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ABSTRACT

As the first web server to analyze various biolog-
ical sequences at sequence level based on ma-
chine learning approaches, many powerful predic-
tors in the field of computational biology have
been developed with the assistance of the BioSeq-
Analysis. However, the BioSeq-Analysis can be only
applied to the sequence-level analysis tasks, pre-
venting its applications to the residue-level analy-
sis tasks, and an intelligent tool that is able to au-
tomatically generate various predictors for biologi-
cal sequence analysis at both residue level and se-
quence level is highly desired. In this regard, we de-
cided to publish an important updated server cov-
ering a total of 26 features at the residue level and
90 features at the sequence level called BioSeq-
Analysis2.0 (http://bliulab.net/BioSeq-Analysis2.0/),
by which the users only need to upload the bench-
mark dataset, and the BioSeq-Analysis2.0 can gen-
erate the predictors for both residue-level analysis
and sequence-level analysis tasks. Furthermore, the
corresponding stand-alone tool was also provided,
which can be downloaded from http://bliulab.net/
BioSeq-Analysis2.0/download/. To the best of our
knowledge, the BioSeq-Analysis2.0 is the first tool
for generating predictors for biological sequence
analysis tasks at residue level. Specifically, the ex-
perimental results indicated that the predictors de-
veloped by BioSeq-Analysis2.0 can achieve compa-
rable or even better performance than the existing
state-of-the-art predictors.

INTRODUCTION

Established in 2017, the platform BioSeq-Analysis (1) is
for the first time proposed to analyze various biological se-
quences at sequence level via machine learning approaches.
BioSeq-Analysis (1) has been increasingly and extensively
applied in many areas of computational biology. Moreover,
many new and powerful predictors in the field of com-
putational biology were developed by using the BioSeq-
Analysis, such as iLearn (2), QSPred-FL (3), etc.

As shown in Figure 1, there are two main important
tasks in biological sequence analysis, including residue-
level analysis and sequence-level analysis. The aim of the
residue-level analysis task is to study the properties of the
residues, for instance protein-protein interaction site pre-
diction (4), protein disordered region prediction (5), N6-
Methyladenosine site prediction (6), etc, while the aim of
the sequence-level analysis task is to investigate the struc-
ture and function characteristics of the entire sequences,
such as enhancer identification (7,8), protein remote ho-
mology detection and fold recognition (9–12), recombina-
tion spot identification (13,14), DNA/RNA binding pro-
tein identification (15,16), etc. All these biological sequence
analysis tasks are consisted of three main steps: feature ex-
traction, predictor construction, and performance evalua-
tion. The BioSeq-Analysis mainly focuses on analyzing bi-
ological sequences at the sequence level, meaning that the
BioSeq-Analysis can be only applied to the sequence-level
analysis tasks. Can we construct an intelligent tool to gen-
erate predictors for both residue-level and sequence-level
analysis by automatically implementing all the three pro-
cesses listed in Figure 1? To answer this question, we have
decided to publish an important updated platform called
BioSeq-Analysis2.0. Compared with BioSeq-Analysis and
other existing tools, BioSeq-Analysis2.0 has the following
novel functions and features:
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Figure 1. The three main processes of biological sequence analysis tasks at residue level (top part) and sequence level (bottom part) based on machine
learning algorithms. The residue-level analysis tasks explore the characteristics of residues, while the sequence-level analysis tasks explore the characteristics
of the entire sequences.

I. 26 new feature extraction methods at residue level
were added, of which 7 for DNA residues (17–21), 6
for RNA residues (17–19,22) and 13 for amino acid
residues (11,17,18,23–32), and 34 new feature extrac-
tion methods at sequence level were also added, of
which 9 for DNA sequences (2,33–35), 7 for RNA se-
quences (2,33,35) and 18 for protein sequences (36–55).
To the best of our knowledge, BioSeq-Analysis2.0 is the
first web server proposed to generate various residue-
level feature extraction methods. As a result, BioSeq-
Analysis2.0 covers a total of 26 features at the residue
level and 90 features at the sequence level.

