which makes it not a proper empirical observation of a population structure. In spite of these draw-

backs, this study is the closest to a proper empirical test of Hamilton’s rule.

Polymorphisms
While systems of microorganisms with mixed equilibria seem good candidates, one will have to be

careful with identifying the reasons for polymorphisms. In systems where one type can invade the

other, and vice versa, already in a well-mixed population (Smith et al., 2010; MacLean and Gudelj,

2006; MacLean et al., 2010; Gore et al., 2009), the reason for stable coexistence may have nothing

to do with population structure. If fitness is moreover maximized at intermediate mixtures, it also

hard to unambiguously qualify one strain as cooperative and the other as defecting (MacLean et al.,

2010). Systems like this might nonetheless point to possible candidates, if there is in fact structure in

the population. With microorganisms, one would then naturally want to switch from counting dis-

crete numbers of co-operators to a continuous variable for group compositions, measuring the

within group frequency of co-operators. Appendix 1 provides a continuous version that allows for all

the equivalent computations needed to establish whether or not Hamilton’s rule is violated

empirically.

Wang and Lu, 2018
A study that does look at polymorphisms is Wang and Lu (2018). In this study, players have one of

two different roles; there are breeding pairs, which are the potential recipients of help, and potential

helpers. This implies that there is no room for the strategic interaction that could create the non-line-

arities needed for possible violations; costs and benefits of helping at the nest cannot depend on

the recipient type, because the recipient is not facing the same choice. Also in this study, therefore,

there is no scope for violations of Hamilton’s rule.
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Appendix 1

DOI:

I. Introduction
If one would want to test the validity of Hamilton’s rule empirically, it would be essential to

know if Hamilton’s rule can be violated at all, and if it can, it would be essential to know what

violations would look like. Whether or not violations are theoretically possible depends on how

costs and benefits are defined. Violations are not possible if the costs and benefits in

Hamilton’s rule are defined according to the "regression method". In that case there can only

be spurious reasons for finding social behaviour that is selected for, while the data would

seem to suggest that br<c, or vice versa. The version of Hamilton’s rule that uses the

regression method is also referred to as the general version of Hamilton’s rule, or HRG; see

Birch (2014).

If costs and benefits are defined according to the "counterfactual method", violations are

possible. This is the method we will use here, for a variety of reasons. One is that is seems true

to the original idea to define for instance the costs of a social act as the difference between an

individual’s fitness if it performs the social act, and its fitness if does not. A reason not to use

the regression method is also that this method is incomplete, and as such not well-defined; it

ignores the issue of model specification, and therefore there are cases where different

specifications would result in different Hamilton’s rules, with different values for costs and

benefits; see the main text and Section 4 of van Veelen et al. (2017). While the version of

Hamilton’s rule that uses the regression method is also referred to as HRG by Birch, 2014, the

version of Hamilton’s rule that uses the counterfactual method is not what Birch, 2014 calls

the special version of Hamilton’s rule, of HRS. See Section 9 of van Veelen et al., 2017 for

details.

Although the counterfactual method allows for violations, it off course also allows for non-

violations. If the interaction is characterized by ‘equal gains from switching’ then violations

should not occur. Equal gains from switching means that the fitness effects (the costs and

benefits) of the social behaviour are independent of who else contributes, and also

independent of whether or not the recipient performs the behaviour. With equal gains from

switching, the costs and benefits therefore are also independent of the current share of co-

operators in the population. Violations are only possible if the interaction does not have equal

gains from switching, and in that case costs and benefits will vary with the current frequency of

co-operators.

The fact that cost and benefits are frequency-dependent in those cases can make it harder

to derive claims that hold for all frequencies. We will therefore begin by focusing on two

specific frequencies: p ¼ 0 and p ¼ 1. At, or close to those frequencies, we will compare the

direction of selection – which here will indicate whether or not one strategy can invade the

other, and vice versa – with the value of rb� c at those frequencies. For that, it will be useful

to define a "population structure profile" at p ¼ 0, and one at p ¼ 1. This will be useful for

rewriting both inclusive fitness and the direction of selection, and for comparing these to each

other. Later on, when looking at cases with equilibrium mixtures of co-operators and

defectors, we will also consider frequencies p in between 0 and 1, and revisit this more

generally.

II. Relatedness at the edges

A. Close to p ¼ 0

Performing a cooperative act is assumed to be costly. Not all cooperative acts are costly,

because there are also mutualistic forms of cooperation, but in this context, we will mostly

focus on costly cooperation, hence the assumption. The benefits of being a co-operator –

benefits that may or may not outweigh the costs – we assume comes from the structure in the

population. This structure might make co-operators also be on the receiving end more often,
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as they might be matched with co-operators more often than defectors are. This difference is

captured by relatedness. Relatedness is defined as the difference in probabilities (between a

co-operator and a defector) of being matched with a co-operator: P CjCð Þ � P CjDð Þ. Both of

these conditional probabilities will typically depend on the current overall frequency of co-

operators, denoted by p, but for a variety of population structures, the difference between

them will not depend on p.

In order to compute that difference, we think of a simple chance experiment. First draw an

individual from the population, with every individual being equally likely to be drawn. Then

randomly select a partner. In our case, we will use a simple setup, where individuals live in

groups of equal size. In this case, the second draw simply returns to the group that the first

draw happened to come from, and draws a random other group member, with all (other)

group members having equal probability of being drawn.

In this setup with groups of equal size, a population structure is defined by functions fi pð Þ,

i ¼ 0; :::; n, that specify the frequency of groups with i co-operators and n� i defectors in it, at

an overall frequency p of co-operators. Using this notation, and Bayes’ rule, the difference in

conditional probabilities can be written as

r pð Þ ¼ P CjCð Þ�P CjDð Þ ¼

Pn
i¼0

i
n
i�1

n�1
fi pð Þ

Pn
i¼0

i
n
fi pð Þ

�

Pn
i¼0

n�i
n

i
n�1

fi pð Þ
Pn

i¼0

n�i
n
fi pð Þ

Close to p ¼ 0, the second term on the right hand side goes to 0, because if there are almost

no co-operators around, the chance that a random defector runs into a co-operator must go

to 0. In other words, the enumerator goes to 0, because

p#0
lim fi pð Þ ¼

0 if i>0
1 if i¼ 0

�

and because f0 pð Þ is multiplied by 0

n�1
. These limits for p # 0 follow from the fact that

Pn
i¼0

i
n
fi pð Þ ¼ p; this implies that i

n
fi pð Þ<p for each i>0, and hence fi pð Þ< n

i
p. Therefore

limp#0 fi pð Þ ¼ 0 for i>0, and since
Pn

i¼0
fiðpÞ ¼ 1, moreover limp#0 f0 pð Þ ¼ 1.

The denominator goes to 1 because

p#0
lim

X

n

i¼0

n� i

n
fi pð Þ ¼

p#0
lim 1� pð Þ ¼ 1

Therefore we can write

p#0
lim r pð Þ ¼

p#0
limP CjCð Þ ¼

p#0
lim

Pn
i¼0

i
n
i�1

n�1
fi pð Þ

Pn
i¼0

i
n
fi pð Þ

¼
p#0
lim

Pn
i¼0

i
n
i�1

n�1
fi pð Þ

p

While relatedness is a one-dimensional measure that characterizes a population state, or a

population structure to some extent, a richer measure will be useful too. This measure

captures how likely co-operators are to find themselves in groups of different types at low

frequencies p.

ui ¼
p#0
lim

i
n
fi pð Þ

Pn
j¼0

j

n
fj pð Þ

¼
p#0
lim

i
n
fi pð Þ

p
; i¼ 0; :::;n

With this definition, ui is the share of mutant co-operators that find themselves in a group with

i co-operators. Relatedness then becomes the inner product of a vector u with ui as its ith

element, and a vector with i�1

n�1
as its ith element:

p#0
lim r pð Þ ¼

X

n

i¼0

ui
i� 1

n� 1
¼
X

n

i¼2

ui
i� 1

n� 1

The vector u could be labelled the ‘population structure profile’ in the limit of p # 0, and it is

clear that there is typically a variety of profiles u that produces one and the same relatedness.
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B. Close to p ¼ 1

Close to p ¼ 1, it is easier to use the equivalent definition of relatedness, reversing the roles of

co-operators and defectors:

r pð Þ ¼ P DjDð Þ�P DjCð Þ ¼

Pn
i¼0

n�i
n

n�i�1

n�1
fi pð Þ

Pn
i¼0

n�i
n
fi pð Þ

�

Pn
i¼0

i
n
n�i
n�1

fi pð Þ
Pn

i¼0

i
n
fi pð Þ

The second term on the right hand side goes to 0 again; the enumerator goes to 0, because

p"1
lim fi pð Þ ¼

0 if i<n
1 if i¼ n

�

and because fn pð Þ is multiplied by 0

n�1
, while the denominator goes to 1 because

p"1
lim

X

n

i¼0

i

n
fi pð Þ ¼

p"1
limp¼ 1

Therefore we can write

p"1
lim r pð Þ ¼

p"1
limP DjDð Þ ¼

p"1
lim

Pn
i¼0

n�i
n

n�i�1

n�1
fi pð Þ

Pn
i¼0

n�i
n
fi pð Þ

¼
p"1
lim

Pn
i¼0

n�i
n

n�i�1

n�1
fi pð Þ

1� p

We can furthermore define a measure that captures how likely defectors are to find

themselves in groups of different types at low frequencies 1� p of defectors (which means

high frequencies p of co-operators).

ui ¼
p"1
lim

n�i
n
fi pð Þ

Pn
j¼0

n�j

n
fj pð Þ

¼
p"1
lim

n�i
n
fi pð Þ

1� p
; i¼ 0; :::;n

Here ui is the share of mutant defectors that finds itself in a group with i co-operators. In many

models it would be reasonable to assume that mutant defectors face similar numbers of fellow

defectors in their group as mutant co-operators face fellow co-operators. If they do, the

population structure profiles at p ¼ 0 and p ¼ 1 would be each other’s mirror images: ui ¼ un�i.

