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Methods and Approaches

I N T R O D U C T I O N

The cell membrane presents a barrier between the cyto-
plasm and the surrounding environment that is critical 
to preserving the integrity of the cell. By virtue of this 
barrier, the differences in ion concentrations across  
the membrane that are established under the action of 
various membrane transport proteins can give rise to a 
difference in electric potential. Although it is relatively 
straightforward to control both the concentration gra-
dients and membrane potential in experimental bio-
physical studies, reproducing this set of conditions in 
computer simulations is nontrivial.

To allow for the simulation of ion channels with a  
realistic implementation of asymmetric ion concentra-
tion and transmembrane potential boundary conditions,  
a grand canonical Monte Carlo (GCMC)/Brownian 
dynamics (BD) was implemented previously (Im et al., 
2000). In GCMC/BD, asymmetric boundary conditions 
were imposed on a finite nonperiodic simulated system 
surrounded by concentration buffer regions (Im et al., 
2000). Although this method provided important in-
sight into the factors governing the permeation of wide 
aqueous pores (Im and Roux, 2002a; Noskov et al., 2004; 
Egwolf et al., 2010; Lee et al., 2011, 2012), it remained 
based on fairly crude approximations. For instance, the 
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solvent was represented as a continuum dielectric to en-
able the GCMC insertion and annihilation of ions on 
both sides of the membrane. However, imposing asym-
metric concentrations in explicit solvent molecular dy-
namics (MD) simulations introduces special difficulties. 
Such explicit solvent MD simulations are normally per-
formed with conventional periodic boundary conditions 
(PBCs), which are critical to reduce finite-size effects. 
Unavoidably, the PBCs also eliminate the distinction be-
tween the two sides of a membrane. Because there is a 
single continuous bulk solution where ions are free to 
diffuse and equilibrate, concentration gradients across 
the membrane cannot be simulated.

One possible avenue for simulating asymmetric ion 
concentrations in MD simulations with explicit solvent 
is to use a dual-membranes–dual-volumes strategy (Sachs 
et al., 2004) in which two spatially separated membranes 
are included to create two disconnected bulk phases  
between them (one of the two membranes is replaced 
by an artificial vacuum separator in the most recent 
implementation to reduce the computational burden; 
Delemotte et al., 2008). Manually adjusting the number 
of cations and anions in the two bulk regions makes  
it possible to set the effective membrane potential 
near some pre-chosen value Vm (Delemotte et al., 2011). 
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466 Simulation of asymmetric concentration

T H E O R Y  A N D  M E T H O D S

Theoretical framework
Let us consider a closed system in which the accessible volume is 
divided into two regions, V1 and V2, along the z axis. The system is 
described by the potential energy U0(R), where R represents all the 
atomic coordinates. The equilibrium Boltzmann distribution is
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where  = 1/kBT. We focus our attention on one given type of 
particle in the system and assume that, without any additional en-
ergy term, the potential energy U0(R) yields a uniform concentra-
tion of the particles. For any configuration R, the instantaneous 
number of those particles in volume V1 is equal to

 N zii1 R( ) = ( )∑ Θ , 

where (z) is a step function equal to 1 only when z lies within the 
volume V1. We wish to enforce that the average of N1(R) will be 
equal to chosen value n1, i.e.,

 N d N1 1 0R R R R( ) = ( ) ( )∫   ρ .  (2)

If there are N particles of this type in the system, it should be 
possible to enforce this condition, as long as n N1 ≤ . In practice, 
a wide range of perturbations could be introduced to impose this 
condition on the system. However, arbitrary modifications are 
likely to introduce undesirable and spurious biases. Ideally, one 
would like to modify the statistical distribution to impose the con-
dition N n1 1R( ) =  in the least intrusive manner. This goal can 
be achieved through Jaynes’ maximum entropy method (Jaynes, 
1957), whereby one seeks to maximize the excess cross-entropy 
functional ,
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under the constraints that the modified probability distribution 
(R) is normalized,

 dR Rρ ( ) =∫ 1,  (4)

and that the average of N1 is known:

 d N nR R R1 1( ) ( ) =∫ ρ .  (5)

The quantity  is a functional of the probability distribution (R), 
and the constrained optimization problem can be solved using 
the method of Lagrange multipliers, leading to the form:
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where the normalization was implicitly incorporated in the prob-
ability distribution, and  is an unknown coefficient that must 
be adjusted to match the condition in Eq. 5. The form of (R) in 
Eq. 6 is consistent with the introduction of a simple energy step, 
k T zB ii

