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Abstract
Lichens and their isolated symbionts are potentially valuable resources for biotechnological approaches. Especially mycobiont
cultures that produce secondary lichen products are receiving increasing attention, but lichen mycobionts are notoriously slow-
growing organisms. Sufficient biomass production often represents a limiting factor for scientific and biotechnological investi-
gations, requiring improvement of existing culturing techniques as well as methods for non-invasive assessment of growth. Here,
the effects of pH and the supplement of growth media with either D-glucose or three different sugar alcohols that commonly
occur in lichens, D-arabitol, D-mannitol and ribitol, on the growth of the axenically cultured mycobiont isolated from the lichen
Xanthoria parietina were tested. Either D-glucose or different sugar alcohols were offered to the fungus at different concentra-
tions, and cumulative growth and growth rates were assessed using two-dimensional image analysis over a period of 8 weeks.
The mycobiont grew at a pH range from 4.0 to 7.0, whereas no growth was observed at higher pH values. Varying the carbon
source in Lilly-Barnett medium (LBM) by replacing 1%D-glucose used in the originally described LBMby either 1%, 2% or 3%
of D-mannitol, or 3% of D-glucose increased fungal biomass production by up to 26%, with an exponential growth phase
between 2 and 6 weeks after inoculation. In summary, we present protocols for enhanced culture conditions and non-invasive
assessment of growth of axenically cultured lichen mycobionts using image analysis, which may be useful for scientific and
biotechnological approaches requiring cultured lichen mycobionts.
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Introduction

Lichens represent one of the most successful symbiotic associ-
ations on Earth and are capable of surviving in extreme environ-
ments (Kranner et al. 2008; Grube 2010; Meeßen et al. 2013a,
2013b), where life faces its limits (de Vera et al. 2008; de la
Torre et al. 2010). Lichens comprise a fungal partner, the
“mycobiont”, associated with at least one or more photoautotro-
phic partner(s), the “photobiont”, mostly green algae

(“chlorobionts”), and/or cyanobacteria (“cyanobionts”)
(Honegger 1991; Sanders 2001; Henskens et al. 2012).
Lichens are also inhabited by bacteria and other microfungi
(Grube and Berg 2009; Spribille et al. 2016; Muggia and
Grube 2018; Hawksworth and Grube 2020). The fungal partner,
which gives the name to the lichen, is responsible for building
the complex structure of the lichen thallus, although it can only
achieve this in symbiosis with a compatible photobiont
(Honegger 1993; Kranner et al. 2005; Meeßen et al. 2013a).

Lichen mycobionts produce a plethora of secondary fungal
products with antibiotic, antimycotic or antiviral properties
(Halama and Van Haluwin 2004; Shresta and Clair 2013;
Odimegwu et al. 2019), some of which may be of pharmaceu-
tical interest (Müller 2001). For example, the anthraquinone
parietin (=physcion) produced byXanthoria parietina appears
to have antioxidative, anti-bacterial, anti-tumour and laxative
properties (Solhaug and Gauslaa 1996; Pang et al. 2016; Li
et al. 2019). Considering the great potential of secondary li-
chen metabolites produced by lichen mycobionts (Calcott
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et al. 2018), biotechnological applications would benefit from
efficient in vitro culturing techniques. However, lichen
mycobionts — whether in symbiosis (Armstrong 1983;
Honegger 1993) or in vitro (Ahmadjian 1961; Honegger
et al. 1993, 1996; Pichler et al. 2020b) — are notoriously
slow-growing organisms and many are endangered
(Nascimbene et al. 2013), which often represents a limiting
factor for scientific investigations and industrial applications.

Methods for the isolation of mycobionts from lichen thalli
have been published since the 1960s (Ahmadjian 1961;
Richardson and Smith 1968; see Yoshimura et al. 2002 for
standard protocols). To maintain mycobiont growth in axenic
culture, it is recommended to mechanically disrupt the fungal
biomass regularly (Armaleo 1991) and to choose a growth
medium containing appropriate amounts of carbon and nitro-
gen sources (Stocker-Wörgötter 2001). Growthmedia suitable
to culture isolated mycobionts include undefined growth me-
dia that contain a complex mix of unknown chemical com-
pounds, such as Trebouxia medium (TM; Ahmadjian 1987)
and Malt-Yeast extract medium (MY), or defined growth me-
dia, whose chemical composition is known, such as Lilly-
Barnett medium (LBM; Yoshimura et al. 2002; Muggia
et al. 2017), and growing isolated lichen mycobionts on dif-
ferent growth media can result in remarkable phenotypic dif-
ferences (Fazio et al. 2009).