Relatedness at p ¼ 1 again becomes the inner product of a vector u with ui as its ith element,

and a vector with n�i�1

n�1
as its ith element.

p"1
lim r pð Þ ¼

X

n

i¼0

ui
n� i� 1

n� 1
¼
X

n�2

i¼0

ui
n� i� 1

n� 1

If indeed ui ¼ un�i, then limp"1 r pð Þ ¼ limp#0 r pð Þ.

These population structure profiles, u at p ¼ 0 and u at p ¼ 1, will be useful for rewriting

when cooperation can invade defection (p ¼ 0), and when defection can invade cooperation

(p ¼ 1), as well as when inclusive fitness is positive or negative at these two frequencies.
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Appendix 1—figure 1. Population structure profiles u (blue) for co-operator invaders at p # 0,

and u (red) for defector invaders at p " 1. Defectors at p # 0 only find themselves in groups with

0 defectors, co-operators at p " 1 only find themselves in groups with n co-operators (not

depicted in the figures). In the lower panel mutants assort more than in the upper one, and

random matching would result in a population structure profile u with single spike at 1, and a

single spike at n� 1 for u. Section IX describes the population structures that result in these

population structure profiles. For this population structure ui ¼ un�i is satisfied, which means

that the red bars are the mirror image of the blue ones.

DOI: https://doi.org/10.7554/eLife.41901.008

III. When cooperation/defection can/cannot invade

A. Close to p ¼ 0

Mutant C’s can invade a resident D if they have higher fitness close to p ¼ 0:

p#0
limpC>

p#0
limpD

The game between co-operators and defectors is defined by pC ið Þ for co-operators and pD ið Þ

for defectors that determine the payoff they get as a function of the number of co-operators

in the group they are in (for co-operators: including themselves). We assume a dynamic that

linearly translates payoffs into fitness, like the replicator dynamics. This allows us to use

payoffs and fitness interchangeably; see van Veelen, 2011.

In the limit of p # 0, all defectors find themselves in groups with other defectors only,

whatever the population structure is, which makes limp#0 pD ¼ pD 0ð Þ. The condition for a C

invader to do better than a D resident then becomes:
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p#0
lim

Pn
i¼1

i
n
fi pð ÞpC ið Þ

Pn
i¼1

i
n
fi pð Þ

>pD 0ð Þ

With the shorthand notation introduced in Section II, this can be written as:

X

n

i¼1

uipC ið Þ>pD 0ð Þ

where ui is the share of mutant co-operators that find themselves in groups that contain i co-

operators.

B. Close to p ¼ 1

Mutant D’s cannot invade a resident C if the resident has higher fitness at p ¼ 1:

p"1
limpC>

p"1
limpD

In the limit of p " 1, all co-operators find themselves in groups with only co-operators, which

makes limp"1 pC ¼ pC nð Þ. The condition for C to drive out D invaders then becomes:

pC nð Þ>
p"1
lim

Pn�1

i¼0

n�i
n
fi pð ÞpD ið Þ

Pn�1

i¼0

n�i
n
fi pð Þ

With the shorthand notation introduced above, this can be written as:

pC nð Þ>
X

n�1

i¼0

�uipD ið Þ

where �ui is the share of mutant defectors that find themselves in groups that contain i co-

operators.

IV. When inclusive fitness is positive/negative

A. Close to p ¼ 0

At full defection (p ¼ 0), inclusive fitness is positive if:

p#0
lim r pð Þb pð Þ>c pð Þ

The costs of cooperation at p ¼ 0 – according to the counterfactual method – are

pD 0ð Þ � pC 1ð Þ ¼ � pC 1ð Þ � pD 0ð Þð Þ. This is minus the difference between the payoff a co-

operator gets in a group where everyone else is a defector, and the payoff gets if it were a

defector instead. The aggregate benefits are n� 1ð Þ pD 1ð Þ � pD 0ð Þ½ �, which is n� 1 times how

much every defector in that group benefits from the agent being a co-operator instead of a

defector. Inclusive fitness being positive at p ¼ 0 therefore can be rewritten as

p#0
lim

Pn
i¼1

i
n
i�1

n�1
fi pð Þ

Pn
i¼1

i
n
fi pð Þ

n� 1ð Þ pD 1ð Þ�pD 0ð Þ½ �>pD 0ð Þ�pC 1ð Þ

With a little rewriting, this inequality becomes

pC 1ð Þþ
p#0
lim

Pn
i¼1

i i� 1ð Þfi pð Þ
Pn

i¼1
ifi pð Þ

pD 1ð Þ�pD 0ð Þ½ �>pD 0ð Þ

With

Pn

i¼1
ifi pð Þ

Pn

i¼1
ifi pð Þ

¼ 1, this can be rewritten as:
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p#0
lim

Pn
i¼1

ifi pð Þ pC 1ð Þþ i� 1ð Þ pD 1ð Þ�pD 0ð Þ½ �f g
Pn

i¼1
ifi pð Þ

>pD 0ð Þ

In shorthand notation, inclusive fitness at p ¼ 0 is positive if:

X

n

i¼1

ui pC 1ð Þþ i� 1ð Þ pD 1ð Þ�pD 0ð Þ½ �f g>pD 0ð Þ

B. Close to p ¼ 1

At full cooperation (p ¼ 1), inclusive fitness is positive if:

p"1
lim r pð Þb pð Þ>c pð Þ

The costs of cooperation at p ¼ 1 – according to the counterfactual method – are

pD n� 1ð Þ � pC nð Þ ¼ � pC nð Þ � pD n� 1ð Þð Þ. This is minus the difference between the payoff a

co-operator gets in a group where everyone else is a co-operator too, and the payoff it gets if

it were a defector instead. The aggregate benefits are n� 1ð Þ pC nð Þ � pC n� 1ð Þ½ �, which is n�

1 times how much every other co-operator in that group benefits from the agent being a co-

operator instead of a defector. Inclusive fitness being positive at p ¼ 0 therefore can be

rewritten as

p"1
lim

Pn�1

i¼0

n�i
n

n�i�1

n�1
fi pð Þ

Pn�1

i¼0

n�i
n
fi pð Þ

n� 1ð Þ pC nð Þ�pC n� 1ð Þ½ �>pD n� 1ð Þ�pC nð Þ

With a little rewriting, this inequality becomes

pC nð Þ>pD n� 1ð Þ�
p"1
lim

Pn�1

i¼0
n� ið Þ n� i� 1ð Þfi pð Þ
Pn�1

i¼0
n� ið Þfi pð Þ

pC nð Þ�pC n� 1ð Þ½ �

With

Pn�1

i¼0
n�ið Þfi pð Þ

Pn�1

i¼0
n�ið Þfi pð Þ

¼ 1, this can be rewritten as:

pC nð Þ>
p"1
lim

Pn�1

i¼0
n� ið Þfi pð Þ pD n� 1ð Þ� n� i� 1ð Þ pC nð Þ�pC n� 1ð Þ½ �f g

Pn�1

i¼0
n� ið Þfi pð Þ

In shorthand notation, inclusive fitness at p ¼ 1 is positive if:

pC nð Þ>
X

n�1

i¼0

ui pD n� 1ð Þ� n� i� 1ð Þ pC nð Þ�pC n� 1ð Þ½ �f g

V. (Not) observing violations in equilibrium
Now that we have the criteria, both at p ¼ 0 and at p ¼ 1, for co-operators to be selected for,

as well as for inclusive fitness to be positive, we can compare them to each other, and find out

what it takes to observe a violation.