ε Θ( )∑ , that acts on all the affected particles crossing into 
the volume V1 along the z axis, with a magnitude of E = kBT. In 
principle, determining the magnitude of the energy step may  
require iterative adjustments until the condition in Eq. 5 is satis-
fied. In practice, the average number of particles in V1 can be 

The latter is related to the charge imbalance across  
the membrane,

 ∆Q q qii side ii side
= −( )∈{ } ∈{ }∑ ∑1

2 1 2
, 

through the linear relation Vm = Q/C, where C is the 
system’s capacitance. However, frequent manual adjust-
ments are necessary, as the effective membrane poten-
tial can shift dramatically by hundreds of millivolts 
when a single discrete ion is transferred across the 
membrane because of the small value of C in finite sys-
tems (Treptow et al., 2009; Delemotte et al., 2011; Roux, 
2011). For example, in previous dual-volume simu-
lations of the voltage-dependent K+ channel, it was nec-
essary to readjust the ion distribution periodically to 
compensate for the conformational changes of the pro-
tein. To avoid the need for these cumbersome manual 
adjustments, which would preclude simulations under 
steady-state ion-flux conditions, the dual-volume method 
was recently extended to allow the ions of the two bulk 
phases to exchange with water molecules according to a 
GCMC scheme (Kutzner et al., 2011).

Despite its appeal, a dual-volume strategy remains com-
putationally burdensome, as it doubles the size of the 
simulated system and the computational cost of carry-
ing out such simulations. Furthermore, the annihilation 
and reinsertion processes of the particles implemented in 
the GCMC constitute non-Newtonian stochastic events 
that interrupt the course of the MD trajectory and add 
to the overall computational cost. Ideally, it would be 
desirable to maintain solute concentrations on both sides 
around chosen values while simulating a single-mem-
brane–single-volume system with conventional PBCs.

In this paper, we show that realistic asymmetric ion 
concentrations can be realized by introducing a non-
periodic “energy step” at the edge of the simulation cell 
to maintain a chemical potential difference across the 
bulk phase. The height of the step can be adjusted dy-
namically during the simulation to converge to a de-
sired concentration difference between the two phases 
on either side of the membrane. In addition to the con-
centration asymmetry, a membrane potential can also 
be established by applying a constant electric field act-
ing on all charged particles in a direction orthogonal to 
the membrane (Roux, 2008; Gumbart et al., 2012). The 
nonperiodic energy-step method is first illustrated by 
considering a simple system with a fixed nonpolar slab 
membrane as well as a realistic phospholipid membrane 
bilayer. The method is then validated by calculating the 
reversal potential and the conductance of the bacterial 
porin OmpF under asymmetric conditions. Finally, the 
method is used to simulate the physiological conditions 
experienced by the pore domain of the K+ channel 
Kv1.2, including the negative membrane potential and 
the asymmetric Na+ and K+ concentrations on either 
side of the membrane.
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region. Fig. 2 provides a schematic representation for a typical 
solvated membrane system. PBCs replicate the system in the three 
dimensions and, thus, connect the two aqueous solutions on the 
two sides of the membrane along the z direction, defined as the 
membrane normal. A small transition region of thickness d/2 is 
defined at each of the edges of the periodic box, over which an 
external constant force f directed along the z axis acts on all ions. 
The constant force f over the periodic transition region of thickness 
d results in a nonperiodic energy step  = fd, which alters the 
chemical potential difference between the ions in the two com-
partments, generating a concentration ratio of r = (C1/C2) = e.

It is of interest to point out that the present method is analo-
gous to a previous treatment used to impose hydrostatic pressure 
differences across a membrane (Zhu et al., 2004), a thermody-
namic property that also suffers from the lack of distinct bulk 
water phases on either side of a membrane in periodic systems. 
This problem was solved through the application of a small force 
to water molecules in a region far from the membrane. The re-
sulting chemical potential difference for water between the two 
sides of the membrane was µ = fd, where f was the applied force 
and d was the size of the region of application in the direction 
normal to the membrane (Zhu et al., 2004). The method was ap-
plied to the study of water transport in aquaporin, permitting cal-
culation of the osmotic permeability, which was found to be in 
agreement with experimental determinations (Zhu et al., 2004).