II. For the residue-level analysis tasks, a sliding window ap-
proach was applied to extract the information of the
sequential neighboring residues, and a sequence label-
ing model Conditional Random Field (CRF) was added
into BioSeq-Analysis2.0 so as to capture the global se-
quence order information of residues.

MATERIALS AND METHODS

For biological sequence analysis tasks, given a
DNA/RNA/protein sequence S with L residues, it
can be formulated as:

S = R1 R2R3R4R5R6R7 · · · RL (1)

where R1 is the first residue, R2 is the second residue, etc.

Residue-level analysis

The task of residue-level analysis can be generally described
as follows. Given a dataset containing I sequences with N
residues, in order to predict the attributes of the residues,

each residue should be classified into one of the M cate-
gories, where each category Cm(m = 1, 2, · · · M) is com-
posed of residues with the same attribute, and its size
(the number of residues) is Nm. Evidently, the total number
of samples is N = N1 + N2 + · · · NM. The uth residue in
Cm is expressed by

Ru
m = [

�u
m,1 �u

m,2 · · · �u
m,p · · · �u

m,�

]T
(2)

where �u
m,p (p = 1, 2 · · · ,�) is the pth feature of the uth

residue in category m.

Sequence-level analysis

Given a dataset containing I sequences (S1S2S3 · · · SI )
(see Equation 1) from K categories, where each category
Dk(k = 1, 2, · · · K ) is composed of sequences with the
same attribute, and its size is Ik. The total number of se-
quence samples is I = I1 + I2 + · · · IK . The vth sequence
in category Dk is expressed by (56)

Sv
k = [

�v
k,1 �v

k,2 · · · �v
k,q · · · �v

k,�

]T
(3)

where �v
k,q (q = 1, 2 · · · ,�) is the qth feature of the vth

sequence in category k.
Now the difficulty is, for a residue or a sequence, how

to identify which category it belongs to? To cope with
such a problem, we proposed a powerful and multifunc-
tional web server in this study, named BioSeq-Analysis2.0,
through which users can construct various sequence-level
and residue-level predictors for analyzing DNA, RNA and
protein sequences.

BioSeq-Analysis2.0 updates the three sub web
servers (DNA-Analysis2.0, RNA-Analysis2.0, Protein-
Analysis2.0) for analyzing DNA, RNA and protein
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sequences, respectively. Each of them is able to automati-
cally implement the three main steps: feature extraction,
predictor construction and performance evaluation (see
Figure 1).

Feature extraction

The residue-level features explore the properties of the
residues, and their relationship among the residues in the
sliding windows, while the sequence-level features focus
on extracting the global information along the entire se-
quences. For residue-level analysis, in order to capture the
properties of the residues, the sliding window strategy and
the fragment strategy were used to extract the correspond-
ing features via a user defined fixed-length window. For
sequence-level analysis, the biological sequences (see Equa-
tion 1) were converted into feature vectors via sequence in-
formation. BioSeq-Analysis2.0 for the first time provides 26
features for residue-level analysis. BioSeq-Analysis2.0 up-
dates 34 new features at sequence level, leading to 90 fea-
tures for sequence-level analysis. In this section, we mainly
focused on introducing the 26 features for residue-level
analysis and the 34 new features for sequence-level analysis.
For the other 56 features for sequence-level analysis, please
refer to (1).

In DNA-Analysis2.0, there are seven different residue-
level features for DNA sequences to generate various pre-
dictors, which can be further divided into three categories
(Table 1).

The first category is about residue composition contain-
ing four features. Of the four, the first one is of One-hot,
where the residues are arranged in a particular order, and
then the ith residue type is represented by four binary bits
with the ith bit set as 1, and all the other bits are set as
0; the rest of the four are Position-specific-2 (18), Position-
specific-3 (18) and Position-specific-4 (18), reflecting differ-
ent position specificity between any two nucleotides along
a DNA sequence based on One-hot.