At p ¼ 0, co-operators can invade if
Pn

i¼1
uipC ið Þ>pD 0ð Þ. If we observe a population at p ¼ 0,

and if we assume, or have reason to believe, that this population is in equilibrium, then that

means that co-operators can apparently not invade at p ¼ 0, and the opposite is true:

X

n

i¼1

uipC ið Þ<pD 0ð Þ (1)

Inclusive fitness at p ¼ 0 is negative if
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X

n

i¼1

ui pC 1ð Þþ i� 1ð Þ pD 1ð Þ�pD 0ð Þ½ �f g<pD 0ð Þ (2)

Now there is a variety of ways in which the left hand sides of these two equations can be

different from each other, while they are still both smaller than the right hand side that they

share. In that case inclusive fitness is not the right criterion, but we would still not observe a

violation in equilibrium. This will most certainly be the case if each and every term in the

second equation that replaces a pC ið Þ–term from the first one is smaller, making the left hand

side of the second equation even smaller than the left hand side of the first. In other words, a

sufficient condition for the left hand side of the second equation to be lower than, or at most

equal to, the left hand side of the first, is that

pC 1ð Þþ i� 1ð Þ pD 1ð Þ�pD 0ð Þ½ � �pC ið Þ (3)

for all i 2 1; :::; n. This would then imply that

X

n

i¼1

ui pC 1ð Þþ i� 1ð Þ pD 1ð Þ�pD 0ð Þ½ �f g �
X

n

i¼1

uipC ið Þ<pD 0ð Þ

and therefore that inclusive fitness is certainly negative whenever cooperation is selected

against. A pC and pD for which this is true thereby precludes observing a violation of

Hamilton’s rule in equilibrium at p ¼ 0.

Observing violations in equilibrium at p ¼ 0 would require that at least for one i,

pC 1ð Þþ i� 1ð Þ pD 1ð Þ�pD 0ð Þ½ �>pC ið Þ

and that these differences are sufficiently large to make the left hand side of Equation 2

larger than the right hand side, leading to a positive inclusive fitness, while the behaviour is

selected against.

This is mirrored at p ¼ 1, where defectors cannot invade if

pC nð Þ>
X

n�1

i¼0

�uipD ið Þ (4)

Inclusive fitness at p ¼ 1 is positive if

pC nð Þ>
X

n�1

i¼0

�ui pD n� 1ð Þ� n� i� 1ð Þ pC nð Þ�pC n� 1ð Þ½ �f g (5)

Again there is a variety of ways in which the right hand sides of these two equations can be

different from each other, while they are both smaller than the left hand side that they share.

In that case inclusive fitness is not the right criterion, but we would not observe a violation in

equilibrium. That will certainly be the case if the game is such that

pD n� 1ð Þ� n� i� 1ð Þ pC nð Þ�pC n� 1ð Þ½ � �pD ið Þ (6)

for all i 2 0; :::; n� 1. This would be a sufficient condition for the right hand side of the second

equation to be lower than, or at most equal to, the right hand side of the first, so that

pC nð Þ>
X

n�1

i¼0

uipD ið Þ �
X

n�1

i¼0

ui pD n� 1ð Þ� n� i� 1ð Þ pC nð Þ�pC n� 1ð Þ½ �f g

For games that satisfy this condition, observing violations in equilibrium at p ¼ 1 therefore is

impossible, because inclusive fitness is certainly positive if cooperation is selected for.

Observing violations in equilibrium at p ¼ 1 would require that at least for one i,

pD n� 1ð Þ� n� i� 1ð Þ pC nð Þ�pC n� 1ð Þ½ �>pD ið Þ
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and that these differences are sufficiently large to make the right hand side of Equation 5

larger than the left hand side, leading to a negative inclusive fitness, while the behaviour is

selected for.

A. Not observing violations in equilibrium, also in the interior
While inequalities (Equation 3) and (Equation 6) preclude violations of Hamilton’s rule at p ¼ 0

and p ¼ 1, respectively, they do not necessarily also preclude violations in the interior. In order

to see why in general they do not, we can first look at a simple special case where they do,

and that is if n ¼ 2, and if, moreover, relatedness is constant.

For n ¼ 2, inequalities (Equation 3) and (Equation 6) are the same; they both require

pD 1ð Þ � pD 0ð Þ to be less or equal to pC 2ð Þ � pC 1ð Þ. If these two differences would be equal,

then that would be the classical ‘equal gains from switching’, so one could perhaps call it

‘increasing gains from switching’ if the latter is larger.

A population structure with constant relatedness and n ¼ 2 can only be

f0 pð Þ ¼ 1� rð Þ 1� pð Þ2þrð1� pÞ
f1 pð Þ ¼ 1� rð Þ2p 1� pð Þ
f0 pð Þ ¼ 1� rð Þp2 þ rp

We can compute and rewrite the average payoffs of co-operators and defectors for n ¼ 2 as

follows:

pC pð Þ ¼pC 2ð Þ 1� rð Þpþ r½ � þpC 1ð Þ 1� rð Þ 1� pð Þ½ �
¼ rpC 2ð Þþ 1� rð ÞpC 1ð Þþ 1� rð Þp pC 2ð Þ�pC 1ð Þ½ �

and

pD pð Þ ¼pD 0ð Þ 1� rð Þ 1� pð Þþ r½ �þpD 1ð Þ 1� rð Þp½ �
¼pD 0ð Þþ 1� rð Þp pD 1ð Þ�pD 0ð Þ½ �

Since the terms between square brackets in the second line of both are the ‘gains from

switching’, increasing gains from switching here implies that the difference in average fitness

between co-operators and defectors pC pð Þ � pD pð Þ is increasing in the frequency of co-

operators p. Therefore, at n ¼ 2, inequality (Equation 3) and/or (Equation 6), combined with

constant relatedness, implies that if co-operators are selected for at p ¼ 0, they will be

selected all the way to p ¼ 1, and if they are selected against at p ¼ 1, they will be selected

against all the way to p ¼ 0. This implies that there are no stable interior equilibria, and

therefore are there not only no in-equilibrium violations possible at p ¼ 0 and p ¼ 1, but also

not in between. This is illustrated in Figure 3a in the main text.

If we go to group sizes n larger than 2, there are many degrees of freedom that make

things much more complicated. First of all, conditions (Equation 3) and (Equation 6) do not

imply increased gains from switching in some more general, across the board sense. Inequality

(Equation 3) only puts limitations on how pC ið Þ � pC 1ð Þ relates to pD 1ð Þ � pC 0ð Þ, but not, for

instance, on how pC ið Þ � pC i� 1ð Þ relates to pC i� 1ð Þ � pC i� 2ð Þ or to pD i� 1ð Þ � pD i� 2ð Þ.

One can therefore construct payoff functions that satisfy both inequalities, and yet have gains

from switching that sometimes increase and sometimes decrease, depending on how many

co-operators there currently are.

Second, one can also tinker with the population structure to create internal stable

equilibria. While the grey lines in Figure 3a in the main text represent population structures

with fixed r, it is clear that if r is allowed to vary with p, one can create grey lines (population

structures) that have multiple intersections with the green line that separates the region where

co-operators are selected for and selected against, thereby creating stable and unstable

equilibria. This can happen, in spite of the fact that, for n ¼ 2, inequalities (Equation 3) and

(Equation 6) are as global as it gets. Moreover, with n>2 there are enough degrees of

freedom in the notion of a population structure to expect that, when combined with almost

any fitness function, one might be able to cook up populations structures that result in stable

interior equilibria, even with constant r. In any case it is clear that conditions on the fitness
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function alone are not enough to preclude violations of Hamilton’s rule in stable interior

equilibria.

For many examples, however, it is more straightforward to directly check the key property

that would be relevant to preclude stable interior equilibria, and that is that population

structure and fitness function combine in a way that makes pC pð Þ � pD pð Þ non-decreasing in p

– as we did for the case of n ¼ 2 and fixed relatedness. If inequalities (Equation 3) and

(Equation 6) are satisfied, and this ‘relative synergies’ property also holds, then all in-

equilibrium violations of Hamilton’s rule are ruled out. Just to make sure: this relative

synergies property is symmetric, in the sense that pC pð Þ � pD pð Þ is non-decreasing in p if and

only if pD pð Þ � pC pð Þ is non-decreasing in 1� p.

VI. Examples
The two conditions from Section V, one for p ¼ 0, one for p ¼ 1, allow us to easily make

examples of strategic interactions that do not allow for any observations that violate

Hamilton’s rule, as long as the population is in equilibrium. Take for instance payoff functions

of the following form:

pC ið Þ ¼ 1þ g ið Þ�K

pD ið Þ ¼ 1þ g ið Þ

This can be interpreted as a situation where co-operators can produce a public good. How

much is produced depends on how many individuals contribute, and that is reflected by g ið Þ.

Besides affecting the payoffs through the public good, contributing always lowers the payoff

of an agent by a fixed amount K, which is why co-operators always get a payoff that is K

below what their defecting fellow group members get. (The costs, according to the

counterfactual method, are typically of the form pD ið Þ � pC iþ 1ð Þ ¼ K þ g ið Þ � g iþ 1ð Þð Þ. These

also take the difference in payoffs due to the public good production into account, of which

the agent itself also benefits, and those are not assumed to be constant.)