Iterative dynamic energy-step adjustment
Although the value of the energy step needed to set a given con-
centration ratio r can be determined directly as  = ln(r) in the 
ideal case, ion–ion interactions may affect the expected concen-
tration ratio in practice. This deviation from the ideal value deter-
mined above requires further adjustment of the energy step as 
the ionic concentrations change during the simulation. The  
external force, initially set to f = kBTln(r)/d, is then adjusted 
dynamically to reach the proper concentration ratio. Two param-
eters,  and , control the response of the system to the force ad-
justment. The external force acting on different ionic species is 
updated according to the following protocol:

 f t t f t f t t+( ) = ( ) + ( ) ( )∆ ∆ ∆ / ατ   (15)

and
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approximated by assuming that the affected particles are nearly 
independent. In this case, the probability of finding the particles 
in each volume p1 and p2 and its respective averages can then be 
written as a function of ,

 p
V e

V e V1
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1 2
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−
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  (7)

and
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V

V e V2
2

1 2

=
+−ε ,  (8)

where p1 + p2 = 1 and V1 + V2 = V is the total volume. For a binomial 
distribution, the mean number of particles in V1 is Np1, and the 
variance is Np1(1  p1). So, to a first approximation, the magnitude 
of the energy step must be chosen such that Np n1 1= . The normal-
ized relative root-mean-square (RMS) fluctuations of the number 
of particles is p Np2 1  and p Np1 2  for V1 and V2, respectively. It 
follows that the average concentrations of particles in volumes V1 
and V2 are (we drop the brackets for the sake of simplicity)
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and
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V e V2
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=
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respectively. The concentration ratio is (C1/C2) = e. The relative 
RMS fluctuation of the concentration in V1 is

 σ ε1
2

1

= −

V
NV e

,  (11)

and the relative RMS fluctuation of the concentration in V2 is 
equal to

 σ
ε

2
1

2

=
−V e

NV
.  (12)

For the sake of simplicity, let us assume that the two volumes  
are identical here, i.e., V1 = V2 = V/2. The average concentrations 
are then

 C C
e
e1 2

1
=
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ε
  (13)

and

 C C
e2 2

1
1

=
+−ε ,  (14)

where C = N/V is the overall concentration of the particles in the 
entire system. Note that the maximum achievable concentration 
(here 2N/V) occurs when all the particles are forced into one of 
the two volumes (as shown in Fig. 1). The maximum achievable 
concentration could be manipulated by either introducing more 
particles into the system or by choosing a smaller volume for one 
of the two regions. The range of the concentration ratio achiev-
able is controlled solely by the energy step (in units of kBT), i.e., 
(C1/C2) = e. However, to achieve a certain concentration C1 in 
V1, the starting number of solutes should be chosen to build the 
system such that C1V1 + C2V2 = N, where N is the total number of 
solute particles in the system.

In a practical implementation for MD simulation, it is simpler 
to avoid the discontinuous energy step by defining a small transition 

Figure 1. Solute concentrations C1 (solid line) and C2 (dashed 
line) in volumes V1 and V2 as a function of the energy gap .
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where Lz is the length of the system in the z direction. It is worth 
emphasizing that, although a constant electric field was applied 
to the system (Roux, 2008), it should be understood that the  
average electrostatic potential is expected to vary nonlinearly be-
cause of the irregular shape of the membrane and of the pore. 
For illustrative examples, refer to the recent review by Gumbart  
et al. (2012).

Protein residues E296, D312, and D127 were protonated (Im 
and Roux, 2002a,b; Varma et al., 2006), and harmonic restraints 
(with a force constant of 1.0 kcal1 Å1) were applied to the C 
atoms at their crystallographic positions to prevent channel clo-
sure by the repositioning of L3 under the applied voltage. The 
Langevin friction was removed for the ions. Pressure control was 
removed to prevent distortion of the system by the electric field; 
the virial used in the constant pressure algorithm is no longer well 
defined in the system when applying an external constant electric 
field. Simulations were therefore performed at constant volume 
and temperature (300 K) with a time step of 2 fs. The asymmetric 
concentration gradient was initially defined with 1 M KCl above 
the membrane and 0.1 M KCl below, and it was maintained 
throughout the simulation by imposing an energy step at the 
edges of the periodic box. Total ionic current was determined by 
calculating the displacement of all charges across the membrane 
using (Crozier et al., 2001a,b; Aksimentiev and Schulten, 2005; 
Pezeshki et al., 2009)

 I t
L

q
z t t z t

tz
i

i i

i

N

( ) = +( ) − ( )
=
∑1

1

∆
∆

,  (18)

where zi and qi are the z coordinate and charge of ion i, respec-
tively, N is the total number of particles in the system, and t is the 
time step of 100 ps (the results are independent of t). Current 
calculations for individual ions IK and ICl were determined by 
counting the number of K+ or Cl that cross the pore over the 
trajectory. This also allowed the error i to be calculated for the 
total ionic currents by assuming a Poisson process (Sotomayor  
et al., 2007), such that