The second category is about physicochemical property
containing two features, DPC and TPC. The former (DPC)
is based on the 90 physicochemical indices of dinucleotides
extracted from (19,20) to represent residues, while the latter
depends on 12 physicochemical properties of trinucleotides
extracted from (19) to represent residues. Both the two
features can select some physicochemical indices from the
built-in index boxes.

The third category is about evolutionary information
containing one feature BLAST-matrix based on (21), which
can represent the local and global DNA sequence compo-
sition.

In RNA-Analysis2.0, there are six different residue-level
features for RNA sequences to generate various predictors,
which can be separated into three categories (Table 2)

The first category is about residue composition contain-
ing four features. Three of the four are Position-specific-2
(18), Position-specific-3 (18) and Position-specific-4 (18), re-
flecting different position specificity between any two nu-
cleotides along a RNA sequence based on One-hot. The last
one of the four is basic One-hot.

The second category is about physicochemical property
containing one feature, DPC, which represents residues

depended on the 11 physicochemical properties of dinu-
cleotides extracted from (19). Users can select physicochem-
ical indices from the built-in index boxes.

The third category is about structure composition con-
taining one feature SS, which represents the secondary
structure of each residue extracted from (22), therefore, SS
can represent the local RNA structure composition.

In Protein-Analysis2.0, there are 13 different residue-level
features for protein sequences to generate various predic-
tors, which can be further divided into the following four
categories (Table 3)

The first category is about residue composition contain-
ing five features. Of the five, the first one is One-hot, the
dimension of each residue is 20. The next two features One-
hot (6-bit) (23) and Binary (5-bit) (24) are to reduce the
dimension and complexity of One-hot. The fourth feature
is Position-specific-2 based on One-hot to represent the lo-
cal protein sequence composition, and the fifth feature is
AESNN3 (25) based on the characteristics generated by
machine learning techniques.

The second category is PP that represents residues using
the 547 amino acid physicochemical indices from AAindex
(26), and users can select some physicochemical properties
from the index boxes to use.

The third category is about structure composition con-
taining two features: SS (27), and SASA (28) based on sec-
ondary structure and relative solvent accessibility informa-
tion of each residue, respectively.

The fourth category is about evolutionary information
that containing five features: PAM250 (29), BLOSUM62
(30), PSSM (31), PSFM (11), and CS (32). Of the five
features, PAM250 is based on the homologous protein
sequences, and BLOSUM62 is based on the BLOCKS
database of aligned protein sequences. Both the PSSM and
PSFM features are based on sequence alignments, which
were generated by using PSI-BLAST searching against the
NRDB90 database with num iter of 3, evalue threshold of
0.0001, and num threads of 40. The CS is based on sequence
conservation score.

Please note that nine new sequence-level features in the
nucleotide acid composition category for DNA/RNA were
added (Table 4), including multiple nucleic acid composi-
tion, nucleotide chemical property, Electron-ion interaction
pseudopotentials of trinucleotide for DNA. Eighteen new
sequence-level features for proteins were added (Table 5)
into the three categories: amino acid composition, autocor-
relation, predicted structure features.

Since the dimension of some feature extraction meth-
ods is tremendously high, which will result in high-
dimension disaster (57).To cope with this problem, in
BioSeq-Analysis2.0, users can reduce the feature vector di-
mension into a user-defined length by using mutual infor-
mation (58) or chi-square algorithm (59). The chi-square
feature selection qualitatively measures the correlation of
independent features only for classification purpose. Mu-
tual information is the amount of information of one fea-
ture contained in another feature. The chi-square test makes
it easier to give high scores for features occurring less fre-
quently. For example, if a feature appears once in the bench-
mark dataset, it will get a relatively high score, while its mu-
tual information score will be low.



