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Perfluorocycloparaphenylenes
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Nobuhiko Mitoma 6, Takuya Kuwabara 1,2,3, Akiko Yagi1,3, Yasutomo Segawa 1,2,7,8✉ &

Kenichiro Itami 1,2,3✉

Perfluorinated aromatic compounds, the so-called perfluoroarenes, are widely used in

materials science owing to their high electron affinity and characteristic intermolecular

interactions. However, methods to synthesize highly strained perfluoroarenes are limited,

which greatly limits their structural diversity. Herein, we report the synthesis and isolation of

perfluorocycloparaphenylenes (PFCPPs) as a class of ring-shaped perfluoroarenes. Using

macrocyclic nickel complexes, we succeeded in synthesizing PF[n]CPPs (n= 10, 12, 14, 16) in

one-pot without noble metals. The molecular structures of PF[n]CPPs (n= 10, 12, 14) were

determined by X-ray crystallography to confirm their tubular alignment. Photophysical and

electrochemical measurements revealed that PF[n]CPPs (n= 10, 12, 14) exhibited wide

HOMO–LUMO gaps, high reduction potentials, and strong phosphorescence at low tem-

perature. PFCPPs are not only useful as electron-accepting organic materials but can also be

used for accelerating the creation of topologically unique molecular nanocarbon materials.
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Organic fluorine compounds have found widespread
applications in pharmaceutical, agricultural, and materi-
als science1–5. The introduction of fluorine into organic

molecules often strongly affects their properties, including their
polarity, solubility, and lipophilicity. Among many organic
fluorine-containing compounds, fluorinated arenes are used as
semiconductors, light-emitting materials, and liquid crystals6.
Owing to its negative inductive effect, the incorporation of
fluorine into materials leads to a decrease in orbital energy. As
such, it is important to develop synthetic methods that provide
access to aromatic molecules containing many C–F bonds7–9, and
the extreme targets of the research field are aromatic molecules
wherein all hydrogen atoms are replaced with fluorine atoms, i.e.,
perfluoroarenes10–14. However, methods to synthesize strained
perfluoroarenes remain very limited. It is known that various
fluorinated fullerenes (Fig. 1a, top left) can be obtained from the
addition of fluorine to the unsaturated bonds of fullerenes, but
these are virtually the only examples of highly strained
perfluoroarenes15. Although Suzuki and co-workers have shown
that perfluororubrene (Fig. 1a, top right) possesses a twisted

structure with a slight strain16, a method to apply more strain to
perfluoroarenes has not yet been reported.

Perfluorocycloparaphenylenes (PFCPPs) are a class of highly
strained ring-shaped perfluoroarenes (Fig. 1a, bottom) in which
all hydrogen atoms of the corresponding cycloparaphenylenes
(CPPs)17–19 are replaced with fluorine atoms. This replacement of
hydrogen with fluorine can be expected to result in a significant
change of the structural and electronic properties of the
PFCPPs20. Two major methods for the synthesis of CPPs have
been reported: (i) converting C6 units, such as cyclohexane and
cyclohexadiene, of macrocyclic precursors into benzene rings21,22,
and (ii) reductive elimination from macrocyclic metal–arene
complexes (metal= Pt, Ni, Au)23–25. However, even partially
fluorinated CPPs (F8[6]CPP, F12[9]CPP, F8[12]CPP, F8[10]CPP,
F8[12]CPP) synthesized by the groups of Yamago and Jasti26–28

require multiple steps (method (i), Fig. 1b), and there has no
successful synthesis of CPP derivatives from ortho-functionalized
aryl groups by the Pt method17–19. We hypothesized that PFCPPs
can be obtained in one-pot based on method (ii). Considering
that the reductive elimination of perfluorobiphenyl occurs from
the stable (2,2′-bipyridyl)Ni(C6F5)2 complex promoted by acids
or oxidants29,30, Ni might be a suitable metal for the construction
of macrocyclic precursors for PFCPPs (Fig. 1c).