 σ i N i= ( )1/ ,  (19)

where C1 and C2 are the estimated ion concentrations in each 
compartment, and ... represents a time average over a period of 
 immediately preceding the current time step;  determines the 
response time of the system. Temporal averaging of the concen-
tration ratio over  is necessary to overcome instantaneous (ther-
mal) fluctuations in the number of ions as they jump between the 
boundaries of the energy step. The force adjustment follows the 
initial equilibration of the system and continues for a period of 
time comparable to the relaxation time of the system, i.e., a few 
nanoseconds for a system including a single-membrane protein. 
Ionic concentrations are monitored during the simulation, and 
the external force is gradually adjusted to reach the ideal concen-
tration over a period of . Convergence of the force is a function 
of fluctuations in number of ions and, thus, longer simulations 
might be necessary for smaller systems. To obtain better estimates 
of ionic concentrations and avoid fluctuations near boundaries, 
the time-dependent concentrations are calculated for a region of 
length L, smaller than the length of the entire simulation system 
L, but large enough to include a finite number of ions at each 
time. This region should also be located far from the protein/
membrane or any discontinuity in the system.

Simulation details
All simulations were performed using the MD program NAMD 
(Phillips et al., 2005) together with the CHARMM27 or CHARMM36 
force field for proteins (MacKerell et al., 1998) and lipids (Feller 
et al., 1997; Klauda et al., 2010), and TIP3P (Jorgensen et al., 
1983) for water. PBCs were used in all simulations, and electro-
static interactions were calculated using the particle-mesh Ewald 
method (Darden et al., 1993) with a grid spacing of at least 1 per Å. 
Simulations were performed at constant volume and constant 
temperature (300 K) with a time step of 1 fs (2 fs for the OmpF 
simulations). The algorithm described above was implemented in 
the Tcl interface of NAMD, where external forces were defined 
and adjusted throughout the simulation.

The membrane slab was constructed of individual carbon 
atoms arranged in a body-centered cubic lattice with a spacing of 
4 Å, similar to the systems simulated in Gumbart et al. (2012). 
The membrane has six vertical layers and, thus, a thickness of  
20 Å, not accounting for the radius of the atoms themselves. In 
each simulated system, the membrane is fully solvated above and 
below and ionized with Na+, K+, and Cl ions at a concentration of 
either 1 M or 500 mM. The system size for the membrane slab was 
44 Å × 44 Å in the membrane plane and 75 Å perpendicular to the 
membrane. The system consists of 11,000 atoms.

The palmitoyl oleoyl phosphatidylcholine (POPC) lipid bilayer 
system was generated using visual MD (Humphrey et al., 1996). 
The hydrated system, consisting of 131 lipid and 10,000 water mol-
ecules, was ionized with an initial concentration of 55 mM K+, 
55 mM Na+, and 110 mM Cl ions, such that the low concentra-
tion and high concentration sides could be maintained at 10 and 
100 mM when a concentration ratio of 10:1 was imposed.

The OmpF simulation model consisted of the OmpF trimer 
embedded in a POPC lipid bilayer, which was constructed using 
the CHARMM-GUI (Varma et al., 2006; Jo et al., 2008). The struc-
ture of the protein was taken from Protein Data Bank accession 
number 2OMF (Cowan et al., 1995). The protein–membrane  
system was solvated with explicit waters, and ions were added in 
visual MD for a total system size of 200,000 atoms. Tetragonal 
PBCs were applied with a distance of 123.5 Å in the xy direction and 
127.5 Å in the z direction. A constant electric field Ez corresponding 
to a transmembrane potential, V, of +150, 0, and 150 mV was 
applied along the z direction perpendicular to the membrane to 
all the atoms in the simulation box (Roux, 2008):

 E V Lz z= m / ,  (17)

Figure 2. Schematic representation of a typical solvated mem-
brane system. To impose a concentration gradient across the mem-
brane, a constant force is applied to the ions near the boundaries 
of the periodic box (z > L/2  d/2 or z < L/2 + d/2).

http://www.rcsb.org/pdb/explore/explore.do?structureId=2OMF
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The error bars show the standard error in the calcula-
tions resulting from the finite number of ions in the 
system and the finite length of the trajectories.

As shown in Fig. 3 (B and C), the concentration ratio 
increases exponentially with the applied force. The initial 
concentrations vary between 0.5 and 1 M for each system. 
Small deviation of the data points obtained from simula-
tion trajectories and the theoretical values (shown as a 
straight line) indicate the ability of this method to main-
tain a concentration gradient even at concentrations  
as high as 2 M. The relative fluctuation in the number 
of ions increases as the magnitude of the applied force 
is increased. Imposing a concentration ratio of 10:1 be-
tween the two ionic solutions results in a system where 
only a few ions are left in one solution, assuming a  
volume of 10 nm. Thus, realistic simulations of mem-
brane proteins require a larger volume on each side to 
allow physiologically relevant concentrations of 100 mM 
to result in a finite number of ions in the system.