e127 Nucleic Acids Research, 2019, Vol. 47, No. 20 PAGE 4 OF 12

Table 1. Seven residue-level features for DNA sequences

Category Feature Description

Residue composition One-hot Basic one-hot (17)
Position-specific-2 Position-specific of two nucleotides (18)
Position-specific-3 Position-specific of three nucleotides (18)
Position-specific-4 Position-specific of four nucleotides (18)

Physicochemical property DPC Dinucleotide physicochemical (19,20)
TPC Trinucleotide physicochemical (19)

Evolutionary information BLAST-matrix BLAST-matrix (21)

Table 2. Six residue-level features for RNA sequences

Category Feature Description

Residue composition One-hot Basic one-hot (17)
Position-specific-2 Position-specific of two nucleotides (18)
Position-specific-3 Position-specific of three nucleotides (18)
Position-specific-4 Position-specific of four nucleotides (18)

Physicochemical property DPC Dinucleotide physicochemical (19)
Structure composition SS Secondary structure (22)

Table 3. Thirteen residue-level features for protein sequences

Category Feature Description

Residue composition One-hot Basic one-hot (17)
One-hot(6-bit) 6-dimension One-hot method (23)
Binary(5-bit) Use five binary bit to encode (24)
AESNN3 Learn from alignments (25)
Position-specific-2 Position-specific of two residues (18)

Physicochemical property PP Properties form AAindex (26)
Structure composition SS Secondary structure (27)

SASA Solvent accessible surface area (28)
Evolutionary information PAM250 PAM250 matrix (29)

BLOSUM62 BLOSUM62 matrix (30)
PSSM PSSM matrix (31)
PSFM Frequency profiles matrix (11)
CS Conservation score (32)

Table 4. Nine new sequence-level features for DNA/RNA sequences.

Category Feature Type Description

Nucleotide acid composition NAC DNA/RNA Nucleic Acid Composition (2)
DNC DNA/RNA Di-Nucleotide Composition (2)
TNC DNA/RNA Tri-Nucleotide Composition (2)
CKSNAP DNA/RNA Composition of k-spaced Nucleic Acid Pairs (2)
NCP DNA/RNA Nucleotide Chemical Property (2)
ANF DNA/RNA Accumulated Nucleotide Frequency (33)
Zcurve DNA/RNA Representation of DNA/RNA sequence (35)
EIIP DNA Electron-ion interaction pseudopotentials of trinucleotide

only for DNA (34)
PseEIIP DNA Electron-ion interaction pseudopotentials of trinucleotide

only for DNA (2)

Predictor construction

Most of biological sequence analysis tasks at residue level
and sequence level can be treated as classification tasks.
Therefore, many classifiers have been applied to biological
sequence analysis.

For residue-level analysis, BioSeq-Analysis2.0 incorpo-
rates two classification algorithms (Support Vector Ma-
chine (SVM) (60), Random Forest (RF) (61)), and a se-
quence labelling algorithm (Conditional Random Fields
(CRF) (62)).

For SVM algorithm, its implementation was depended
on the LIBSVM package (63) with the kernel of Gaussian

radial basis function (RBF), and users can select the val-
ues of the c and g (c is from 2−1 to 27, g is from 2−7 to
23) or these parameters can be automatically optimized ac-
cording to specific performance measures, such as accuracy
(Acc), Matthew’s correlation coefficient (MCC) or area un-
der ROC (64) curve (AUC) (64). RF is a flexible and widely
used supervised machine learning algorithm. The Python
Scikit-learn (65) package was used as its implementation in
BioSeq-Analysis2.0, and the users can select the value of
n estimators (the number of the decision trees, whose range
is from 100 to 800). This parameter can also be automati-
cally optimized.
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Table 5. Eighteen new sequence-level features for protein sequences