Herein, we report the synthesis and isolation of PFCPPs. Using
macrocyclic nickel complexes, PF[n]CPPs (n= 10, 12, 14, 16)
were obtained in one-pot without using noble metals. The
molecular structures of PF[n]CPPs (n= 10, 12, 14) were deter-
mined by X-ray crystallography to confirm their structures and
tubular alignment. PF[n]CPPs (n= 10, 12, 14) exhibited wide
HOMO–LUMO gaps, high reduction potentials, and strong
phosphorescence at low temperature.

Results and discussion
Synthesis of PFCPPs. Our synthetic route to PFCPPs is outlined
in Fig. 2. Starting from 2,3,5,6,2′,3′,5′,6′-octafluorobiphenyl (1),
deprotonation by lithium diisopropylamide (LDA) and sub-
sequent transmetallation to Ni(dnbpy)Br2 (dnbpy= 4,4′-di-n-
nonyl-2,2′-bipyridyl) produced a mixture of macrocyclic complex
2. After evaporation of the solvent and replacing it with m-xylene,
2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) was added and
the resulting mixture was stirred at 130 °C for 5 h to promote the
reductive elimination of aryl–aryl bonds from Ni. By the pur-
ification with silica gel chromatography and preparative recycle
GPC, PF[n]CPPs (n= 10, 12, 14, 16) were obtained in 4.7%,
2.2%, 1.2%, and 0.7% yield, respectively. These PF[n]CPPs are
highly strained perfluoroarenes, as evident from their high strain
energies of 60.2 (n= 10), 49.9 (n= 12), 42.6 (n= 14), and
37.2 kcal·mol–1 (n= 16) estimated by density-functional theory
(DFT) calculations (for details, see Supplementary Fig. 10
in Supplementary Information (SI)). Considering that PF[n]CPPs
were not obtained when 2,2′-bipyridyl or 4,4′-di-t-butyl-2,2′-
bipyridyl was used, the n-nonyl groups of the dnbpy ligand
should be crucial for preventing the precipitation of inter-
mediates. For each PF[n]CPP (n= 10, 12, 14, 16), one singlet
signal was observed in the 19F NMR spectra at −138.25 (n= 10),
−138.50 (n= 12), −138.64 (n= 14), and −138.84 ppm (n= 16),
where the trend to shift resonances to lower magnetic field with
increasing ring size is similar to the case of 1H NMR chemical
shifts of [n]CPPs17. Two singlet signals observed in the 13C{19F}
NMR spectra also agreed with the high-symmetric structures of
PFCPPs. The corresponding high-resolution mass spectra were
recorded using the negative mode of the LDI-TOF MS (laser
desorption/ionization time-of-flight mass spectrometry) techni-
que. IR and Raman spectra of PFCPPs are in good agreement
with the calculated spectra by B3LYP/6-31G(d) level of theory
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Fig. 1 Fluorocarbon molecules. a Structures of fluorofullerenes, per-
fluororubrene, perfluorocoranullene (top), and perfluorocycloparaphenylenes
(PFCPPs) (bottom). b A synthetic scheme of previously reported partially
fluorinated CPPs. c The synthetic strategy for PFCPPs (this work).
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(see Supplementary Fig. 7). Thus, these compounds were iden-
tified based on spectral measurements.

Structures of PFCPPs. The structures of PF[n]CPPs (n= 10, 12,
14) were successfully determined by X-ray crystallography. Single
crystals of PF[10]CPP, PF[12]CPP, and PF[14]CPP were obtained
from THF, hexafluorobenzene/n-hexane, and chloroform/n-
pentane solutions, respectively. As shown in Fig. 3a–c, per-
fluoroarene structures with CPP skeletons (F40[10]CPP, F48[12]
CPP, F56[14]CPP) were unambiguously confirmed. For PF[10]
CPP, THF used for recrystallization is contained within the ring,
despite the fact that these molecules are strongly disordered,