Sugar alcohols may play pivotal roles in the lichen symbio-
sis (Palmqvist 2000; see Eisenreich et al. 2011 for a detailed
review of sugar alcohol metabolism of lichens). Honegger et al.
(1993) cultured eleven isolated lichen mycobionts,
supplementing the growth media with glucose and maltose, to
enhance biomass production, and detected species-specific var-
iations in the sugar alcohols mannitol, arabitol, glycerol,
volemitol and erythritol in mycobiont hyphae, of which man-
nitol and arabitol were detected in all mycobionts tested
(Honegger et al. 1993). Therefore, mycobionts are apparently
able to convert sugars into sugar alcohols. Komiya and Shibata
(1971) found for twoRamalina species that ribitol, produced by
the photobiont, was transported to the mycobiont and converted
into arabitol and mannitol, whereas Wang et al. (2009) showed
that ribitol significantly enhanced growth of several isolated
mycobionts. Mannitol and ribitol also supported growth of
lichenicolous fungi (Yoshino et al. 2020). Furthermore, ribitol
and mannitol are known cryoprotectants, enhancing the solubi-
lization of fungal enzymes in lichen thalli during freezing
events (Fontaniella et al. 2000; Hájek et al. 2009a). In addition,
ribitol induced a concentration-dependent increase in the max-
imum quantum yield of photosystem II (Fv/Fm) in lichen
photobionts (Hájek et al. 2009b). Arabitol and ribitol were
also identified as signalling compounds in lichens. Kosugi
et al. (2013) observed in the lichen Ramalina yasudae and its
isolated symbionts that ribitol produced by the photobiont was
transferred to the mycobiont, converted to arabitol, and then
transported back to the photobiont. They also showed that

arabitol improved the ability to dissipate excess light energy
when the photobiont was exposed to desiccation. It was possi-
ble to mimic this effect using D-arabitol, but not with its dia-
stereomer L-arabitol or other sugar alcohols tested, such as
mannitol, ribitol, sorbitol or xylitol. However, with the excep-
tion of the few above-mentioned reports, hardly any studies
exist on the effects of sugar alcohols produced by lichen
photobionts on mycobiont growth in culture.

In addition to nutrient composition, substrate pH also repre-
sents a crucial factor that affects developmental processes of
lichens in their natural habitats as well as in isolated myco-
and photobionts grown in in vitro culture (Herk 2001; Bačkor
and Fahselt 2003; Bačkor et al. 2007). For example, species
composition of epiphytic lichens in nature was shown to de-
pend strongly on the pH of the tree bark they grew on (Herk
2001). Furthermore, most isolated mycobiont cultures only
grew sufficiently in culture at a narrow pH range, often slightly
acidic (Yoshimura et al. 2002). In addition, Timsina et al.
(2013) found that biochemical processes, such as polyketide
synthase gene activity, in the lichen-forming fungus Ramalina
dilacerata is strongly affected by growth medium and pH, and
Hamada (1989) observed that maximum depside production by
the Ramalina siliquosamycobiont occurred at the pH optimum
for growth. In summary, growth and production of secondary
lichen metabolites by mycobionts also depend on substrate pH.

The main goal of this study was to significantly improve
biomass production of one representative isolated mycobiont
and to accurately describe its growth phases in culture. We
chose to work with the isolated mycobiont of the globally
distributed lichen Xanthoria parietina (Honegger et al.
2004), an emerging model lichen (Itten and Honegger 2010)
in the class Lecanoromycetes (Scherrer et al. 2005). In nature,
X. parietina grows relatively fast (Honegger et al. 1996;
Fortuna and Tretiach 2018), developing a foliose thallus on
solid underground, e.g. bark or rocks (Lindblom and Ekman
2007; Beck and Mayr 2012). This lichen species is more re-
sistant to environmental pollution than most other lichens
(Armstrong and Bradwell 2010, 2011; Bertuzzi et al. 2018;
Cecconi et al. 2019) and occurs also in urban, industrial and
agricultural areas (Olsen et al. 2010; Vitali et al. 2019). We
first identified the optimal pH range for culturing the
X. parietina mycobiont on solid LBM and then studied the
effects of D-glucose and the sugar alcohols D-arabitol, D-
mannitol and ribitol on mycobiont growth, which was non-
invasively monitored using two-dimensional image analysis.