Under physiological conditions, cellular membranes 
are separated by two ionic solutions. Although the ex-
tracellular solution is maintained at concentrations of 
100 mM NaCl and 10 mM KCl, the intracellular solu-
tion has 10 mM NCl and 100 mM KaCl. Using the 
method presented in this paper, we have been able to 
simulate a POPC lipid bilayer in a mixture of NaCl and 
KCl solutions with an asymmetric distribution around 
the membrane. The concentration of each ionic species 
is controlled separately. Two different nonperiodic en-
ergy steps are introduced at the edges of the periodic 
box normal to the plane of membrane, where they act 
on either Na+ or K+ ions (see Fig. 4 A). The nonperiodic 
energy steps concentrate K+ ions in the top compart-
ment (z > 0) and Na+ ions in the bottom compartment 
(z < 0), as shown in Fig. 4 (A and B). The steps are 
defined such that K+ concentrations are maintained at 
a ratio of 10:1 (100:10 mM), whereas Na+ concentra-
tions have a ratio of 1:10 (10:100 mM) between the top 
and bottom compartments. The number of ions in each 

where N(i) is the number of ion crossing events at the membrane 
potential Vm(i). Ion conductance G and the reversal potential Vrev 
were calculated by a least-square fitting of the I-V curves (Fig. 6 B) 
that minimized

 χ
σ

2
2

21
= ( ) − ( ) −( ) ∑

ii

I i G V i Vm rev .  (20)

The initial setup of the Kv1.2 system was taken from Khalili-
Araghi et al. (2006), in which the pore domain of the voltage-
gated potassium channel Kv1.2 has been equilibrated in a patch 
of POPE lipid bilayer. The structure of the protein was taken from 
Protein Data Bank accession number 2A79 (Long et al., 2005). 
The number of ions in the aqueous solution surrounding the 
membrane–protein system has been adjusted to reach 55-mM 
concentrations of KCl and NaCl over the entire system. The new 
configuration was then equilibrated for 10 ns, after which concen-
tration ratios of 10:1 and 1:10 were imposed between Na+ and K+ 
ions, respectively, on the two sides of the membrane. In addition, 
a membrane potential of 100 mV was applied via an external 
electric field Ez = V/Lz (Roux, 2008).

R E S U L T S  A N D  D I S C U S S I O N

Illustrative examples
To illustrate the effectiveness of the nonperiodic en-
ergy-step method, we first simulated a system with a sim-
plified membrane slab surrounded by aqueous KCl or 
NaCl salt solutions, as shown in Fig. 3 A. The simula-
tions start from a uniform distribution of ions on both 
sides of the membrane with concentrations C1 and C2 
(C1 = C2). External forces are applied to the ions, K+, 
Na+, and Cl, as they enter a region 2.5-Å wide at the 
edges of the periodic box to separate the ions on either 
side of the membrane. The forces are applied for 20 ns 
after the initial equilibration, or until the ion concen-
tration on each side of the membrane is stabilized. 
Fig. 3 (B and C) shows the ratio between the ion con-
centrations, C1 and C2, on the two sides of the membrane 
averaged over the last 10 ns of the simulation trajecto-
ries as a function of the applied energy step ( = fd. 

Figure 3. A membrane slab separated by two ionic solutions with concentrations C1 and C2. (A) Snapshot of the simulation system after 
application of the energy step. (B and C) The ratio of ionic concentration as a function of the applied force for simulations consisting 
of (B) KCl or (C) NaCl solutions.

http://www.rcsb.org/pdb/explore/explore.do?structureId=2A79
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Reversal potential of OmpF porin
General diffusion porins, such as the OmpF channel 
from Escherichia coli, are inserted in the outer membrane 
of Gram-negative bacteria and allow exchange of hydro-
philic nutrients with the environment. The crystal struc-
ture of OmpF porin reveals a trimer of  barrels, where 
each monomer is comprised of a separate pore marked 
by large extracellular and periplasmic pore vestibules 
that are separated by a constriction zone formed by the 
insertion of extracellular loop L3 into the pore (Cowan 
et al., 1992, 1995). Unique factors govern conductance 
and specificity of these large aqueous pores. Elucidation 
of these factors is essential for understanding the perme-
ation mechanisms of ion channels in general, as well as 
for assessing how their cellular regulation is controlled.

