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Abstract: Sedentary behaviors, those that involve sitting and low levels of energy expenditure, have
been associated with several adverse cardiometabolic effects. This study evaluated the chronic
effects of a combined circuit weight interval training (CWIT) on physical fitness, quality of life, and
heart rate variability (HRV), and compared the effects of CWIT-induced autonomic adaptations on
different postures in adult sedentary workers. Twenty-seven sedentary workers (age 36.9 ± 9.2 years
old, 13 men and 14 women) were divided into two groups: control, who continued their sedentary
behavior, and experimental, who were submitted to a CWIT for 12 weeks, completing two ~40 min
sessions per week. Monitoring of 8th, 16th, and 24th sessions revealed a moderate training load
during sessions. Participants exhibited an improved aerobic capacity (VO2max, 34.03 ± 5.36 vs.
36.45 ± 6.05 mL/kg/min, p < 0.05) and flexibility (22.6 ± 11.4 vs. 25.3 ± 10.1 cm, p < 0.05) after the
training period. In addition, they showed greater quality of life scores. However, the CWIT did
not change body composition. Interestingly, more HRV parameters were improved in the seated
position. The CWIT used in the current study was associated with improvements in several fitness
and quality of life parameters, as well as in cardiac autonomic control of HR in adult sedentary
workers. Examination of different body positions when evaluating changes in HRV appears to be a
relevant aspect to be considered in further studies. Future randomized controlled trials (RCTs) with
larger samples of both sexes should confirm these promising results.

Keywords: sedentary behavior; autonomic modulation; exercise; quality of life; physical fitness

1. Introduction

Sedentary behavior refers to any activity in a reclining, seated, or lying position requir-
ing very low energy expenditure, and has been associated with several adverse metabolic
effects as obesity, hyperglycemia, hyperlipidemia, and high cardiovascular risk [1,2]. Car-
diometabolic diseases resulting from a sedentary lifestyle have a slow progress and take
a long period to be detectable [3]. This picture is further complicated when referred to
sedentary workers with limited time for leisure activities who spend most time of the day
seated at work [4]. Previously, the use of different training programs at the workplace to
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counteract the negative impact of sedentary behavior associated to working tasks has been
suggested [5–8]. These previous studies included the use of different exercise modalities
as endurance training [5], strength and resistance training protocols [7], and combined
exercise interventions [6,8]. However, there is no consensus on what training strategies
may be more effective, from a dose-response perspective, especially when considering the
inherent limitations of working schedules and reduced facilities for physical training at
workplaces.

Heart rate variability (HRV) is a sensitive tool to monitor cardiac autonomic adapta-
tions under different conditions [9]. The study of HRV is based on the measurement of
heartbeat fluctuations over time and mainly reflects the modulation of the parasympathetic
nervous system [9–11]. Reduced HRV is associated with increased all-cause mortality,
and risk of heart failure, myocardial infarction, hypertension, and mental health prob-
lems [10,11], as well as impaired quality of life [12]. Moreover, HRV reductions have
been correlated with excessive fat accumulation [13] and stress in response to work de-
mands [14–16]. The positive impact of aerobic exercise and more specifically, high intensity
interval exercise on several HRV parameters has been previously documented [17–20].
Meanwhile, although less documented, it seems that resistance training has also showed
positive autonomic changes apart from the expected neuromuscular adaptations [21,22].

The enhancement of vagal modulations via different aerobic exercises in sedentary
subjects have been associated to positive outcomes as increased physical fitness, health
related parameters, quality of life, and stress resilience [11,23–25]. Interestingly, the in-
fluence of these exercise-derived autonomic adaptations on different postures has not
been addressed yet. Previous studies, mainly in sport settings, have revealed differences
regarding HRV outcomes between postures [26–28]. This aspect is relevant since the most
evaluated posture is the supine posture, a condition that maximizes vagal modulations. In
contrast, there are few studies evaluating the effects of different exercise modes on HRV
in the seated posture [29,30], which is the posture in which white-collar employees spent
more time at work. Previously, Tonello et al. [11] revealed some correlations between
measures of HRV and cardiorespiratory fitness (CRF), which differed between the seated
and the standing postures in sedentary female workers. More recently, Medeiros et al. [31]
showed that the body position for HRV evaluations may influence the strength of the cor-
relations with physical fitness and physical activity parameters. Therefore, the evaluation
of exercise-derived autonomic adaptations in workers in different postures is a relevant
topic that merits more attention.