whereas PF[12]CPP contains four molecules of hexa-
fluorobenzene inside and outside the rings. The crystal packing of
these PFCPPs is shown in Fig. 3d–f. In PFCPPs, the ring cavities
are aligned along the a-axis. This result stands in contrast to the
behavior of [n]CPPs of the same size (n= 10, 12), which show
herringbone-like packing31,32, indicating that the influence of
fluorine atoms on the molecular alignment in crystal state is
significant. Similar tubular packing was also found for partially
fluorinated CPPs26–28. The torsion angles between pairs of ben-
zene rings are summarized in Fig. 3g. The averaged dihedral
angles observed in X-ray crystallography (PF[10]CPP: 54.7°;
PF[12]CPP: 55.7°; PF[14]CPP: 55.6°) and those obtained from
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DFT optimizations at the B3LYP/6-31 G(d) level of theory
(PF[10]CPP: 50.4°; PF[12]CPP: 51.3°; PF[14]CPP: 51.8°) are
higher than those of [10]- and [12]CPP (calculated: ~33°;
observed: 23–27°)31–33, which is most likely caused by the steric
repulsion between fluorine atoms. The interaction between
PF[10]CPP and fullerene C60 in deuterated chloroform solution
was observed (Supplementary Fig. 14)34–36, while the stoichio-
metry of supramolecular complexes could not be determined by
titration experiment because of low solubility of [10]PFCPP and
its C60 complex.

Electronic properties of PFCPPs. In order to investigate the
effect of C–F bonds on the π-electrons in PFCPPs, optical and
electrochemical measurements as well as DFT calculations were
carried out. The PFCPPs showed absorption in the UV region
with absorption peaks at 270 nm (Fig. 4a), which is hypsochro-
mically shifted compared to those of the corresponding CPPs
([10]CPP: 340 nm; [12]CPP: 338 nm; [14]CPP: 338 nm, See
Supplementary Fig. 9)33,37. While no obvious fluorescence was
detected (Φ < 0.01) at room temperature, bright phosphorescence
was observed at low temperature (≤150 K). As shown in Fig. 4a,
the PFCPPs in ethanol grass exhibited phosphorescence with
peak tops at 507 nm (PF[10]CPP), 500 nm (PF[12]CPP), and
492 nm (PF[14]CPP) at 77 K. The phosphorescence quantum
yields (Φ) in ethanol grass at 77 K were 0.21 (PF[10]CPP), 0.62
(PF[12]CPP), and 0.38 (PF[14]CPP). The long lifetimes (τ) of
2.0 s (PF[10]CPP), 0.6 s (PF[12]CPP) and 0.7 s (PF[14]CPP) were
also confirmed as the dispersed solid in poly(methyl methacry-
late) (for details, see Supplementary Fig. 4 in SI). These photo-
luminescence properties clearly indicate that intersystem crossing

occurs much more quickly compared to CPPs, which exhibit
high-fluorescence quantum yields at room temperature ([10]CPP:
0.46–0.65; [12]CPP: 0.66–0.89, [14]CPP: 0.89)33,37.

Next, cyclic voltammograms were recorded (Fig. 4b). In
acetonitrile, all PFCPPs showed a reduction potential (–1.23 V
vs ferrocene(II)/ferrocenium(III)) higher than those of previously
reported CPPs (e.g., [9]CPP: −2.45 V) and partially fluorinated
CPPs (e.g., F12[9]CPP: −2.06 V), indicating that the perfluorina-
tion increases the electron affinity of CPPs26–28. Figure 4c shows
the HOMO and LUMO of PF[10]CPP with their energies
calculated at B3LYP/6-31G(d) level of theory (for details on PF[n]
CPPs (n= 12, 14, 16), see Supplementary Fig. 9 in SI). While the
shape and distribution of each frontier molecular orbital of
PF[10]CPP are almost identical to that of [10]CPP, the
HOMO–LUMO gap is wider (PF[10]CPP: 4.24 eV) than that of
[10]CPP (3.54 eV)33, which is in line with the hypsochromic shift
of the absorption spectra.