Previous computational modeling studies have shown 
that electrostatic interactions exist between permeat-
ing ions and charged porin residues (Im and Roux, 
2002a,b), suggesting that ion movement does not fol-
low simple diffusion patterns. Instead, a separation of 
charged residues over 40 Å from the extracellular to 
periplasmic vestibules of the OmpF channel leads to 
the formation of two well-separated average transition 
pathways for diffusion of cations and anions (Im and 
Roux, 2002b). Furthermore, ion–ion pairs seem to play 

compartment stabilizes within 20 ns after application  
of the external force (see Fig. 4, C and D). Additional 
simulations of a POPC lipid bilayer with a mixture of 
NaCl and KCl solutions under symmetric concentration 
condition (without the energy step) yielded density  
profiles that are consistent with these results (unpub-
lished data).

Fig. 4 B shows the density profile of K+, Na+, and Cl 
ions along the z axis, normal to the plane of membrane. 
As shown in the figure, the ionic concentrations for  
Na+ and K+ ions drop rapidly over the imposed energy 
step near the edges of the simulation box (within a re-
gion of 5 Å). Cations maintain an average density of 10 
mM on the low concentration side, whereas the high con-
centration side reaches an average density of 100 mM. 
The interaction between negatively charged lipid head 
groups and cations results in penetration of K+ and 
Na+ ions inside the membrane, an artifact that has also 
been observed in previous simulations of membrane 
proteins (Böckmann et al., 2003; Vácha et al., 2009). 
During the simulation, the height of the energy step 
can be adjusted to maintain the proper ratio between 
average ionic concentrations within a region that ex-
cludes the ions that make salt bridges with the lipid 
head groups.

Figure 4. A POPC lipid bilayer simulated under asymmetric ionic concentrations. (A) Snapshot of a POPC lipid bilayer simulated 
under asymmetric ionic concentrations. Lipid molecules are shown in licorice representation, and Cl (yellow), Na+ (red), and K+ (blue) 
ions are shown as spheres. (B) Average density profile of the ions along the z axis normal to the plane of membrane. (C and D) Number 
of Na+ and K+ ions in the top and bottom compartments as a function of time.



 Khalili-Araghi et al. 471

previous MD, BD, and Poisson–Nernst–Planck (PNP) 
simulations (Im and Roux, 2002a; Pezeshki et al., 2009).

OmpF’s weak specificity for cations is revealed by re-
versal potential (Vrev) measurements. Vrev is the applied 
transmembrane voltage that yields zero current in the 
presence of a concentration gradient across the chan-
nel. The advantage of Vrev measurements are in their 
simplicity, as the sign of Vrev provides a quick estimation 
of channel selectivity. Additionally, Vrev can be used to 
calculate the permeability of individual ions by using 
the well-known Goldman-Hodgkin-Katz equation:

 V
k T
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P C P C

P C P C
B i

i o
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K Cl

K Cl
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[ ] + [ ]
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Experimental lipid bilayer measurements report Vrev val-
ues of 27 and 26 mV for the OmpF channel from E. coli 
strains B and K-12, respectively (Benz et al., 1985).

Computational approaches to calculate Vrev have previ-
ously been limited to GCMC/BD simulations and three-
dimensional PNP electrodiffusion theory, yielding values 
Vrev of 27.4 and 22.1 mV, respectively (Im and Roux, 
2002a). Although those results were in excellent accord 
with experiments (Benz et al., 1985), they were obtained 
from simulation models that are based on continuum 
electrostatic approximations. Using the nonperiodic 
energy-step method to establish a salt concentration gra-
dient developed here, it becomes possible for the first 
time to calculate the reversal potential Vrev of OmpF using 
all-atom MD simulations with explicit solvent molecules.

To calculate Vrev, an asymmetric salt solution across the 
membrane was constructed with 1 M KCl above (on the 
extracellular side of) the membrane and 0.1 M KCl below 
(on the periplasmic side of) the membrane. To maintain 
the salt gradient, an external force of 0.557 kcal mol1 
Å1 was applied to the ions as they entered a 2.5-Å wide 
region at the edges of the periodic box. After conver-
gence, an electrostatic potential of +150, 0, or 150 mV 
was applied across the membrane to drive current. The 
ion conductance was monitored over separate 50-ns tra-
jectories. The I-V relationship (Fig. 6 B) shows similar 
features as those calculated previously using BD and 
PNP (Im and Roux, 2002a). Calculation of Vrev at zero 
net current was determined to be 28.6 ± 5.3 mV. This 
positive value for Vrev, caused by the preferential move-
ment of cations in response to the concentration gradi-
ent, is indicative of a cation-selective OmpF channel 
and is in excellent agreement with previous experimen-
tal measurements (Benz et al., 1985).