Combined circuit weight-interval training (CWIT) is a multimodal exercise workout
based on the combination of traditional circuit weight training and interval training and has
been demonstrated to be more efficient for increasing physical fitness than other traditional
exercise modalities [32]. Previously, a traditional circuit weight training increased muscle
strength, but with only moderate improvements in terms of aerobic capacity [33]. On the
other hand, interval training has been shown to further increase aerobic capacity compared
to traditional, long-duration, submaximal endurance training [34]. Therefore, adding
interval training into a traditional circuit weight training may further enhance the benefits
of a pure circuit weight training by placing increased demands upon the cardiovascular
system [35]. Concurrent training has previously shown a significant improvement in
vagal indices in middle-aged hypertensive women [36]. Moreover, CWIT intervention
has been associated with higher blood lactate levels and increased post-exercise oxygen
consumption, when compared to other traditional circuit training protocols [32]. Further,
regular exercise has also been associated with several benefits on the health and quality of
life of office workers [37]. However, to the best of our knowledge, the impact of CWIT on
physical fitness, quality of life, and HRV parameters in sedentary workers has not been
investigated yet. It may be expected that this new method could improve, more efficiently,
both aerobic and anaerobic components of physical fitness, as well as HRV and quality
of life. This information would be important to better design intervention strategies in
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workplaces aiming to improve health related outcomes of sedentary workers with limited
time to exercise.

Thus, the main objective of the present study was to analyze the effects of CWIT on
physical fitness, quality of life, and HRV in adult sedentary workers. A secondary objective
was to evaluate and compare the effects of exercise induced autonomic adaptations on
different postures. It was hypothesized that CWIT would improve quality of life and
several facets of physical fitness and cardiac autonomic modulation in the different postures
evaluated.

2. Materials and Methods
2.1. Participants

One hundred and ten workers from a Brazilian higher education institution were
invited to participate in this study. A total of 27 healthy sedentary workers (13 men and
14 women, 21–56 years-old) finally accepted the invitation (see Figure 1). Eligible volunteers
had to be >18 years old, sedentary, have been working in their current job during at least
6 months prior to the start of the study, and to work in the seated position ≥4 h/day.
In addition, to characterize a sedentary lifestyle, participants had to be engaged in less
than 150 min of moderate-intensity physical activity per week [38] during, at least, three
months. Exclusion criteria included being pregnant, having any kind of cardiorespiratory,
metabolic, neuromuscular, or endocrine disease, being a smoker, or any clinical condition
within 6 months prior to the start of the study. None of the participants was taking any
medication that would affect cardiovascular responses. Any contraindication for exercising
was assessed with the Physical Activity Readiness Questionnaire (PAR-Q) [39]. Sample
size calculation was performed following a similar previous study in our institution [25], in
which a dropout rate of 32% was observed. Thus, for a small effect size (0.25), an α = 0.05,
and a power = 80% for this study design, a minimum of 10 participants was required.
Throughout the present study, there was a dropout rate of 38.5% due to factors such as
abandonment, musculoskeletal injuries unrelated to the study, and reported lack of time
(see Figure 1).

All participants gave their informed consent for inclusion before participation. The
study protocol was completed in accordance with the Declaration of Helsinki and was ap-
proved by the Institutional Research Ethics Committee (Protocol no. 37573914.2.0000.0021)
and was registered in the Brazilian Clinical Trials Registry (ReBEC; Primary ID Number:
RBR-5NJNQT). Participants were divided into control group (CG, n = 8) and experimental
group (EG, n = 19). The present study is a semi-randomized controlled trial according to
the Consort Statement [40]. Figure 1 illustrates the flowchart of the experimental research.
Analytical procedures and interventions were performed in the Integrated School Clinic,
situated in the Integrated Health Institute (INISA) of the Federal University of Mato Grosso
do Sul in Campo Grande/MS (Brazil).

2.2. Outcome Measures

The exercise training intervention was linearly periodized following the basis of the
circuit weight-training workout proposed by Skidmore et al. [32]. The protocol consisted
of an initial warm-up in the cycle ergometer (Biotec 2100, Cefise®, Brazil) with a load
corresponding to 1% of body mass; the intensity of warm-up was set at 60–70% of the age-
predicted maximum heart rate (HRmax) [10,41]. Subsequently, the daily training protocol
involved nine exercises arranged in three mini-circuit stations plus a cooling down exercise
in the cycle ergometer (no load; 50–70 rpm per 5 min) and global stretching exercises
(~9 min). Completion of each training protocol session took ~40 min and was scheduled
in eight stages with three exercise stations, A, B, and C. The sequence of stages and their
respective activities are presented in Table 1. The participants of the Experimental group
performed two CWIT sessions per week over 12 weeks, with each session separated by
48–72 h thus totaling 24 exercise sessions.
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Figure 1. Study flowchart of participants.