A sufficient condition on g ið Þ to prevent violations of Hamilton’s rule in equilibrium at p ¼ 0

and p ¼ 1 is that there should be synergies – or at least no dis-synergies – in the production of

the public good:

g ið Þ� g i� 1ð Þ � g i� 1ð Þ� g i� 2ð Þ

for i ¼ 1; :::; n. This implies that

pC 1ð Þþ i� 1ð Þ pD 1ð Þ�pD 0ð Þ½ � ¼

1þ g 1ð Þ�Kþ i� 1ð Þ g 1ð Þ� g 0ð Þ½ � � 1þ g ið Þ�K

¼pC ið Þ

for i ¼ 1; :::; n. In Section V we saw that this prevents violations of Hamilton’s rule at p ¼ 0.

Moreover,

pD n� 1ð Þ� n� i� 1ð Þ pC nð Þ�pC n� 1ð Þ½ � ¼

1þ g n� 1ð Þ� n� i� 1ð Þ g nð Þ� g n� 1ð Þ½ � � 1þ g ið Þ

¼pD ið Þ

for i ¼ 0; :::; n� 1, which we saw prevents violations of Hamilton’s rule at p ¼ 1.

A few specific choices for g ið Þ can also help illustrate a few possible situations.
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Equal gains
If g ið Þ ¼ 2

i
n

� �

and K ¼ 0:4, then

pC ið Þ ¼ 0:6þ 2
i
n

� �

pD ið Þ ¼ 1þ 2
i
n

� �

Combined with a population structure elaborated on in Section IX, this results in

pC � pD ¼ 0:16, both at p ¼ 0 and at p ¼ 1. Inclusive fitness is also

r pð Þb pð Þ � c pð Þ ¼ 1

4

48

25
� 32

100
¼ 0:16, also both at p ¼ 0 and at p ¼ 1. Cooperation therefore will

be selected for at both extremes (and everywhere in between) and inclusive fitness agrees

with the direction of selection. This is always the case with equal gains from switching. Details

about the computations can be found in Section IX.

Appendix 1—figure 2. The population structure profiles are depicted in the lower half of the

figure, the payoffs in the upper half.

DOI: https://doi.org/10.7554/eLife.41901.009
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Synergies
If g ið Þ ¼ 2

i
n

� �2
and K ¼ 0:5, then

pC ið Þ ¼ 0:5þ 2
i
n

� �2

pD ið Þ ¼ 1þ 2
i
n

� �2

Combined with the same population structure elaborated on in Section IX, this results in pC �

pD ¼ �0:33 at p ¼ 0 and pC � pD ¼ 0:45 at p ¼ 1. Cooperation therefore will be selected

against at p ¼ 0, and selected for at p ¼ 1, which makes both p ¼ 0 and p ¼ 1 stable equilibria.

Inclusive fitness is �0:48 at p ¼ 0 and 0:6 at p ¼ 1. Inclusive fitness therefore is more negative

than pC � pD at p ¼ 0, and more positive at p ¼ 1, which prevents observing violations at

equilibrium. Details of the computations, as well as the computation of costs and benefits for

the regression method, can be found in Section IX.

Appendix 1—figure 3. The population structure profiles are depicted in the lower half of the

figure, the payoffs in the upper half.

DOI: https://doi.org/10.7554/eLife.41901.010
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Anti-synergies

If g ið Þ ¼ 2
i
n

� �1

2 and K ¼ 0:5, then

pC ið Þ ¼ 0:5þ 2
i
n

� �1

2

pD ið Þ ¼ 1þ 2
i
n

� �1

2

Combined with the same population structure elaborated on in Section IX, this results in pC �

pD ¼ 0:55 at p ¼ 0 and pC � pD ¼ �0:19 at p ¼ 1. Cooperation therefore will be selected for at

p ¼ 0, and selected against at p ¼ 1, which makes neither p ¼ 0 nor p ¼ 1 an equilibrium.

Inclusive fitness is 2:3 at p ¼ 0 and �0:22 at p ¼ 1. Inclusive fitness therefore is more positive

than pC � pD at p ¼ 0, and more negative than pC � pD at p ¼ 1. This particular combination

of a payoff function and a population structure would not lead to observations of violations in

equilibrium at p ¼ 0 or p ¼ 1, but if we simply increase K, or choose a population structure

with less assortment, we could make pC � pD drop below 0 at p ¼ 0, while inclusive fitness is

still positive. At the other end, we could decrease K, or increase assortment, to make pC � pD

positive, while inclusive fitness is still below 0, also creating a violation in equilibrium.

Moreover, and more importantly, since co-operators invade defectors and defectors invade

co-operators, we can expect violations at a mixed equilibrium, which is what Section VII is

about. Details of the computations, as well as the computation of costs and benefits for the

regression method, can be found in Section IX.

Appendix 1—figure 4. The population structure profiles are depicted in the lower half of the

figure, the payoffs in the upper half.

DOI: https://doi.org/10.7554/eLife.41901.011

VII. Mixed equilibria
When co-operators can invade defectors and defectors can invade co-operators, there for sure

must be at least one equilibrium mixture of co-operators and defectors. Also other games

without equal gains from switching may have stable frequencies p at which co-operators and

defectors coexist. At those frequencies, we can compare the direction of selection with

inclusive fitness. In Sections III, IV and V we did this comparison at p ¼ 0 and p ¼ 1 only, now

we will need to also do it at the equilibrium frequency, which may be anywhere between 0 and

1.
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A. Population structure profiles and relatedness
Similar to before, we can define the probability that a randomly chosen co-operator finds itself

in a group in which there are i co-operators:

ui;C pð Þ ¼
i
n
fi pð Þ

Pn
j¼0

j

n
fj pð Þ

¼
i
n
fi pð Þ

p

and the probability that a randomly chosen defector finds itself in a group in which there are i

co-operators:

ui;D pð Þ ¼
n�i
n
fi pð Þ

Pn
j¼0

n�j

n
fj pð Þ

¼
n�i
n
fi pð Þ

1� p

This makes ui ¼ limp#0 ui;C pð Þ and ui ¼ limp"1 ui;D pð Þ. Relatedness now becomes

rðpÞ ¼
X

n

i¼0

ui;CðpÞ
i� 1

n� 1
�
X

n

i¼0

ui;DðpÞ
i

n� 1

B. Equilibrium
An interior equilibrium is a frequency p* 2 0; 1ð Þ such that the average payoff of co-operators

and the average payoff of defectors are equal:

pC p*
� �

¼pD p*
� �

This can be written as

X

n

i¼0

ui;C p*
� �

pC ið Þ ¼
X

n

i¼0

ui;D p*
� �

pD ið Þ

Here we assume that it is clear that average payoffs pC pð Þ and pD pð Þ depend on the

frequency p of co-operators in the overall population, whereas game payoffs pC ið Þ and pD ið Þ

depend on the number of co-operators in the group. An equilibrium is stable, if co-operators

have a higher average payoff than defectors do for p<p*, and defectors have a higher payoff

than co-operators for p>p*.

At p ¼ 0, all defectors find themselves in groups with no co-operators, and co-operators

cannot invade if their average payoff is lower than that of defectors. This gave us the criterion

that we used before:

p#0
lim

X

n

i¼0

ui;C pð ÞpC ið Þ ¼
X

n

i¼0

uipC ið Þ<pD 0ð Þ

At p ¼ 1, all co-operators find themselves in groups with no defectors, and defectors

cannot invade if their average payoff is lower than that of co-operators. This gave us the

criterion that we used before:

pC ið Þ>
X

n

i¼0

uipD ið Þ ¼
p"1
lim

X

n

i¼0

ui;D pð ÞpD ið Þ

C. Costs and benefits
The costs and benefits an individual faces may depend on the type of group an individual finds

itself in. The composition of the population fi pð Þ, indicating what the frequencies of the

different types of groups will be, depends on the overall frequency p of co-operators. The

average costs and benefits therefore may also depend on this frequency p. The counterfactual
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method, as originally suggested by Karlin and Matessi (1983), Matessi and Karlin (1984)

and Matessi and Karlin (1986) only considers the costs actually bore by co-operators, and the

benefits actually conferred by them onto others. In Section 3 of van Veelen et al. (2017) we

show that the costs and benefits of cooperation (compared to defection) then are not

necessarily minus the costs and benefits of defection (compared to cooperation). We therefore

suggested to include all individuals that faced the opportunity to cooperate, whether they

ended up cooperating or defecting. This definition is consistent, and this is also the definition

we use here. The cost for a co-operator – comparing its payoffs when it cooperates to its

payoffs had it defected – then is pD i� 1ð Þ � pC ið Þ; the cost for a defector is pD ið Þ � pC iþ 1ð Þ.