As a comparison, channel selectivity was deter-
mined from the MD simulations by calculating the ratio 
of permeability coefficients PK/PCl extracted from the 
Goldman–Hodgkin–Katz equation, or by calculating the 
current ratio IK/ICl at zero applied voltage in the asym-
metric KCl condition. These values (PK/PCl of 4.2 and 
IK/ICl of 2.4) are in reasonable agreement with each 

an important role in their permeation, especially at 
high salt concentration. Specifically, Cl permeation 
has been observed to require K+ counter ions, whereas 
K+ permeation can occur independently of Cl (Im and 
Roux, 2002b).

Ion conduction through OmpF porin was first exam-
ined under symmetric conditions. The OmpF trimer 
channel embedded in a POPC lipid bilayer (Fig. 5) and 
surrounded by a symmetric salt solution of 1 M KCl was 
simulated for 50 ns in the presence of an electrostatic 
potential of +150, 0, or 150 mV. The resulting ion con-
ductances for a single OmpF pore are 0.81 and 0.98 nS 
under applied voltages of +150 and 150 mV, respec-
tively. These values are smaller than the experimental 
conductance of 1.35 nS based on electrophysiological 
measurements performed for OmpF reconstituted in 
proteoliposomes (Kreir et al., 2008). A similar reduction 
in ion current across the OmpF pore was observed pre-
viously by all-atom MD with applied electric fields under 
1 V using CHARMM force fields (Pezeshki et al., 2009). 
In fact, a significant decrease in conductivity with salt 
concentrations around and above 1 M was shown even 
in bulk water (Pezeshki et al., 2009). However, despite 
the reduction in total ion conductance, the MD trajec-
tories reproduce the diffusion pathways and selectivity 
properties of ions across the OmpF pore. Specifically, 
more current is carried by K+ than Cl (IK/ICl of 1.16 and 
1.14 at +150 and 150 mV, respectively; Fig. 6 A), which 
reproduces the slight cation selectivity of the OmpF 
channel and is in agreement with values obtained by 

Figure 5. Snapshot of the simulation system consisting of an 
OmpF trimer embedded in a POPC membrane, fully solvated 
with 1 M KCl above the membrane and 0.1 M KCl below the 
membrane, after the application of the energy-step function. K+ 
(magenta) and Cl (green) are shown as spheres.



472 Simulation of asymmetric concentration

and assumed a symmetric concentration of K+ on both 
sides of the channel.

We have simulated the ion conduction pore of Kv1.2 
embedded in a POPC lipid bilayer surrounded by NaCl 
and KCl solutions at physiological ionic concentrations. 
The intracellular solution is maintained at concentrations 
of 100 mM KCl and 10 mM NaCl, whereas the extracel-
lular solution is kept at concentrations of 10 mM KCl 
and 100 mM NaCl. An electrostatic potential of 100 mV 
is applied across the membrane to mimic the hyper-
polarized cellular membrane. A snapshot of the system 
and the electrostatic potential across a plane passing 
through the membrane is shown in Fig. 7 (A and B, 
respectively). The trajectory is obviously too short (50 ns) 
to obtain an accurate estimate of the channel conduc-
tance, although it is sufficiently long to display the aver-
age spatial distribution of the different ions around the 
intracellular and extracellular channel entrances.

Fig. 8 shows the local density profile of K+, Na+, and 
Cl ions in a plane normal to the membrane. The den-
sity profiles are radially averaged over the symmetry axis 
of the protein (z axis). Although Cl ions are distributed 
uniformly between the two ionic solutions on two sides 
of the membrane, z > 0 and z < 0, K+ ions are concentrated 
on the intracellular side (z < 0), and Na+ ions are con-
centrated on the extracellular side (z > 0) (Fig. 8, A–C). 
The average density of K+ ions is 10 and 100 mM in the 
extracellular and intracellular solutions, respectively, 
whereas the Na+ ions are distributed with an average 
density of 100 and 10 mM in the extracellular and intra-
cellular compartments. The average Cl density in each 
compartment is 110 mM, resulting in a solution that 
is locally neutralized. Fig. 8 A shows the location of  
two K+ ions in the selectivity filter (high K+ density). On 
the other hand, Na+ ions (Fig. 8 B) accumulate in ex-
cess of 200 mM near the extracellular entrance of the 
pore, where the selectivity filter prevents Na+ ions from 
entering the pore and flowing down their electrochemi-
cal gradient.

other and correspond to OmpF ion selectivity values cal-
culated previously from experimental data (PK/PCl of 
3.9 and 3.6 for the OmpF channel from E. coli strains B 
and K-12, respectively; Benz et al., 1985), and from BD 
(PK/PCl of 3.9 and IK/ICl of 3.4) and PNP (PK/PCl of 2.9 
and IK/ICl of 2.4) simulations (Im and Roux, 2002a).