Rating of perceived exertion (RPE) scores were obtained using the Borg’s 6–20 RPE
scale [42,43]. The participants were asked to rate how hard they felt at the start of the
session, and after each exercise station of the circuit weight-training workout. In order to
evaluate the HR response during exercise training, a HR monitor (Polar Electro, model
FT1, Espoo, Finland) was used to record the HR during all the sessions. Both RPE and HR
measurements were obtained during pre-exercise, and immediately following completion
of each of the three circuits (Station A, B, and C) according to Table 1. In sessions 8, 16,
and 24, HR and RPE at pre-exercise and following completion of each of three mini-circuit
stations (Stations A, B and C) were used to evaluate the training load of the exercise training
protocols.
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Table 1. Protocol for the circuit weight-training workout according to sequence and respective activity performed.

Sequence Activity

1. Data collection (rest) (HR, blood pressure and Borg’s 6–20 RPE scale)

2. Warm-up (5 min at 60–70% HRmax in the cycle ergometer)

3. Station A

Triceps bench dips *

Sessions 1–8 (1st month) Sessions 9–16 (2nd month) Sessions 17–24 (3rd month)

Knees flexed (90◦)
(3 × 8 reps.; relief intervals:

15 s)

Knees slightly flexed
(3 × 10 reps.; relief intervals: 15 s)

Knees completely extended
(3 × 13 reps.; relief intervals: 15 s)

Hip lifts *
Feet on the floor

(3 × 8 reps.; relief intervals:
15 s)

Feet on the swiss ball
(3 × 10 reps.; relief intervals: 15 s)

Feet on the swiss ball
(3 × 13 reps.; relief intervals: 15 s)

Prone planks * 5 × 10–15 s hold (relief
intervals: 10 s) 3 × 20 s hold (relief intervals: 15 s) 3 × 30 s hold (relief intervals: 15 s)

Cycle ergometer

55 s (60–70% HRmax);
5 s maximal sprint (no load);

30 s maximal sprint (2.5%
body mass)

55 s (60–70% HRmax);
5 s maximal sprint (no load);

30 s maximal sprint (4%
body mass)

55 s (60–70% HRmax);
5 s maximal sprint (no load);

30 s maximal sprint (5%
body mass)

Data collection (HRmax)

Cycle ergometer 3 min easy (no load) intensity cycling (50–70 rpm)

Data collection (HR and Borg’s 6–20 RPE scale)

4. Station B

Standing biceps curl Load: 1 kg (3 × 8–10 reps.;
intervals: 15 s)

Load: 1 kg (3 × 10–13 reps.; relief
intervals: 15 s)

Load: 2 kg (3 × 13 reps.; relief
intervals: 15 s)

Dumbbell squats Load: 0–1 kg (3 × 8–10 reps.;
relief intervals: 15 s)

Load: 0–1 kg (3 × 10–13 reps.;
intervals: 15 s)

Load: 1–2 kg (3 × 13 reps.; relief
intervals: 15 s)

Pushups *
Knees on the floor (3 ×

8–10 reps.; relief intervals:
15 s)

Knees on the floor (3 × 10–13 reps.;
relief intervals: 15 s)

Feet on the floor (3 × 8–10 reps.;
relief intervals: 15 s)

Cycle ergometer

55 s (60–70% HRmax); 5 s
maximal sprint (no load);
30 s maximal sprint (2.5%

body mass);
3 min easy intensity cycling

(50–70 rpm)

55 s (60–70% HRmax); 5 s maximal
sprint (no load); 30 s maximal
sprint (4.0% body mass); 3 min

easy intensity cycling (50–70 rpm)

55 s (60–70% HRmax); 5 s maximal
sprint (no load); 30 s maximal
sprint (5.0% body mass); 3 min

easy intensity cycling (50–70 rpm)

Data collection (HRmax)

Cycle ergometer 3 min easy (no load) intensity cycling (50–70 rpm)

Data collection (HR and Borg’s 6–20 RPE scale)

5. Station C

Standing dumbbell
lateral raise

Load: 1 kg (3 × 8–10 reps.;
relief intervals: 15 s)

Load: 1 kg (3 × 10–13 reps.; relief
intervals: 15 s)

Load: 1 kg (3 × 13 reps.; relief
intervals: 15 s)

Dumbbell split
squat R leg

Load: 1–2 kg (3 × 13 reps.; relief
intervals: 15 s)

Dumbbell split
squat L leg

Load: 1–2 kg (3 × 13 reps.; relief
intervals: 15 s)

Standing dumbbell
bent-over row

Load: 2 kg (3 × 13 reps.; relief
intervals: 15 s)