Average costs then become

c pð Þ ¼
X

n

i¼0

fi pð Þ
i

n
pD i� 1ð Þ�pC ið Þð Þþ

n� i

n
pD ið Þ�pC iþ 1ð Þð Þ

� �

Aggregate average benefits similarly become

b pð Þ ¼
P

n

i¼0

fi pð Þ i
n

i� 1ð Þ pC ið Þ�pC i� 1Þð Þð Þþ n� ið Þ pD ið Þ�pD i� 1ð Þð Þf g
�

þ n�i
n

ið Þ pC iþ 1ð Þ�pC ið Þð Þþ n� i� 1ð Þ pD iþ 1ð Þ�pD ið Þð Þf g
�

D. Comparison
Previously, in Section V, we have seen that inclusive fitness r pð Þb pð Þ � c pð Þ may have a sign

that is different from the sign of pC pð Þ � pD pð Þ, at p ¼ 0 and/or at p ¼ 1, even though that may

not always be observable in equilibrium. In a mixed equilibrium p*, where pC p*
� �

� pD p*
� �

¼ 0,

there is also no reason why r p*
� �

b p*
� �

� c p*
� �

would be 0 too – unless there is equal gains

from switching. Here this discrepancy would be observable (see Appendix 1—figure 5). Note

that equal gains would be at odds with there being a stable mixed equilibrium at 0<p*<1.

Details of the computations, as well as the computation of costs and benefits for the

regression method, can be found in Section IX. With equal gains, pC ið Þ � pC i� 1ð ÞÞ ¼

pD jð Þ � pD j� 1ð ÞÞ for all i; j 2 1; :::; nf g and pD i� 1ð Þ � pC ið ÞÞ ¼ pD j� 1ð Þ � pC jð ÞÞ for all

i; j 2 1; :::; nf g. If we denote these constants by b and c, then inclusive fitness becomes

r pð Þ n� 1ð Þb� c – where n� 1ð Þb is the aggregate benefits. This is found by filling in the

constants in the formulas at subsection C above.
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Appendix 1—figure 5. The previous figures depicted u, which is the population structure pro-

file at p ¼ 0, and u, which is the population structure profile at p ¼ 1. The payoffs co-operators

get, when they find themselves in groups according to u would be compared to the payoffs

defectors get when they are in a group of defectors only in order to determine whether co-

operators can invade defectors, at p ¼ 0, and the mirror image of that in order to determine

whether defectors can invade co-operators, at p ¼ 1. The ui;C p*
� �

and ui;D p*
� �

depicted here all

pertain to one and the same equilibrium p*, at which pC p*
� �

� pD p*
� �

¼ 0. With the same

payoff function as at Appendix 1—figure 4, we find an equilibrium frequency of co-operators

of p* ¼ 0:473, at which inclusive fitness is 1

4
2:103ð Þ � 0:412ð Þ» 0:113 6¼ 0.

DOI: https://doi.org/10.7554/eLife.41901.012

E. If pD and pC are linear, but not parallel, they still violate ‘equal
gains from switching’
Equal gains from switching means that the effect of any given individual changing from

defection to cooperation on the fitness of other individuals and on her own fitness is

independent of what these other individuals choose. The examples of violations above,

depicted in Appendix 1—figures 3–7, all have non-linear pD and pC. Violations can also occur

when pD and pC are linear, but not parallel – in which case the fitness effects depend on

whether the recipient is a co-operator or defector itself.

An example would be pD ¼ 1þ 3
i
n
and pC ¼ 2þ i

n
. Both of these are linear in the number of

co-operators, but they are not equally steep. Switching to cooperation benefits the other

more if the other is a defector, compared to if the other is a co-operator. The total benefit one

can confer to others therefore is higher in a group in which most of the others are defectors,

and it is lower in a group in which most of the other group members are co-operators. If we

choose the same population structure as for Appendix 1—figures 2–5, then there is a mixed

equilibrium – at p ¼ 8

9
– at which Hamilton’s rule is violated; 1

4

88

75

� �

� 2

3

� �

» 0:373 6¼ 0.

F. An aside about the regression method
It might also be good to illustrate how the regression method would have treated this fitness

function. The regression method chooses a, b and g so as to minimize
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X

n

i¼0

fi pð Þ
i

n
pC ið Þ� aþb

i� 1

n� 1
�g

� �� �2

þ
n� i

n
pD ið Þ� aþb

i

n� 1

� �� �2
 !

;

where a is the intercept, b is interpreted as n� 1 times the benefit of being matched with one

additional co-operator and g is interpreted as the cost of being a co-operator oneself. It is

easier to illustrate this without population structure, so the figures on the next page show

what this would result in for the fitness function of the last example, combined with the well

mixed population, and a group size of n ¼ 25. In Section IX we will also consider a case with

population structure.

The a, b and g are computed in the limit of p # 0 (top panel), at p ¼ 1

2
(middle panel), and in

the limit of p " 1 (bottom panel). For the well mixed population, it is not too hard to compute

these in general at p # 0 and p " 1. In the limit of p # 0, the regression method always results in

a ¼ pD 0ð Þ. The reason is that limp#0f0 pð Þ ¼ 1, and limp#0fi pð Þ ¼ 0 for all i>0. Therefore, in the

limit, for sure pD 0ð Þ � að Þ2 must be minimized. Because f1 pð Þ is of the order p, while fi pð Þ is of

the order p2 or higher, for i>1, b and g must, in the limit, also minimize
1

n
pC 1ð Þ � a� gð Þð Þ2þ n�1

n
pD 1ð Þ � aþ b 1

n�1

� �� �2
. This can be done here by simply choosing

g ¼ a� pC 1ð Þ ¼ pD 0ð Þ � pC 1ð Þ, and b ¼ n� 1ð Þ pD 1ð Þ � að Þ ¼ n� 1ð Þ pD 1ð Þ � pD 0ð Þð Þ. The

‘estimated’ pD at p # 0 therefore is always a straight line, the steepness of which derives from

the first step, from i ¼ 0 to i ¼ 1, in pD ið Þ. The ‘estimated’ pC is a line parallel to pD, but then

shifted up by pD 0ð Þ � pC 1ð Þ, and to the right by 1

n�1
.

In this particular case, the squared difference at p ¼ 1

2
is minimized by choosing g ¼ 0,

making the ‘estimated’ pC and pD coincide. With population structure, this will all be a bit

different, but what remains true is that the ‘estimated’ pC and pD will always be parallel

straight lines, whether the true pC and pD are straight and parallel or not. The slope and

positions of these straight parallel lines typically changes with p. The reason why this particular

choice for (mis)specifying pC and pD would lead to Hamilton’s rule always holding, is given in

Section 4 of van Veelen et al. (2017).
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Appendix 1—figure 6. The pD according to the regression method coincides the true pD at p #

0 (top panel, red), but the pC according to the regression method (dotted blue) differs from the

true pC (solid blue). The pD and pC according to the regression method coincide with each

other at p ¼ 0:5 (middle panel, dotted lines) but do not coincide with the true pD (solid red)

and pC (solid blue). The pC according to the regression method coincides the true pC at p " 1

(bottom panel, blue), but the pD according to the regression method (dotted red) differs from

the true pD (solid red).

DOI: https://doi.org/10.7554/eLife.41901.013
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VIII. Continuous frequencies
For proper large group sizes it can be easier, and more natural, to work with continuous

distributions of within-group frequencies, instead of functions fi pð Þ, which are only defined for

i ¼ 0; :::; n. In this section we will therefore introduce the continuous counterparts of definitions

from previous sections.

A. Relatedness at the edges
Let Fp

� 	

p2 0;1½ �
be a set of cumulative distribution functions Fp: 0; 1½ � ! 0; 1½ �, one for every

frequency p of co-operators in the population as a whole. Fp xð Þ is the probability, at frequency

p, that the share of co-operators in a randomly chosen group is smaller than or equal to x.

Consistency requires that
R

1

0
xdFpðxÞ ¼ p, and therefore that Fp converges weakly to the Dirac

measure at 0 for p # 0, and to the Dirac measure at 1 as p " 1. If Fp has a density, then one can

write
R

1

0
gðxÞdFpðxÞ as

R

1

0
gðxÞfpðxÞdx.

To relate this to the setting in previous sections, with discrete within-group frequencies,

one would normalize those group types to be values in 0; 1½ �, and let them be 0; 1
n
; :::; 1

� 	

instead of 0; :::; nf g. Furthermore, one would turn a population structure characterized by

functions fi pð Þ, i ¼ 0; :::; n, into one characterized by a cumulative distributions by choosing

FpðxÞ ¼
Pi

j¼0
fjðpÞ if

i�1

n
<x � i

n
. For cumulative distributions Fp with a density fp, this density is

the natural counterpart of the vector with fi pð Þ as its ith element. The notation is a bit

different, though; the overall frequency p is a subscript in the one, and an argument in the

other case, while group composition x is an argument in the one, and its counterpart i is a

subscript in the other.

Now define cumulative distribution functions U and U as follows:

U xð Þ ¼
p#0
lim

Z x

0

ydFp yð Þ

p

and

�U xð Þ ¼
p"1
lim

Z x

0

ydFp yð Þ

p

and assume that these limits exist.

Again, this one could relate to earlier sections; we can get the vectors u and �u back by

simply ‘uncumulating’ U and U; define ui ¼ U i
n

� �

� U i�1

n

� �

and ui ¼ U i
n

� �

� U i�1

n

� �

.