Category Feature Description

Amino acid composition AAC Amino Acid Composition (37)
GAAC Grouped Amino Acid Composition (38)
CTDC Composition (C), transition (T), and distribution (D) (39)
CTDT Composition (C), transition (T), and distribution (D) (39,40)
CTDD Composition (C), transition (T), and distribution (D) (39,40)
CTriad Conjoint Triad (41)
SOCNumber Sequence-Order-Coupling Number (42)
QSOrder Quasi-sequence-order (43)
Z-Scale ZSCALE (44,45)
TPC Tri-Peptide Composition (37)
GTPC Grouped Tri-Peptide Composition (37)
CKSAAP Composition of k-spaced Amino Acid Pairs (46–49)
CKSAAGP Composition of k-Spaced Amino Acid Group Pairs (46–49)
PAAC Pseudo-Amino Acid Composition (50,51)

Autocorrelation MAC Moran autocorrelation (52,53)
GAC Geary autocorrelation (54)
NMMAC Normalized Moreau-Broto Autocorrelation (53)

Predicted structure features SSEB Secondary Structure Binary (55)

Figure 2. The relationship between sequence labelling algorithm and clas-
sification algorithm. Compared with the classification algorithm, the se-
quence labelling algorithm is able to consider the interactions among
residues along the sequence in a global fashion.

Furthermore, in order to capture the global and long-
range sequence order information of residues, a sequence
labelling algorithm Conditional Random Field (CRF) (62)
was provided for residue-level analysis. Compared with the
transitional classification classifiers, such as SVM and RF,
CRF is a sequence labelling algorithm that is able to model
the biological sequences in a global fashion considering
the dependency information of all the residues along the
sequences as shown in Figure 2. DNA, RNA, or protein
sequences are treated as observation sequences, and each
residue in the sequences is labeled as 0 or 1. Given the bio-
logical sequences X and their labels Y, a conditional proba-
bility model P(Y|X) can be trained with X and Y. For each
observation sequence x, the conditional probability for its
label sequence y can be calculated by (62):

P (y|x) = 1
Z (x)

exp

⎛
⎝∑

i,k

λktk (yi−1, yi , x, i ) +
∑
i,l

μl sl (yi , x, i )

⎞
⎠ (4)

where Z(x) is a normalization factor, tk(yi−1, yi , x, i ) repre-
sents a transition feature function (66) about observation
sequence x and labels at position i-1 and i. sl (yi , x, i ) repre-
sents a state feature function about observation sequence x
and the label at position i. The index k of tk and the index l
of sl is the number of different feature extraction methods.
λk and μl are the weights of tk(yi−1, yi , x, i ) and sl (yi , x, i ),
respectively.

For residue-level analysis, the FlexCRFs (http://flexcrfs.
sourceforge.net/documents.html (accessed on June 2019))
toolkit was used as the implementation of CRF, which was
modified to deal with the real value features following this
study (67). The parameters of the num iterations (the num-
ber of training iterations) and the init lambda val (the ini-
tial value for the feature weights) were set as 50 and 0.05,
respectively.

For sequence-level analysis, four classification algorithms
were employed in BioSeq-Analysis2.0. For more details,
please refer to (1).

Performance evaluation

According to the aforementioned two processes, a predic-
tor for analyzing biological sequence tasks can be gener-
ated. Evaluating performance of the predictor is an impor-
tant component (68). In BioSeq-Analysis2.0, two methods
are used for realizing this purpose, containing 5-fold cross-
validation and independent test.

In 5-fold cross-validation, the benchmark dataset is ran-
domly partitioned into five roughly equivalent subsets. The
training procedure is repeated five times with different train-
ing and test sets. Please note that in order to avoid over-
estimating the performance of the residue-level predictors,
all the residues in one sequence must be in the same sub-
set, which is different from the sequence-level analysis. Be-
sides 5-fold cross-validation, the independent test is usually
adopted to evaluate a predictor of the real world applica-
tions. The predictor is trained with the benchmark dataset,
and tested on the independent dataset. The independent
dataset should be fully independent from the benchmark
dataset so as to fairly evaluate its performance.