Materials and methods

Strain identity and culture conditions

The axenic mycobiont Xanthoria parietina (L.) Th. Fr., (strain
L 2379), grown from a single-spore isolate of the lichen
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X. parietina, was retrieved from the culture collection of the
University of Trieste. The identity of the mycobiont was con-
firmed by ITS sequencing (ITS1, 5.8S, ITS2) and the corre-
sponding NCBI GenBank accession number is MT513231, as
described by Pichler et al. (2020b). Fungal stock cultures were
grown in 50 mL of modified liquid Lilly-Barnett medium
(LBM, pH 5.0) supplemented with additional 20 g L−1 of
sucrose according to Pichler et al. (2020b). Cultures were kept
in a growth chamber without shaking (Percival PGC-6HO,
CLF Plant Climatics GmbH, Wertingen, Germany) under
controlled conditions at 20 °C, 14/10 h light/dark regime
and 20 μmol photons m−2 s−1, subsequently described as
dim light (Pichler et al. 2020a, 2020b). To produce sufficient
fungal biomass, the liquid LBM was renewed every 4 weeks
and biomass was homogenized every 3 months (Yoshimura
et al. 2002), in 2-mL Eppendorf tubes equipped with a steel
grinding ball (3 mm in diameter) using a tissue-lyser
(TissueLyser II, Qiagen, Düsseldorf, Germany) at a frequency
of 30 Hz for 2 min. Then, new liquid cultures were re-started
by re-inoculating homogenized fungal biomass in 50 mL of
freshly prepared liquid LBM (pH 5.0 prior to autoclaving) and
incubating as described above. All equipment was autoclaved
and/or surface-sterilized before use.

Inoculation method

Fungal cultures were inoculated following the methods de-
scribed in Pichler et al. (2020b). 2 mL of fungal liquid culture,
grown as described above, was transferred to 2-mL Eppendorf
tubes (12 tubes in total), centrifuged at 800×g at 15 °C for
2 min (Sigma® 3-18KS) and the supernatants were discarded.
To remove the liquid growth medium from the fungal bio-
mass, 1 mL of distilled water (dH2O) was added, followed
by vortexing for 5 s and centrifugation (800×g and 15 °C for
2 min). Then, the supernatant was removed again, another 1
mL dH2O and a steel ball (5 mm in diameter; pre-cleaned with
acetone and autoclaved) were added to each tube and the
fungal biomass was homogenized with a tissue-lyser at
30 Hz for 2 min until a homogenous fungal suspension was
obtained. The fungal suspensions of the 12 tubes were pooled
in a 50-mL Erlenmeyer flask, and 500 μL were filtered
through a hydrophilic polytetrafluoroethylene (PTFE) mem-
brane (25 mm in diameter, pore size 0.45μm, Omnipore™,
Ireland) placed in a glass-metal filtration system (Sartorius-
Membranfilter GmbH, Göttingen, Germany) with a manual
vacuum pump (MV8529, Mitycac®, St. Louis, USA). This
filtration step was conducted three times and the filters
supporting the fungal biomass were dried in the oven at 80
°C for 3 h until dry mass (DM) was stable. The mean DM of
three such filters was used to calculate the fungal DM concen-
tration in mg mL-1 suspension. Then, the fungal suspension
was adjusted to a final concentration of 2 mg fungal DMmL−1

by adding dH2O. Three replicates of 100 μL of each fungal

suspension were examined with a microscope (Zeiss Axiovert
200 M, Jena, Germany) to assure that fungal cell structures
were intact, and photos were taken with a digital camera
(Zeiss AxioCam HRc, Jena, Germany).