The fitness functions here will also be defined on 0; 1½ �. They will be denoted by pC xð Þ for

the fitness of a co-operator in a group with frequency of co-operators x, and pD xð Þ for its

defector counterpart. Analogous to the derivation in Section II, relatedness at p ¼ 0 is
R

1

0
xdU xð Þ, and at p ¼ 1 it is

R

1

0
1� xð ÞdU xð Þ. Moreover, it would be natural to assume that

�U xð Þ ¼ U 1� xð Þ, and therefore that relatedness at 0 and 1 are equal.

B. Invasions and inclusive fitness

At p ¼ 0

The more general version of Equation 1 is that cooperation cannot invade at p ¼ 0 if their

average payoff is less than that of defectors:

Z

1

0

pC xð ÞdU xð Þ<pD 0ð Þ (7)

Aggregate benefits according to the counterfactual method are defined analogously to

Section IV. There they were defined at p ¼ 0 as n� 1 times the difference between the payoff

of a defector that finds itself in a group with one co-operator and defector that finds itself in a
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group with zero co-operators. In normalized terms, that would be

b 0ð Þ ¼ n� 1ð Þ pD
1

n

� �

� pD 0ð Þ
� �

, which, if n were to go to infinity, would amount to

b 0ð Þ ¼ dþpD

dx
0ð Þ, where dþpD

dx
0ð Þ is the right derivative of pD at 0. Similarly at p ¼ 1, where

aggregate benefits are b 1ð Þ ¼ d�pC

dx
1ð Þ, which is the left derivative of pC at 1. (Discrete

population structures, with finite group size, are subsumed under the more general case with

distribution functions. Computation of costs and benefits there, however, do differ from how

they are computed here, because here one individual changing strategies has no effect on

within group frequency x, while in the finite case that is not true.)

With those benefits, we can write the continuous version of Equation 2. At p ¼ 0 inclusive

fitness is negative if

Z

1

0

xdU xð Þ�
dþpD

dx
0ð Þ<pD 0ð Þ�pC 0ð Þ

which can be rewritten as

Z

1

0

pC 0ð Þþ x
dþpD

dx
0ð Þ

� �

dU xð Þ<pD 0ð Þ (8)

If pC 0ð Þ þ x
dþpD

dx
0ð Þ ¼ pC xð Þ, then the left hand sides of Equations 7 and 8 are the same, and

inclusive fitness will always agree with the direction of selection at p ¼ 0. If pC 0ð Þ þ

x
dþpD

dx
0ð Þ<pC xð Þ the left hand sides of Equations 7 and 8 will not be the same, but a violation

in equilibrium at p ¼ 0 will not be observed; if inequality Equation 7 holds, and co-operators

cannot invade, then certainly Equation 8 will hold, making inclusive fitness negative, as its left

hand side is even smaller than the left hand side of Equation 7.

At p ¼ 1

Similarly, defection cannot invade at p ¼ 1 if

Z

1

0

pD xð ÞdU xð Þ<pC 1ð Þ (9)

while inclusive fitness at p ¼ 1 is positive if

Z

1

0

1� xð ÞdU xð Þ�
d�pC

dx
1ð Þ>pD 1ð Þ�pC 1ð Þ

which can be rewritten as

Z

1

0

pD 1ð Þ� 1� xð Þ
d�pC

dx
1ð Þ

� �

dU xð Þ<pC 1ð Þ (10)

If pD 1ð Þ � 1� xð Þ d�pC

dx
1ð Þ ¼ pD xð Þ, then the left hand sides of Equations 9 and 10 are the

same. If pD 1ð Þ � 1� xð Þ d�pC

dx
1ð Þ<pD xð Þ, the left hand sides of Equations 9 and 10 will not be

the same, but a violation in equilibrium at p ¼ 1 will not be observed; if inequality Equation 9

holds, and defectors cannot invade, then certainly Equation 10 will hold, making inclusive

fitness positive, as its left hand side is even smaller than the left hand side of Equation 9.

C. Mixed equilibria
Again, when co-operators can invade defectors and defectors can invade co-operators, then

for sure there must be at least one equilibrium mixture of co-operators and defectors. Also

other games without equal gains from switching may have stable frequencies p at which co-

operators and defectors coexist. At those frequencies, we can again compare the direction of

selection with inclusive fitness. Here we will assume that at the equilibrium frequency p*, Fp* xð Þ

has a density f *p xð Þ, which allows us to write fp* xð Þdx for dFp* xð Þ.

van Veelen. eLife 2018;7:e41901. DOI: https://doi.org/10.7554/eLife.41901 31 of 38

Research article Evolutionary Biology

https://doi.org/10.7554/eLife.41901


Equilibrium
An equilibrium is a frequency p* for which the average payoff of co-operators and defectors

are equal; pC p*
� �

¼ pD p*
� �

, that is,

R

1

0
xfp*ðxÞpCðxÞdx

p*
¼

R

1

0
ð1� xÞfp*ðxÞpDðxÞdx

1� p*

Inclusive Fitness
Relatedness, benefits and costs are computed as before, in Section VII, but now with a

continuous fp.

rðpÞ ¼

R

1

0
x2fp xð Þdx

p
�

R

1

0
x 1� xð Þfp xð Þdx

1� p

bðpÞ ¼

Z

1

0

x
d

dx
pCðxÞþ ð1� xÞ

d

dx
pDðxÞ

� �

fpðxÞdx

cðpÞ ¼

Z

1

0

pDðxÞ�pCðxÞð ÞfpðxÞdx

Again, there is no reason why in equilibrium, where pC p*
� �

� pD p*
� �

¼ 0, also r p*
� �

b p*
� �

�

c p*
� �

would be equal to 0.

Example
Consider the following payoff function

pC xð Þ ¼ 1þbxa �g

pD xð Þ ¼ 1þbxa

Then p* is an equilibrium frequency if

b

R

1

0
x1þafp* xð Þdx

p*
�

R

1

0
1� xð Þxafp* xð Þdx

1� p*

 !

�g¼ 0

Inclusive fitness is

b

Z

1

0

axa�1fpðxÞdx

R

1

0
x2fp xð Þdx

p
�

R

1

0
1� xð Þxfp xð Þdx

1� p

 !

�g

and unless a ¼ 1, the last expression is typically not 0 for p ¼ p*.
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Appendix 1—figure 7. With parameters a ¼ 1

2
, b ¼ 2 and g ¼ 0:4, the equilibrium frequency of

co-operators, at which pC p*
� �

¼ pD p*
� �

, is p* ¼ 0:465. Inclusive fitness there is
1

4
1:82ð Þ � 0:4ð Þ» 0:055 6¼ 0. Section X specifies the fp xð Þ for this example.

DOI: https://doi.org/10.7554/eLife.41901.014

IX. Discrete population structures
The population structure used in the examples is not meant to be realistic or reflect any

particular real population structure; it is just a convenient vehicle to generate a variety of

structures. Imagine a parent group that is assembled by randomly drawing m parents from a

large population, a share p of which are co-operators. A parent group consisting of k co-

operators and m� k defectors is drawn with probability

m

k

� �

1� pð Þm�k
pk

Then an offspring group is made by drawing – with replacement – n times a parent who

reproduces. The probability that a parent group with k co-operators reproduces an offspring

group with i co-operators is

qi kð Þ ¼
n

i

� �

k

m

� �i
m� k

m

� �n�i

This then implies the following population structure, with

fiðpÞ ¼
X

m

k¼0

m

k

� �

1� pð Þm�k
pk � qiðkÞ

for i ¼ 0; :::; n. This is a consistent population structure. Firstly, the frequencies of different

group types add up to one.
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X

n

i¼0

fi pð Þ ¼
X

n

i¼0

X

m

k¼0

m

k

� �

1� pð Þm�k
pk � qi kð Þ

¼
X

m

k¼0

m

k

� �

1� pð Þm�k
pk
X

n

i¼0

n

i

� �

k

m

� �i
m� k

m

� �n�i

¼
X

m

k¼0

m

k

� �

1� pð Þm�k
pk ¼ 1

Here we use twice that the probabilities of the binomial distribution add up to 1. Also, the

frequency of co-operators in the offspring population is consistent with p.

X

n

i¼0

i

n
fiðpÞ ¼

X

n

i¼0

i

n

X

m

k¼0

m

k

� �

ð1� pÞm�k
pk � qiðkÞ

¼
X

m

k¼0

m

k

� �

ð1� pÞm�k
pk
X

n

i¼0

i

n

n

i

� �

k

m

� �i
m� k

m

� �n�i

¼
X

m

k¼0

m

k

� �

ð1� pÞm�k
pk

k

m

� �

X

n

i¼1

n� 1

i� 1

� �

k

m

� �i�1
m� k

m

� �n�i

¼ p
X

m

k¼1

m� 1

k� 1

� �

ð1� pÞm�k
pk�1 ¼ p

Again we twice use that the probabilities of the binomial distribution add up to 1.

Relatedness is

r pð Þ ¼ P CjCð Þ�P CjDð Þ

We first compute P CjCð Þ in a straightforward, but somewhat elaborate way.