In summary, we have synthesized and isolated PF[n]CPPs
(n= 10, 12, 14, 16), which represent highly strained perfluor-
ocarbon molecules. The synthesis of these PFCPPs was
accomplished in a one-pot fashion via deprotonation of
octafluorobiphenyl, transmetallation to Ni(dnbpy)Br2, and
oxidant-promoted reductive elimination. The high solubility of
intermediates enhanced by the n-nonyl groups of dnbpy might be
the key to the success of this concise synthesis. PF[n]CPPs
(n= 10, 12, 14, 16) were identified by spectroscopic analysis (19F
NMR and LDI-TOF MS, IR, Raman), and the solid-state
structures of PF[10]CPP, PF[12]CPP, and PF[14]CPP were
unambiguously determined by X-ray crystallography. In the
crystal structure, the PFCPPs exhibit a tubular shape, and the ring
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cavities are connected one-dimensionally. The dihedral angles
between pairs of benzene rings in the PFCPPs are larger than those
of the corresponding CPPs due to the steric repulsion between
fluorine atoms. Optical and electrochemical measurements revealed
wide HOMO–LUMO gaps and high reduction potential for PF[n]
CPPs (n= 10, 12, 14), which also show strong phosphorescence at
low temperature. This noble metal-free one-pot synthesis of PFCPPs
represents a huge breakthrough in fluorocarbon chemistry. Apart
from the obvious interesting electronic features of strained PFCPPs,
it should also be possible to create highly strained molecular
nanocarbon materials by further converting the reactive C–F bonds
of PFCPPs. PFCPPs are not only attractive as electron-deficient
aromatic materials but are also potentially applicable to further
transformations for the creation of highly strained and topologically
unique molecular nanocarbon materials38.

Methods
Synthesis of PF[n]CPPs (n= 10, 12, 14, 16). To a 200-mL two-necked round-
bottomed flask containing a magnetic stirring bar and filled by argon gas were
added 2,3,5,6,2′,3′,5′,6′-octafluorobiphenyl (1) (1.00 g, 3.35 mmol), Ni(dnbpy)Br2
(2.10 g, 3.35 mmol), and dry THF (67 mL). The 2.0 M solution of lithium diiso-
propylamide (LDA) in THF (6.75 mL) was added to the flask at −78 °C. After the
reaction mixture was stirred for 30 min, volatile solvents were evaporated in vacuo.
The flask was filled by argon gas, and 2,3-dichloro-5,6-dicyano-p-benzoquinone
(DDQ, 3.81 g, 16.8 mmol) and degassed m-xylene (100 mL) were added to the
flask. The reaction mixture was stirred at 130 °C for 5 h. After cooling the reaction
mixture to room temperature, the reaction mixture was filtrated through Celite®

with chloroform (1.0 L), and the resulting filtrate was evaporated in vacuo. The
crude product was purified by silica gel column chromatography (eluent: hexane/
chloroform= 100:1 to 1:1) and then gel permeation chromatography (GPC; the
crude solid (ca.100 mg) was dissolved in 120 mL chloroform, filtered with a
Hydrophilic PTFE 0.45 µm Membrane filter (Millex-LCR 13 mm), and each 30 mL
of resulting solution was injected to the GPC. Fractions were collected at the fourth
cycle (see Supplementary Fig. 1).) to afford PF[n]CPPs (n= 10: 47.3 mg, 4.7%;
n= 12: 22.3 mg, 2.2%; n= 14, 12.1 mg, 1.2%; n= 16: 6.7 mg, 0.7%) as a white solid.

Data availability
Materials and methods, experimental procedures, photophysical studies, and NMR
spectra are available in the Supplementary Information. Raw data corresponding to
UV–Vis adsorption spectra (Fig. 4a) and Cyclic voltammograms (Fig. 4b) can be found
in Supplementary Data File 1 and Supplementary Data 2, respectively. Crystallographic
data for the structures reported in this article have been deposited at the Cambridge
Crystallographic Data Centre under deposition numbers CCDC 2057897 (PF[10]CPP),
2057898 (PF[12]CPP), and 2133188 (PF[14]CPP). Copies of the data can be obtained
free of charge via https://www.ccdc.cam.ac.uk/structures/.
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