Ion selectivity for the OmpF channel has been shown 
previously to vary dramatically with KCl concentration 
(Im and Roux, 2002a), preventing accurate calculation 
of channel selectivity in a symmetric salt solution. Im-
plementation of the developed method therefore al-
lows for channel properties such as ion selectivity to be 
determined for other molecular pores in the absence of 
experimental functional data.

Ionic environment of the Kv1.2 channel pore domain
In contrast to the moderate cation specificity of the OmpF 
porin, the Kv1.2 channel is extremely selective for K+ over 
Na+. These voltage-gated channels respond to changes 
in membrane potential by opening (or closing) their 
highly selective conduction pores to control the flux of 
ions across the membrane. Upon depolarization of the 
cell membrane, the ion conduction pore opens and K+ 
ions flow down their electrochemical gradient across 
the membrane. Despite a 10-fold concentration gradient, 
Na+ ions do not pass through the conduction pore. Al-
though K+ ions flow from the intracellular side (high K+) 
toward the extracellular solution (low K+) through the 
pore, the smaller Na+ ions face a barrier at the selectivity 
filter and maintain a high concentration gradient on the 
extracellular side. Therefore, under physiological con-
ditions, the channel embedded in the cell membrane is 
exposed to a high concentration of Na+ on the external 
side and is submitted to a negative membrane potential 
that could further drive Na+ inward. Understanding 
how the channel performs under realistic physiological 
conditions is of great interest. However, all previous MD 
simulations of K+ channels were constrained by PBCs 

Figure 6. MD simulation of ion permeation and selectivity of OmpF porin. (A) Ion selectivity of OmpF porin. The I-V curves were calcu-
lated in (A) 1 M KCl symmetric solution or (B) 0.1:1 M KCl asymmetric solution from MD trajectories. The total current per monomer 
(black) is the sum of K+ (purple) and Cl (green) currents. Error bars are calculated from Eq. 19.
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particles is known, the height of the step directly deter-
mines the equilibrium concentration of the solute on 
each side of the membrane.

In contrast to the alternative dual-membrane–dual-
volume approach, in which two bulk regions are con-
structed to define independent solvent environments 
on the two sides of a membrane, the present method 
can be used to simulate a single-membrane system with 
almost no additional computational cost. In the case  
of wide membrane pores, such as OmpF, the coarse-
grained methodologies that combine BD and PNP the-
ories with a continuum description of the solvent are 
shown to reproduce conduction properties of the channel 
successfully (Im and Roux, 2002a). However, describ-
ing the selectivity and conduction of more specialized 
ion channels will require an all-atom description of  
the system.

It is worth noting that the nonperiodic energy step 
could also be used to create a net charge imbalance across 
the membrane, resulting in an effective membrane 
potential of V = Q/C (Treptow et al., 2009; Delemotte 
et al., 2011). However, as there is no simple relationship 

In these simulations, the nonperiodic energy steps 
are applied to Na+ and K+ ions to generate two separate 
ionic solutions. No energy step is applied to Cl ions, 
which are free to move and distribute between the two 
compartments. However, as shown in Fig. 8 (A–C), each 
ionic solution remains neutral. In the absence of any 
external forces, the Cl ions follow cations, crossing the 
barrier as part of ion pairs.

Conclusion
A simple method has been developed to permit simula-
tions of biomembrane systems under realistic asymmet-
ric solute concentrations. Introducing an energy step  
at the boundaries of the periodic cell effectively sepa-
rates the two solutions and generates a nonuniform dis-
tribution of the solute molecules across the cell boundaries. 
The nonperiodic energy step is implemented through the 
application of external forces over a thin region near 
the boundaries of the system. The method allows the  
ion concentration on each side of the membrane to be 
controlled separately as long as the total number of 
ions remains constant. When the total number of solute 

Figure 7. MD simulations of the pore domain of Kv1.2 under physiological conditions. (A) The pore domain of Kv1.2 embedded in a 
POPC lipid bilayer with asymmetric ionic concentrations. (B) Electrostatic potential map over a cross section of the system normal to 
the membrane averaged over the last 10 ns of the simulation trajectory. (C) Electrostatic potential normal to the plane of membrane 
averaged over 1-Å-wide cross sections along the x axis.

Figure 8. Local density profile 
of K+, Na+, and Cl ions obtained 
from the simulations of Kv1.2. 
Local densities are plotted as a 
function of radial distance from 
the pore axis r and the distance 
from the bottom of the peri-
odic box z.
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implementation in other simulation packages should  
be trivial. Although the method was illustrated with two 
ion channels, it is worth emphasizing that it is completely 
general and could be used to realistically simulate the 
asymmetric environment of any membrane protein.
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