Then, 500 μL of fungal suspension was inoculated on hy-
drophilic PTFE filters (25 mm in diameter, mesh size
0.45 μm) and filtered using a glass-metal filtration system
(as above) with a manual vacuum pump to remove extracel-
lular fluids, leaving only fungal biomass on the PTFE filter.
Each PTFE filter supporting the fungal biomass was placed
onto solid LBM (2% agar) in Petri dishes (55 mm in diameter,
polystyrol (PS) Petri dishes, Rotilabo®, Germany) at either
different pH values or supplemented either with D-glucose
or different sugar alcohols (see below).

pH-dependent growth of the X. parietina mycobiont

The optimal pH range to culture the mycobiont of X. parietina
was assessed by adjusting the solid LBM (2% agar) to pH
values of 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 and 12.0, with
10 M, 1 M and/or 0.1 M solutions of HCl or NaOH prior to
autoclaving. L-asparagine, D-glucose and the vitamins biotin
and thiamine were dissolved in dH2O and the pHwas adjusted
separately prior to sterile filtration, and then these components
were added to the autoclaved growth medium when the tem-
perature had decreased to 55 °C. The original pH values of
4.0, 5.0, 6.0, 7.0, 8.0 and 9.0 were confirmed to remain stable
in the medium (with a deviation of ± 0.1) after autoclaving and
solidification, whereas the initial pH values of 10.0, 11.0 and
12.0 slightly decreased to 9.5 ± 0.0, 10.1 ± 0.0 and 11.5 ± 0.0,
respectively (Table S1). Preparation of solid LBM with a pH
lower than 4.0 or higher than 12.0 prior to autoclaving failed,
as the medium did not solidify.

PTFE filters were inoculated with the mycobiont suspen-
sion, as described above, and transferred onto solid standard
LBM (2% agar) of different pH values. After 8 weeks of
growth in dim light, fungal biomass was harvested, transferred
to 2-mL Eppendorf tubes and freeze-dried for 90 h, according
to Bailly and Kranner (2011). The DM of each biological
replicate (n = 6) was measured with an analytical balance
(XS 105, ©Mettler Toledo, Austria).

Sugar- and sugar alcohol–dependent growth of the
X. parietina mycobiont

PTFE filters were inoculated with fungal biomass (corre-
sponding to 1 mg DM, as described above) and then trans-
ferred to solid LBM with a pH of 6.0 (n=6 biological repli-
cates). Standard LBM (see Yoshimura et al. 2002) containing
1% of D-glucose was used as a control to be compared with
LBM supplemented with different concentrations of D-
glucose or sugar alcohols as follows: instead of using 1% of
D-glucose, LBM was supplemented with either D-glucose at
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concentrations of 2% or 3%, or with D-arabitol, D-
mannitol or ribitol at concentrations of 1%, 2% or 3%.
Concentrations of glucose or sugar alcohols higher than
3% were not used, because this concentration represented
the limit to supplement the growth medium with sugar or
sugar alcohols without immediate solidification.
Mycobiont cultures were grown for 8 weeks under dim
light, as described above. Then, each filter was trans-
ferred onto the glass-metal filtration system, and fungal
biomass was washed with 500 μL of dH2O to avoid the
different masses of D-glucose or sugar alcohols with
which the LBM was supplemented, confounding the
measurements of fungal DM. Then, the washing solution
was removed using a manual vacuum pump. Fungal biomass
was harvested and freeze-dried and DM was determined as
described above.

Assessment of cumulative growth and growth rate

Mycobiont cultures grown on LBM supplemented with 3%
of either D-arabitol, D-glucose, D-mannitol or ribitol in-
stead of 1% D-glucose were photographed every second
week for up to 8 weeks. Photos were taken with a digital
full-frame camera (EOS 5D, Canon Inc., Japan) connected
via a lens mount adapter (Shenzhen Neewer Technology
Co., Guangdong, China) to a manual macro lens set at
aperture f5.6 (Zuiko MC Auto-Macro 1:3.5/50 mm,
Olympus®, Japan). White balance of .CR2 raw files was
adapted and files were converted to .tiff format with Adobe
Photoshop CS6 (Version 13.0 20120315.r.428) prior to
image analysis with ImageJ (version 1.53c; Rehorska
et al. 2014). The image analysis method described by
Ametrano et al. (2017) was used with some modifications,
as follows. Each photo was converted to 8-bit black and
white format using the “type” function. After setting a pre-
cise scale, the clearly visible area of fungal hyphae was
marked using the “threshold” function and the covered
area was measured and expressed in square centimetres
(Fig. 1). Cumulative growth was defined as total area cov-
ered by fungal hyphae (cm2) over time at weeks 0, 2, 4, 6
and 8. Growth rate was defined as the increase in area
newly covered by fungal hyphae every week (cm2 week−1)
and calculated for each of the time points.