The training sets are often imbalanced for some biologi-
cal sequence analysis tasks, for example, for the protein dis-
ordered region prediction task, the number of the residues
in the ordered regions is much larger than the number of
residues in the disordered regions (66), which will inevitably
lead to a bias consequence (66). In this regard, the oversam-

http://flexcrfs.sourceforge.net/documents.html
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Figure 3. The pipeline of the web server of BioSeq-Analysis 2.0.

pling and under sampling techniques were also provided to
minimize this bias consequence in BioSeq-Analysis2.0.

In BioSeq-Analysis2.0, five metrics were used to measure
the predictor’s quality for binary classification tasks, includ-
ing Sn, Sp, Acc, MCC and AUC, calculated by (8,69):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn = 1 − N+
−

N+ 0 ≤ Sn ≤ 1

Sp = 1 − N−
+

N− 0 ≤ Sp ≤ 1

Acc = 1 − N+
− +N−

+
N++N− 0 ≤ Acc ≤ 1

MCC =
1−

(
N+−
N+ + N−+

N−

)
√(

1+ N−+−N+−
N+

) (
1+ N+−−N−+

N−

) −1 ≤ MCC ≤ 1

AUC : Area Under ROC Curve 0 ≤ AUC ≤ 1

(5)

where N+ and N− represent the total amount of positive
samples and the total amount of negative samples, respec-
tively. Whereas N+

− represents the amount of positive sam-
ples wrongly predicted as negative samples and N−

+ repre-
sents the amount of the negative samples wrongly predicted
as positive samples.

For multiclass classification tasks, Acc was used to eval-
uate the performance, calculated by (6):

Acc (i) = 1 − N+
−(i )+N−

+(i )
N+(i )+N−(i ) 0 ≤ Acc ≤ 1 (6)

where N+(i ) represents the total amount of the samples in
the ith class, whereas N+

−(i ) is the amount of the samples
in the ith class wrongly predicted as the other classes and
N−(i ) represents the total amount of the samples not in the
ith class, whereas N−

+(i ) is the amount of the samples not in
the ith class wrongly predicted to be the ith class.

RESULTS AND DISCUSSION

Web server

BioSeq-Analysis2.0 is an updated platform for analyzing
DNA, RNA, and protein sequences at sequence level and

residue level based on machine learning approaches. The
pipeline of BioSeq-Analysis2.0 is shown in Figure 3.

Input

The input page of BioSeq-Analysis2.0 web server is shown
in Figure 4. The input sequences should be in FASTA for-
mat, which can be written into the input box, or uploaded
as a separate file. For residue-level analysis tasks, the corre-
sponding label for each residue should be given. For DNA-
Analysis2.0, 7 and 29 DNA feature extraction methods at
residue level and sequence level respectively are provided.
For RNA-Analysis2.0, 6 and 21 RNA feature extraction
methods at residue-level and sequence-level respectively are
provided. For Protein-Analysis2.0, 13 and 40 protein fea-
ture extraction methods at residue-level and sequence-level
respectively are provided. The users should select one fea-
ture from the above features. For residue-level analysis, the
fragment method or the size of the sliding window should
be selected. Two feature selection methods (mutual infor-
mation or chi-square algorithm) can be used to select rep-
resentative features so as to avoid the high dimension dis-
aster. The next step is to choose one operation engine. The
parameters of the feature extraction methods and the ma-
chine learning classifiers can be automatically optimized.
Furthermore, the oversampling and under sampling tech-
niques can be used to handle the imbalanced training set
problem.

Output

Figure 5 is a result page using One-hot feature in the sub
web server DNA-Analysis2.0 with the provided example
data (sliding window size = 7, c = 2−1, and g = 2−6) as the
input.