PðCjCÞ ¼
1

p

X

n

i¼2

fiðpÞ
i

n

i� 1

n� 1
¼
1

p

X

n

i¼2

X

m

k¼0

m

k

� �

ð1� pÞm�k
pk �

n

i

� �

k

m

� �i
m� k

m

� �n�i

�
i

n

i� 1

n� 1

¼
1

p

X

m

k¼0

m

k

� �

ð1� pÞm�k
pk �
X

n

i¼2

n� 2

i� 2

� �

k

m

� �i
m� k

m

� �n�i

¼
1

p

X

m

k¼0

m

k

� �

ð1� pÞm�k
pk �

k

m

� �2
X

n

i¼2

n� 2

i� 2

� �

k

m

� �i�2
m� k

m

� �n�i

¼
1

p

X

m

k¼0

m

k

� �

ð1� pÞm�k
pk �

k

m

� �2

¼
1

m

X

m

k¼1

k
m� 1

k� 1

� �

ð1� pÞm�k
pk�1

¼
1

m

X

m

k¼1

1þðk� 1Þð Þ
m� 1

k� 1

� �

ð1� pÞm�k
pk�1 ¼

1

m
1þðm� 1Þpð Þ ¼

1

m
þ 1�

1

m

� �

p

Here we used twice that the probabilities in the binomial distribution add up to 1, again, and

once that the expectation of the binomial distribution, with m� 1 trials and probability p, is

m� 1ð Þp.

This answer makes perfect sense, because if an individual is a C itself, then its parent is one

too, while the other m� 1 individuals in the parent group are random draws, with probability p

of also being a C. The probability that a randomly drawn other offspring is also a C therefore

is 1

m
þ 1� 1

m

� �

p. Similarly, one can compute P CjDð Þ to be 1� 1

m

� �

p, which makes

r pð Þ ¼ P CjCð Þ � P CjDð Þ ¼ 1

m
, which is actually independent of p.

The population structure profile at p ¼ 0 for a population structure from this family is u
0
¼ 0

and

ui ¼
p#0
lim

i
n
fi pð Þ

p
¼

n� 1

i� 1

� �

1

m

� �i�1
m� 1

m

� �n�i

; i¼ 1; :::;n

This can be found by simply evaluating the limits. The easier intuition is that in the limit of

p # 0, all co-operator parents find themselves in parent groups in which they are the only one,
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and all others are defector parents. This means that, conditional on being a co-operator

offspring, the composition of the remainder of its offspring group follows a binomial

distribution, with the probability of any draw being a co-operator equal to 1

m
.

Similarly, the population structure profile at p ¼ 1 for a population structure from this family

is un ¼ 0 and

�ui ¼
p"1
lim

n�i
n
fi pð Þ

1� p
¼

n� 1

i

� �

m� 1

m

� �i
1

m

� �n�i�1

; i¼ 0; :::;n� 1

Now, conditional on being a defector offspring, the composition of the remainder of the

offspring group it is in follows a binomial distribution, with the probability of any draw being a

co-operator equal to m�1

m
.

The population structures used for Appendix 1—figures 1–5 all have n ¼ 25 for the size of

the offspring group. Appendix 1—figures 1a has m ¼ 10 for the size of the parent group, and

hence relatedness 1

10
, as does Figure 2a in the main text. Appendix 1—figures 1b through 5

here, and their corresponding figures in the main text, feature a parent group size of m ¼ 4,

and hence relatedness 1

4
. All computations of pC pð Þ � pD pð Þ and all computations of inclusive

fitness are done by combining these population structures with the different payoff functions

from Sections III, IV and V, as described below. Mathematica files with further computational

details can be obtained from the author.

Figure 2a in the main text

At p ¼ 0, and with m ¼ 10,
P

25

i¼1
uipC ið Þ ¼

P

25

i¼1

25� 1

i� 1

� �

1

m

� �i�1 m�1

m

� �25�i
� 0:6þ 2

i
25

� �� �

¼ 0:872,

while pD 0ð Þ ¼ 1þ 2
0

25

� �

¼ 1, and therefore
P

25

i¼1
uipC ið Þ � pD 0ð Þ ¼ �0:128. According to the

counterfactual method, benefits are n� 1ð Þ pD 1ð Þ � pD 0ð Þð Þ ¼ 24 1þ 2
1

25

� �

� 1þ 2
0

25

� �� �� �

¼ 48

25
,

costs are pD 0ð Þ � pC 1ð Þ ¼1þ 2
0

25

� �

� 0:6þ 2
1

25

� �� �

¼ 8

25
and inclusive fitness is

1

10

48

25
� 8

25
¼ �0:128.

At p ¼ 1, and with m ¼ 10, pC 25ð Þ ¼ 0:6þ 2
25

25

� �

¼ 2:6, while

P

25�1

i¼0
uipD ið Þ ¼

P

25�1

i¼0

25� 1

i

� �

m�1

m

� �i 1

m

� �25�i�1
� 1þ 2

i
25

� �� �

¼ 2:728, and therefore

pC 25ð Þ �
P

25�1

i¼0
�uipD ið Þ ¼ �0:128. According to the counterfactual method, benefits are

n� 1ð Þ pC 25ð Þ � pC 24ð Þð Þ ¼ 24 0:6þ 2
25

25

� �

� 0:6þ 2
24

25

� �� �� �

¼ 48

25
, costs are

pD 24ð Þ � pC 25ð Þ ¼ 1þ 2
24

25

� �

� 0:6þ 2
25

25

� �� �

¼ 8

25
, and inclusive fitness is 1

10

48

25
� 8

25
¼ 4

25
¼ �0:128.

Because the true fitness function is linear, the regression method would give the same costs

and benefits, both at p ¼ 0 and at p ¼ 1.

Appendix 1—figure 2 (Figure 2b in the main text)

At p ¼ 0, and with m ¼ 4,
P

25

i¼1
uipC ið Þ ¼

P

25

i¼1

25� 1

i� 1

� �

1

m

� �i�1 m�1

m

� �25�i
� 0:6þ 2

i
25

� �� �

¼ 1:16,

while pD 0ð Þ ¼ 1þ 2
0

25

� �

¼ 1, and therefore
P

25

i¼1
uipC ið Þ � pD 0ð Þ ¼ 0:16. Benefits and costs

according to the counterfactual method are the same as in Figure 2a in the main text, which

makes inclusive fitness equal to 1

4

48

25
� 8

25
¼ 4

25
¼ 0:16.

At p ¼ 1, and with m ¼ 4, pC 25ð Þ ¼ 0:6þ 2
25

25

� �

¼ 2:6, while

P

25�1

i¼0
uipD ið Þ ¼

P

25�1

i¼0

25� 1

i

� �

m�1

m

� �i 1

m

� �25�i�1
� 1þ 2

i
25

� �� �

¼ 2:44, and therefore

pC 25ð Þ �
P

25�1

i¼0
uipD ið Þ ¼ 0:16. Benefits and costs according to the counterfactual method are

the same as in Figure 2a in the main text, which makes inclusive fitness equal to
1

4

48

25
� 8

25
¼ 4

25
¼ 0:16.

Because the true fitness function is linear, the regression method would give the same costs

and benefits, both at p ¼ 0 and at p ¼ 1.
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Appendix 1—figure 3 (Figure 2c in the main text)

At p ¼ 0,
P

25

i¼1
uipC ið Þ ¼

P

25

i¼1

25� 1

i� 1

� �

1

m

� �i�1 m�1

m

� �25�i
� 0:5þ 2

i
25

� �2
� �

¼ 0:6712, while

pD 0ð Þ ¼ 1þ 2
0

25

� �2
¼ 1, and therefore

P

25

i¼1
uipC ið Þ � pD 0ð Þ ¼ �0:3288.

According to the counterfactual method, benefits at p ¼ 0 are

n� 1ð Þ pD 1ð Þ � pD 0ð Þð Þ ¼ 24 1þ 2
1

25

� �2
� 1þ 2

0

25

� �2
� �� �

¼ 48

625
. Costs at p ¼ 0 are

pD 0ð Þ � pC 1ð Þ ¼ 1þ 2
0

25

� �2
� 0:5þ 2

1

25

� �2
� �

¼ 1

2
� 2

625
and inclusive fitness is

1

4

48

625
� 1

2
þ 2

625
¼ �0:4776.

In the limit of p # 0, all groups are groups with defectors only. The regression method

therefore would imply that a ¼ pD 0ð Þ ¼ 1 (see also Section VII F). Furthermore, minimizing the

squared difference between true fitness’s and the fitness’s according to a linear model, given

the relative weights of all frequencies of groups with i co-operators, with i � 1, would then

amount to

b;g
min

X

n

i¼1

ui pC ið Þ� 1þb
i� 1

n� 1

� �

�g

� �� �2

þ
n� i

i
pD ið Þ� 1þb

i

n� 1

� �� �� �2
" #

resulting in b ¼ b* ¼ 0:586971, and c ¼ g* ¼ 0:475543. This makes inclusive fitness

rb� c ¼ �0:3288.