Statistics

The software R (Version 3.5.1) and RStudio (Version
1.1.383) were used for statistical analyses. Normal distri-
bution of data was tested with QQ-plots and the Shapiro-
Wilk test. A non-parametric Kruskal-Wallis test (p-value <
0.05), followed by Dunn’s post hoc test (p-value < 0.05)
with Benjamini-Hochberg correction, was conducted to as-
sess significant differences (p-value < 0.05) between (i)

DMs grown on LBM with different pH and (ii) cumulative
growth data of X. parietina grown with D-arabitol, D-glu-
cose, D-mannitol and ribitol at a concentration of 3% at
week 8. For each time point, significant differences (p-val-
ue < 0.05) between growth rates were assessed by the non-
parametric two-sided Mann-Whitney U Tests. For multiple
parameter testing, non-parametric two-sided Mann-
Whitney U tests (p-value < 0.05) with Benjamini-
Hochberg correction was used to identify significant dif-
ferences (p-value < 0.05) between DMs of cultures grown
on LBM supplemented with either D-arabitol, D-glucose,
D-mannitol or ribitol, each at concentrations of 1%, 2%
and 3%.

Results

Effects of pH on growth of the X. parietinamycobiont

The mycobiont of X. parietina was able to grow on solid
standard LBM with a pH ranging from 4.0 to 7.0 (Fig. 2j–m
and Fig. 3), whereas no growth was observed on media with a
pH higher than 7.0 (Fig. 2n–r and Fig. 3). DMs produced in
the range of pH 4.0 to 7.0 did not significantly differ (p-value
< 0.05) from each other, and as growth tended to be best at pH
6.0, this was selected for further experiments.

Effects of different concentrations of D-glucose and
sugar alcohols on biomass production of the
X. parietina mycobiont

The mycobiont was able to grow on LBM supplemented
with either D-arabitol, D-glucose, D-mannitol or ribitol at
concentrations of 1%, 2% and 3% (Fig. 4). Compared to
standard LBM containing 1% of D-glucose, fungal DM
significantly increased (p-value < 0.05) by 14%, 23%,
26% and 22%, when 1%, 2% and 3% of D-mannitol or
3% D-glucose, were present in the growth medium, respec-
tively (Fig. 5). Furthermore, increasing concentrations of
D-arabitol, D-glucose, D-mannitol and ribitol from 1 to 3%
affected the growth of X. parietina differently, depending
on the sugar or sugar alcohol used. Compared to the 1%
concentrations, fungal growth was significantly enhanced
(p-value < 0.05) by higher concentrations of D-arabitol
(2% and 3%), D-glucose (3%) and D-mannitol (3%). In
contrast, fungal biomass production decreased when 3%
ribitol was present (Fig. 5). No significant differences (p-
value < 0.05) in DM between 2 and 3% D-arabitol were
observed. In summary, when offered at concentrations of
1%, D-mannitol supported fungal growth more than D-glu-
cose, D-arabitol or ribitol, and fungal biomass increased
the most when D-mannitol at concentrations of 2% and
3%, or D-glucose at 3%, were offered.
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Effects of 3% D-glucose or sugar alcohols on cumula-
tive growth and growth rate of the X. parietina
mycobiont

As most pronounced differences between media supplement-
ed with 3%D-glucose or sugar alcohols on mycobiont growth
were observed, with D-glucose and D-mannitol resulting in
highest- and ribitol and D-arabitol resulting in lowest growth
(Fig. 5), we further assessed growth phases at this concentra-
tion. Photos of fungal cultures grown on LBM supplemented
with 3% of either D-arabitol, D-glucose, D-mannitol or ribitol
were analysed by ImageJ to assess cumulative growth and
growth rate over 8 weeks. The cumulative growth of the
X. parietina mycobiont treated with 3% of either D-arabitol,
D-glucose, D-mannitol or ribitol increased in a sigmoidal
manner, with an initial lag phase until week 2, followed by a
log phase with exponential growth between weeks 2 and 6
(Fig. 6a; Table S2). After 8 weeks, the total area covered by
the fungus was largest after treatment with 3% D-glucose and
D-mannitol and smallest for 3% ribitol (Fig. 6a), in agreement
with data shown in Fig. 5. Growth rates significantly (p-value
< 0.05) increased between inoculation and week 6, then sig-
nificantly (p-value < 0.05) decreased between weeks 6 and 8
(Fig. 6b). Growth rate curves (Fig. 6b) fitted with polynomial
functions of degree 3 (for more details, see Table S2).