Figure 5A includes two parts. The first part is the param-
eters of the selected feature containing feature name and
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Figure 4. A screenshot to show that BioSeq-Analysis2.0 contains three sub servers, including (i) DNA-Analysis2.0, (ii) RNA-Analysis2.0, (iii) Protein-
Analysis2.0 for residue-level analysis (A) and sequence-level analysis (B). For each of the three sub-servers, users can generate their desired predictors via
the buttons marked with (iv), (v) and (vi).

the size of the sliding window, and the other part is the pa-
rameters of the selected machine learning algorithm such
as the value of c, and g. Figure 5B shows the 5-fold cross-
validation evaluation results, which is a 2 × 5 table list-
ing the values of Acc, MCC, AUC, Sn, and Sp to evaluate
the performance of the DNA-Analysis2.0. Figure 5C is the
ROC curve generated by the DNA-Analysis2.0, which has
good robustness to the distribution of positive and nega-
tive samples. Figure 5D is an example output of the trained
model that can be directly downloaded for further analy-
sis. The trained model includes the total number of the cat-
egories (nr class), the number of support vectors (total sv)
and the number of support vectors for each category (nr sv),
the parameters of the machine learning algorithm (gamma),
etc. Figure 5E shows an example output of the generated
features in Scikit-learn format, for convenience, it can be
downloaded directly as a separate file. For the stand-alone
package, the output file format can be chosen from the tab-
delimited format, LIBSVM format, and the CSV format,
which will be used for further computational analysis. Fig-
ure 5F gives an example output of generated features in
Weka format containing three parts: relation, attribute and
data, which can also be downloaded directly as a separate
file. Relation is the relationship name of the dataset, and
attribute is an attribute description for each sample in the
dataset.

Stand-alone package of BioSeq-Analysis2.0

In order to deal with the biological sequence analysis tasks
with large datasets, the stand-alone package of BioSeq-
Analysis2.0 web server is also provided, which can be ac-
cessed at http://bliulab.net/BioSeq-Analysis2.0/download.
There are two main modules in the BioSeq-Analysis2.0
stand-alone package for residue level analysis, one is feature
extraction module with five executive python scripts: ‘ei.py’,
‘ssc.py’, ‘rc.py’, ‘pp.py’ and ‘feature.py’, the other module is
‘train.py’ and ‘rf method.py’ for predictor construction and
performance evaluation. For the convenience of the user,
the processes of feature extraction, predictor construction
and performance evaluation were combined into one execu-
tive python scripts ‘analysis.py’. There are also some scripts
that help users to find the best predictor for a specific bio-
logical sequence analysis task. Please refer to the user man-
ual for more details. Additionally, the multiprocessing tech-
nique was employed to further reduce the computing time
of this stand-alone package.

Applications of BioSeq-Analysis2.0

In this section, BioSeq-Analysis2.0 stand-alone package
was applied to three important residue-level biological se-
quence analysis tasks, including protein disordered region

http://bliulab.net/BioSeq-Analysis2.0/download
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Figure 5. A screenshot to show the result page of DNA-Analysis2.0. It contains six panels: (A) the parameter summary, including the input sequence
type, selected feature, and the selected machine learning algorithm; (B) the 5-fold cross-validation results, including Acc, MCC, AUC, Sn, and Sp; (C) the
generated ROC curve; (D) the trained model with parameters; (E) features in Scikit-learn format; (F) features in Weka format.

Figure 6. An illustration of the ROC curves and the values of AUC of 14 different predictors for the identification of enhancers generated by DNA-
Analysis2.0 on the benchmark dataset (7,8) based on SVM (A) and RF (B).

prediction (66), enhancer prediction (8), and mRNA N6-
methyladenosine (m6A) site prediction (6).

The predictors for these tasks can be easily generated
using BioSeq-Analysis2.0. Particularly, the performance
of some predictors automatically generated by BioSeq-
Analysis2.0 is highly comparable or even better than the
existing predictors, indicating that BioSeq-Analysis2.0 is a

powerful tool for generating new predictors for analysing
biological sequence tasks.

Identification of enhancers

Enhancer is short DNA region that can be bound by pro-
teins (activators) to activate a gene transcription (7). There-
fore, the identification of enhancers is important for study-
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Figure 7. An illustration of the ROC curves and the values of AUC of 12 different predictors for mRNAs (m6A) site identification generated by RNA-
Analysis2.0 on the subset of the benchmark dataset (6) based on SVM (A) and RF (B).