At p ¼ 1, pC 25ð Þ ¼ 0:5þ 2
25

25

� �2
¼ 2:5, while

P

25�1

i¼0
uipD ið Þ ¼

P

25�1

i¼0

25� 1

i

� �

m�1

m

� �i 1

m

� �25�i�1
� 1þ 2

i
25

� �2
� �

¼ 2:0512, and therefore

pC 25ð Þ �
P

25�1

i¼0
uipD ið Þ ¼ 0:4488.

According to the counterfactual method, benefits at p ¼ 1 are

n� 1ð Þ pC 25ð Þ � pC 24ð Þð Þ ¼ 24 0:5þ 2
25

25

� �2
� 0:5þ 2

24

25

� �2
� �� �

¼ 2352

625
¼ 3:7632. Costs at p ¼ 1 are

pD 24ð Þ � pC 25ð Þ ¼ 1þ 2
24

25

� �2
� 0:5þ 2

25

25

� �2
� �

¼ 1

2
� 98

625
, and inclusive fitness is

1

4

2352

625
� 1

2
þ 98

625
¼ 0:5976.

Because in the limit of p " 1, all groups are groups with co-operators only, the regression

method would imply that aþ b� g ¼ pC 25ð Þ ¼ 2:5 (see also Section VII F). Minimizing the

squared difference between true fitness’s and the fitness’s according to a linear model,

considering all frequencies of groups with less than n co-operators, would then amount to

b;g
min

X

n�1

i¼0

ui
i

n� i
pC ið Þ� 2:5�b

n� i

n� 1

� �� �� �2

þ pD ið Þ� 2:5�b
n� i� 1

n� 1

� �

þg

� �� �2
" #

resulting in b ¼ b* ¼ 3:25303, and c ¼ g* ¼ 0:364457. This makes inclusive fitness

rb� c ¼ 0:4488.

Appendix 1—figure 4

At p ¼ 0,
P

25

i¼1
uipC ið Þ ¼

P

25

i¼1

25� 1

i� 1

� �

1

m

� �i�1 m�1

m

� �25�i
� 0:5þ 2

i
25

� �0:5
� �

¼ 1:54546, while

pD 0ð Þ ¼ 1þ 2
0

25

� �0:5
¼ 1, and therefore

P

25

i¼1
uipC ið Þ � pD 0ð Þ ¼ 0:54546. According to the

counterfactual method, benefits are

n� 1ð Þ pD 1ð Þ � pD 0ð Þð Þ ¼ 24 1þ 2
1

25

� �0:5
� 1þ 2

0

25

� �0:5
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¼ 48

5
, costs are

pD 0ð Þ � pC 1ð Þ ¼ 1þ 2
0

25

� �0:5
� 0:5þ 2

1

25

� �0:5
� �

¼ 1

2
� 2

5
and inclusive fitness is 1

4

48

5
� 1

2
þ 2

5
¼ 2:3.

According to the regression method, as for Figure 3, but now with the fitness function of

Figure 4, costs are 0:350649, benefits are 3:58443, and inclusive fitness is 0:54546.
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At p ¼ 1, pC 25ð Þ ¼ 0:5þ 2
25

25

� �0:5
¼ 2:5, while

P

25�1

i¼0
uipD ið Þ ¼

P

25�1

i¼0

25� 1

i

� �

m�1

m

� �i 1

m

� �25�i�1
� 1þ 2

i
25

� �0:5
� �

¼ 2:69403, and therefore

pC 25ð Þ �
P

25�1

i¼0
�uipD ið Þ ¼ �0:19403. According to the counterfactual method, benefits are

n� 1ð Þ pC 25ð Þ � pC 24ð Þð Þ ¼ 24 0:5þ 2
25

25

� �0:5
� 0:5þ 2

24

25

� �0:5
� �� �

» 0:9698, costs are

pD 24ð Þ � pC 25ð Þ ¼ 1þ 2
24

25

� �0:5
� 0:5þ 2

25

25

� �0:5
� �

» 0:4596, and inclusive fitness is

1

4
0:9698� 0:4596 » � 0:217. According to the regression method, as for Figure 3, but now with

the fitness function of Figure 4, costs are 0:45629, benefits are 1:04905, and inclusive fitness is

�0:19403.

Appendix 1—figure 5 (Figure 2d in the main text)
At p ¼ 0:473 and n ¼ 25,

pC pð Þ ¼ 1

p
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n
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i
n
fi pð ÞpC ið Þ ¼ 1

p

P

n
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i
n

P
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m
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� �
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n

i
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k
m

� �i m�k
m

� �n�i
0:5þ 2

i
n

� �0:5
� �

¼ 2:04617

and

�pD pð Þ ¼ 1

1�p

P

n

i¼0

n�i
n
fi pð ÞpD ið Þ ¼ 1

1�p

P

n

i¼0

n�i
n

P

m

k¼0

m

k

� �
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n

i

� �

k
m

� �i m�k
m

� �n�i
1þ 2

i
n

� �0:5
� �

¼ 2:04619

which, with 3-digit precision in the solution variable, makes p* ¼ 0:473 the equilibrium

frequency.

According to the counterfactual method, aggregate average benefits, at p* ¼ 0:473 and n ¼

25 are

bðpÞ ¼
P

n

i¼0

fiðpÞ
i
n

i� 1ð Þ pCðiÞ�pCði� 1Þð Þþ n� ið Þ pDðiÞ�pDði� 1Þð Þf g
�

þ n�i
n

ið Þ pCðiþ 1Þ�pCðiÞð Þþ n� i� 1ð Þ pDðiþ 1Þ�pDðiÞð Þf g
�

¼
P

n

i¼0

fiðpÞ
i
n

n� 1ð Þ 2
i
n

� �0:5
�2

i�1

n

� �0:5
� �n o

þ n�i
n

n� 1ð Þ 2
iþ1

n

� �0:5
�2

i
n

� �0:5
� �n oh i

¼ 2:10255

Average costs, similarly computed, are

c pð Þ ¼
X

n

i¼0

fi pð Þ
i

n
pD i� 1ð Þ�pC ið Þð Þþ

n� i

n
pD ið Þ�pC iþ 1ð Þð Þ

� �

¼ 0:412394

This makes inclusive fitness at p* ¼ 0:473 and n ¼ 25 equal to

rb p*
� �

� c p*
� �

¼ 1

4
2:10255ð Þ � 0:412394 ¼ 0:1129435

According to the regression method, aggregate benefits as well as costs, at p* ¼ 0:473 and

n ¼ 25, follow from the following minimization

a;b;g
min

X

n

i¼0

fi pð Þ
i

n
pC ið Þ� aþb

i� 1

n� 1

� �

�g

� �� �2

þ
n� i

n
pD ið Þ� aþb

i

n� 1

� �� �� �2
" #

which results in a* ¼ 1:43807, b ¼ b* ¼ 1:71421, and c ¼ g* ¼ 0:428575. This makes rb� c ¼ 0.

Mathematica files with further computational details can be obtained from the author.

Notice that in these examples, the costs and benefits according to the regression method

are uniquely defined, because – unlike the example in the main text – there is only one type of

interactant here. Any specification that includes it, will therefore result in the same regression

coefficients. In Appendix 1—figures 3, 4 and 5 it does however still misspecify the shape of

the payoff function, in the sense that it replaces a non-linear function by a linear one.
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X. Continuous population structures
Also the continuous population structure we use for the examples is meant to be convenient

rather than realistic. Here we use the Beta distribution with parameters ap and a 1� pð Þ:

fpðxÞ ¼
G að Þ

G apð ÞG a 1� pð Þð Þ
xap�1

1� xð Þa 1�pð Þ�1

This is a consistent population structure. Firstly, the frequencies of different group types, by

definition of the Gamma function, integrate to one.

Also, the frequency of co-operators – which is just the first moment of the Beta distribution

– is consistent with p.

Z

1

0

xfpðxÞdx¼
ap

apþ a p� 1ð Þ
¼ p

Relatedness is

r pð Þ ¼ P CjCð Þ�P CjDð Þ

¼

R

1

0
x2 fp xð Þdx

p
�

R

1

0
x 1�xð Þfp xð Þdx

1�p

This makes P CjCð Þ the second moment of the Beta distribution, over p, while P CjDð Þ is the first

minus the second moment, over 1� p. Relatedness therefore is

rðpÞ ¼
ap apþ1ð Þ
aþ1ð Þa

p
�

p�
ap apþ1ð Þ
aþ1ð Þa

1�p
¼

p apþ1ð Þ
aþ1

p
�

p�
p apþ1ð Þ
aþ1

1�p

¼
p apþ1ð Þ
aþ1

p
�

p aþ1ð Þ
aþ1

�
p apþ1ð Þ
aþ1

1�p
¼ apþ1

aþ1
� ap

aþ1
¼ 1

aþ1

This is independent of p. The population structure used for Appendix 1—figure 6 has a ¼ 3,

and hence relatedness 1

4
. The computations of pC pð Þ � pD pð Þ and of inclusive fitness are done

by combining this population structure with the payoff function from the example, in the way

suggested in Section VIII.
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