Discussion

Secondary lichen metabolites primarily produced by
mycobionts, such as the anthraquinone parietin (also termed
physcion), parietinic acid, emodin, fallacinal or teloschistin
produced by X. parietina, receive increasing attention due to
their potential medicinal properties (Boustie and Grube 2005;
Basile et al. 2015; Łaska et al. 2016). However, the use of
mycobiont cultures for producing metabolites of interest is

often compromised by the slow growth of isolated
mycobionts as well as their requirement of being co-cultured
with their compatible photobionts, without which they do not
produce the same set of secondary metabolites and often only
low amounts thereof (Leuckert et al. 1990; Elshobary et al.
2016; Calcott et al. 2018). However, Culberson and Armaleo
(1992) showed that production of secondary lichen metabo-
lites by axenically grown mycobionts can be stimulated by
decreasing the water contents of the mycobionts. Therefore,
it is likely that solid rather than liquid growth media support
the production of secondary lichen metabolites, in agreement
with the occurrence of lichens in terrestrial environments
(Asplund andWardle 2017). Here, we focussed on optimizing
biomass production of the X. parietina mycobiont for small-
scale scientific applications, by modifying pH and carbon
source in the growth medium, and show that image analysis
is suitable to non-invasively assess mycobiont growth.

The pH of the growthmedium is a crucial factor that affects
growth of lichen mycobionts. Ahmadjian (1961) tested 18
isolated mycobionts and found that pH values between 4.5
and 6.5 were optimal for culturing, and a pH of 6 was used
to successfully grow X. parietina in culture (Lenton et al.
1973; Honegger et al. 1993). Yoshimura et al. (2002) summa-
rized that the optimal pH to grow lichen mycobionts is in the
slightly acidic range for most species, often between pH 5 and
6. The optimal pH for mycobiont growth seems to be species-
specific (Yoshimura et al. 2002) and likely related to the pre-
ferred ecological niche of the respective lichen (Glime and
Iwatsuki 1990). Xanthoria parietina thrives on tree bark
(Richardson 1967; Brunialti and Frati 2007), and the pH of
the bark of four representative tree genera, Quercus, Ulmus,
Fraxinus and Tilia, was reported to range from 4 to 7 (Spier
et al. 2010), in agreement with our findings that the highest
amounts of fungal biomass were produced when the
X. parietina mycobiont was grown at pH values between 4
and 7 (Fig. 3). Hamada (1989) reported that the mycobiont

Fig. 1 Image analysis to measure
the area covered by the fungus.
The area covered by the
mycelium was measured to
determine growth of the
Xanthoria parietina mycobiont
over eight weeks. a Digital image
of a mycobiont culture; b
conversion of the image shown in
panel a to an 8-bit black and white
image with the fungal area in the
centre in false colours (white);
scale bar = 1 cm
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isolated from Ramalia siliquosa grew well between pH 5 and
9, with an optimum at pH 6.5, but we did not observe growth
of the X. parietina mycobiont above a pH of 7. The pH re-
quirement for germination of ascospores from various lichen
species also varied with species (Yamamoto et al. 1998).
Ascospores of X. parietina were found to germinate at pH 5
to 7, with an optimum at pH 6 (Chrismas 1980), also in agree-
ment with the pH range suitable for mycobiont growth.