Figure 8. An illustration of the ROC curves and the values of AUC of 26 different predictors for disordered protein identification generated by Protein-
Analysis2.0 on the subset of the benchmark dataset (66) based on CRF (A) and SVM (B).

ing the transcription process, which can be treated as a bi-
nary classification task. In this study, the DNA-Analysis2.0
was used to generate 14 different predictors for enhancer
prediction based on the 7 residue-level feature extraction
methods for DNA sequences (Table 1), and two machine
learning algorithms: SVM and RF. Each predictor can be
easily generated by running the following command line:

python analysis.py sequence file DNA –
method feature extraction method –ml ma-
chine learning method –labels label file –fragment
1 –model model name

Evaluated on a widely used benchmark dataset (7,8), the
ROC curves of the 14 predictors were listed in Figure 6,
from which we can see that the SVM-One-hot predictor
achieves the top performance with an AUC score of 0.8267,
even outperforming the existing approach reported in (70),

indicating that BioSeq-Analysis2.0 is useful for generating
new predictors for enhancer identification.

Identification of mRNAs (m6A) sites

N6-Methyladenosine (m6A) is an RNA methylation modi-
fication at the nitrogen-6 position of the adenosine base (6).
Research in cancer biology has shown that m6A mRNA
modification plays a critical role in glioblastoma stem cell
self-renewal and tumorigenesis (71,72). Therefore, the iden-
tification of the m6A becomes a hot topic.

In this study, the RNA-Analysis2.0 in BioSeq-
Analysis2.0 was used to generate 12 different predictors for
mRNAs (m6A) site prediction based on the 6 residue-level
feature extraction methods (Table 2), and two machine
learning algorithms: SVM and RF. Each predictor can be
easily generated by running the following command line:
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python analysis.py sequence file RNA –
method feature extraction method –ml ma-
chine learning method –labels label file –fragment
1 –model model name

Figure 7 shows the ROC curves of the 12 predictors au-
tomatically generated by BioSeq-Analysis2.0. These experi-
mental results further confirmed that RNA-Analysis2.0 was
useful for developing new predictors for RNA sequence
analysis tasks as well.

Identification of protein disordered regions

Intrinsically disordered proteins lack stable three dimen-
sional structures in their native states (66), which are cor-
related with many diseases, such as genetic diseases, can-
cer, etc. Therefore, identification of disordered proteins and
regions has become one of the most popular tasks in the
studies of protein structures and functions (66,69). Here,
Protein-Analysis2.0 in BioSeq-Analysis2.0 was used to au-
tomatically generate various predictors for protein disor-
dered region prediction based on the benchmark dataset
(66). Finally, 26 predictors were generated based on the
13 residue-level feature extraction methods of proteins (see
Table 3), and two machine learning algorithms: CRF and
SVM. Each predictor can be easily generated by running
the following command line:

python analysis.py sequence file Protein –
method feature extraction method –ml ma-
chine learning method –labels label file –model
model name –size sliding window size

The ROC curves of the 26 predictors were shown in Fig-
ure 8, where we can see that the feature extraction meth-
ods and machine learning algorithms impact on the perfor-
mance of the corresponding predictors, and the predictors
based on the sequence labeling model CRFs generally out-
performed those based on the SVM, which is fully consis-
tent with a recent study (66). Particularly, the CRF-One-
hot (6-bit) predictor can achieve an AUC score of 0.7472,
highly comparable with the existing state-of-the-art meth-
ods in this filed (66).

As shown in some recent studies, machine learning tech-
niques are playing more and more important roles in bi-
ological sequence analysis (73,74), such as protein remote
homology detection (75), protein fold recognition (76), etc.
It can be anticipated that the proposed BioSeq-Analysis2.0
will become a very useful tool for the researchers who are
interested in developing new computational predictors for
these tasks.
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