After confirming the optimal pH range for culturing the
X. parietina mycobiont, we studied the individual effects of
D-glucose and three sugar alcohols on growth. The sugar al-
cohols D-arabitol, D-mannitol and ribitol are known to occur
in lichens and their isolated symbionts (Komiya and Shibata
1971; Honegger et al. 1993; Alam et al. 2015) and to play
important roles for the lichen symbiosis (Hájek et al. 2009a,
2009b; Kosugi et al. 2013). Ribitol and mannitol were also
found in X. parietina symbionts, where these metabolites act
as important energy source for metabolic processes
(Eisenreich et al. 2011). However, their application to im-
prove biomass production of isolated mycobionts has, to our
knowledge, been barely tested (e.g. Wang et al. 2009; Alam
et al. 2015). Therefore, we evaluated whether D-glucose, the
standard carbon source in LBM, can be replaced by these
sugar alcohols. Observed visually at a macroscopic level, no
obvious differences in phenotype and secondary metabolite

�Fig. 2 Growth of the Xanthoria parietina mycobiont on solid Lilly-
Barnett medium with pH values ranging from 4 to 12: fungal cultures
(a−i) 4 days after inoculation, termed as "0 weeks", and (j−r) after 8
weeks ; scale bar = 1 cm

Fig. 3 Effects of pH on growth of the mycobiont Xanthoria parietina.
Dry mass is shown for fungal cultures grown for 8 weeks on solid Lilly-
Barnett medium at different pH values. Boxplots show median, 25th and
75th percentiles, maxima andminima, and outliers (dots); n = 6 biological
replicates. Statistically significant differences, assessed with the Kruskal-
Wallis test (p-value < 0.05), are indicated by different letters above the
boxplots
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production were found in X. parietina mycobiont cultures
depending on the sugar alcohol used, unlike described by
Stocker-Wörgötter et al. (2009) for severalHaematomma spe-
cies. When LBM was supplemented with 1–3% D-glucose or
sugar alcohols, a pale yellow- to orange-coloured biomass was
produced in all cases (Fig. 4), indicative of the presence of
parietin, a typical secondary metabolite of X. parietina
(Solhaug and Gauslaa 1996). Furthermore, culturing the
X. parietinamycobiont on modified LBMwith 4% of glucose
increased hyphal growth and diameter, when compared to
nutrient-poor BBM (Molina and Crespo 2000). However,

ascospores of X. parietina germinated best on BBM, although
proper hyphal development required transfer to nutrient-rich
medium (Molina et al. 1997; Molina and Crespo 2000).
Testing the effects of increasing sucrose concentration (1, 2
and 3%) in solid MY medium on the mycobiont of Evernia
esorediosa, Hamada et al. (1994) observed highest biomass
production at concentrations of 1% and 2% sucrose, and con-
centrations of sugar and sugar alcohols produced by the
mycobiont were influenced by the concentration of sucrose
offered in the growth medium (Hamada et al. 1994). In the
present study, the X. parietina mycobiont developed the

Fig. 4 Effect of D-glucose and
sugar alcohols on growth of the
Xanthoria parietina mycobiont.
Cultures were grown on solid
Lilly-Barnett medium containing
a–fD-arabitol, g–lD-glucose,m–
rD-mannitol and s–x ribitol, each
at concentrations of 1%, 2% and
3%; the upper half of the figure
shows photos of fungal cultures
taken 4 days after inoculation and
the lower half of the figure shows
fungal cultures 8 weeks after in-
oculation; scale bar = 1 cm
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highest amounts of biomass when cultured on either 3% D-
glucose or 1%, 2% and 3% D-mannitol compared to standard
LBM (Fig. 5). In addition, biomass production increased with
increasing concentration of D-glucose, D-mannitol and D-
arabitol in the LBM. Ribitol was observed to enhance growth
of the mycobionts of Ramalina farinacea and R. fastigiata by
up to 35.3% (Wang et al. 2009), but we observed that increas-
ing ribitol concentrations decreased biomass production in
X. parietina (Fig. 5). Others showed that growth of Usnea
longissima and U. diffracta increased when cultured on
LBM supplemented with mannitol at the concentrations of
2%, 4% and 6% and of 4% and 8%, respectively
(Yamamoto et al. 1987). In a lichen thallus, ribitol is produced
by the photobiont and transferred to the mycobiont, which
then converts it into mannitol and/or arabitol (Komiya and
Shibata 1971). Furthermore, Kosugi et al. (2013) found that
D-arabitol may be transported back to the photobiont and
suggested a putative role for D-arabitol in photo-protection.
Mannitol, on the other hand, was incorporated into the cell
walls of isolated mycobionts (e.g. X. parietina, Tornabenia
intricata and Sarcogyne sp.), but not those of free-living fun-
gi, assessed by the uptake of radioactively labelled [3H] man-
nitol (Galun et al. 1976). Mannitol is also an important storage
compound required for morphogenesis and conidiation, and it
may confer stress tolerance to free-living filamentous fungi
(Solomon et al. 2007). Taken together with our observations
that growth of X. parietina was greatly stimulated by D-
mannitol at all three concentrations offered, when compared

to standard LBM, it appears that D-mannitol is an excellent
carbon source for lichen mycobionts. At 1 and 2% concentra-
tions, D-mannitol was even better than D-glucose, so that we
recommend considering supplementing mycobiont growth
media with D-mannitol.

The growth of filamentous fungi in culture has been de-
scribed to start with a lag phase, followed by a first transition
phase, a log phase, a second transition phase and a stationary
phase (Meletiadis et al. 2001). Using image analysis to non-
invasively measure the total area covered by fungal hyphae
over 8 weeks revealed a sigmoidal curve for cumulative
growth, with exponential growth between week 2 and week
6 (Fig. 6a; Table S2). Growth rates increased significantly (p-

Fig. 5 Growth of the Xanthoria parietina mycobiont at different sugar
and sugar alcohol concentrations, assessed by dry mass. The mycobiont
was grown on solid Lilly-Barnett medium (LBM) containing either D-
arabitol (white), D-glucose (light grey), D-mannitol (grey) or ribitol (dark
grey) at concentrations of 1%, 2% and 3%, whereby the standard LBM
medium containing 1% D-glucose was regarded as a control. Boxplots
show median, 25th and 75th percentiles with maxima, minima and out-
liers (dots); n = 6 biological replicates. Statistically significant differences,
assessed by multiple Mann-Whitney U tests, are indicated by different
letters above the boxplots

Fig. 6 Effects of D-glucose and sugar alcohols on growth of the
Xanthoria parietina mycobiont. Cultures were grown for 8 weeks on
solid Lilly-Barnett medium, containing 3% of either D-arabitol, D-glu-
cose, D-mannitol or ribitol, indicated by dashed, solid, two-dashed and
dotted lines, respectively. a Cumulative growth was assessed by the total
fungal area (cm2); dots represent median values. The arrows show lag and
log phases; statistically significant differences, assessed by the Kruskal-
Wallis test (p-value < 0.05) are marked by different letters; n= 6 biolog-
ical replicates. b Growth rates, assessed by the change in area covered by
the fungus per week (cm2 week−1); dots represent median values; statis-
tically significant differences between time intervals for each treatment,
assessed with the Mann-WhitneyU test (p-value < 0.05) are marked with
asterisks; n = 6 biological replicates
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value < 0.05) between inoculation and week 6, decreased
significantly (p-value < 0.05) between weeks 6 and 8, and
fitted with polynomial functions of degree 3 (Fig. 6b;
Table S2). Ametrano et al. (2017) also used two-
dimensional image analysis to assess growth rates of co-
cultured dothidealean rock-inhabiting fungi and lichen
photobionts on nutrient-poor and nutrient-rich media. To the
best of our knowledge, no other studies are available that
describe the different growth phases of lichen mycobionts.
However, characterization of growth phases is important for
standardization of experiments, and to produce robust and
reproducible results, as described for free-living filamentous
fungi (Meletiadis et al. 2001; Vrabl et al. 2019).

In summary, we showed that the optimal pH range to cul-
ture X. parietina is between pH 4.0 and 7.0, with an optimum
around pH 6.0. Moreover, fungal biomass production can be
significantly enhanced by all applied concentrations of D-
mannitol and 3% D-glucose compared to the standard LBM,
and at concentrations of 1 and 2%, D-mannitol supports
growth even better than D-glucose. Therefore, sugar alcohols
that occur in lichens and are transported between the symbi-
onts, appear to be good alternatives to D-glucose for culturing
of mycobionts. Thirdly, we showed that two-dimensional im-
age analysis is a useful tool to non-invasively screen
mycobiont growth on solid growth medium, which together
with the use of suitable carbon sources may support future
biotechnological uses of cultured lichen mycobionts.
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