Cycle ergometer

55 s (60–70% HRmax); 5 s
maximal sprint (no load); 30 s

maximal sprint (2.5% body
mass); 3 min easy intensity

cycling (50–70 rpm)

55 s (60–70% HRmax); 5 s maximal
sprint (no load); 30 s maximal
sprint (4.0% body mass); 3 min

easy intensity cycling (50–70 rpm)

55 s (60–70% HRmax); 5 s maximal
sprint (no load);

30 s maximal sprint (5.0% body
mass); 3 min easy intensity cycling

(50–70 rpm)

Data collection (HRmax)

Cycle ergometer 3 min easy (no load) intensity cycling (50–70 rpm)

Data collection (HR and Borg’s 6–20 RPE scale)

6. Cooling down (5 min at an “easy”—no load—intensity in the cycle ergometer)

7. Data collection (rest) (blood pressure, HRmax and mean HR)

8. Active stretching exercises (9 min; 1 rep × 45 s per position), including muscle in sites of trunk, upper limbs, and lower limbs
following this sequence.

Note. HRmax, maximal heart rate; RPE, rating of perceived exertion; reps., repetitions. * Load: body mass.
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2.3. Physical Fitness Evaluations

Baseline measurements were obtained from each participant, including information
about age, anthropometry, and health-related quality of life parameters. Anthropometrical
measurements were performed in a room under thermoneutral ambient conditions of
22–24◦C and 40–60% of relative humidity. Participants were instructed to wear minimum
clothes for all anthropometrical assessments. Height was measured with a portable sta-
diometer (Líder, LD 1050, Araçatuba, SP, Brazil), with precision of 0.1 cm. Body mass was
measured on a digital scale (Welmy R-110, 2010 São Paulo, Brazil), with a precision of 0.1 kg.
Body mass index (BMI) was subsequently was calculated using the following formula:
body mass (kg)/height (m)2. Hip, waist, middle arm, and middle leg circumferences were
measured using an anthropometrical tape [38,44]. First, participants were in orthostatic
position and a measuring tape (Sanny®, São Bernardo do Campo, SP, Brazil) with precision
of 1.0 mm was used to obtain body circumferences. Hip circumference was measured
following the Canadian Standardized Test of Fitness (CSTF) protocol, at the level of the
symphysis pubis and the greatest gluteal protuberance [44]. To determine waist circumfer-
ence, the tape was placed on the mid-point between the last floating rib and the top of the
iliac crest in the mid-axillary line to measure the waist circumference, following the World
Health Organization (WHO) protocol [38]. Middle arm circumference was measured with
a tape positioned at the midpoint between the acromion and the olecranon. To analyze
middle leg circumference, the tape was positioned at the maximum perimeter of the calf
muscle of the right leg. The Medical Study 36-item Short-Form Health Survey (SF-36) was
used to evaluate the health-related quality of life [45].

The Rockport Fitness Test was used as a measure of aerobic fitness in order to estimate
the VO2max [46] after completion of 1 mile on a track. A heart rate monitor (Polar Electro,
model FT1, Finland) was used to record the HR during the test. The VO2max estimation
was obtained from the following formula: VO2max (mL/kg/min) = 132.853 − (0.0769 ×
body mass (pounds)) − (0.3877 × age (years)) + (6.315 × sex) − (3.2649 × T) − (0.1565 ×
Final HR); where: “sex”, female = 0; male = 1; T, total time of test (min); Final HR, heart
rate obtained after test.

The 1-min curl-ups test, a test of muscular endurance, was performed according to pre-
viously described methods [47]. Maximal isometric handgrip strength was recorded with
the dominant hand using a handheld handgrip dynamometer (Saehan®, Smedley-Type,
Masan, Korea), following the guidelines of the American Society of Hand Therapists [48].
The strength values were obtained in kilograms, with a precision of 0.1 kg. Participants
were instructed to sit in a straight-backed chair with feet placed flat on the floor, shoulder
adducted and neutrally rotated, elbow flexed at 90◦, and the forearm and wrist in neutral
position. Handgrip strength was measured three times with 1 min of rest between attempts,
and the maximal value obtained was considered for comparisons [48]. The back mobility
and flexibility of leg muscles were evaluated with the modified sit-and-reach test (i.e., Wells
and Dillon’s Bench) [49].

2.4. Heart Rate Variability Analyses

After a 48–72 h interval, participants were individually assessed between 7:00 and
11:00 a.m., under thermoneutral ambient conditions of 22–24◦C and 40–60% of relative
humidity, to evaluate the HRV at baseline and after the experimental protocol. Participants
were instructed to avoid alcoholic and stimulant drinks such as coffee or tea, 24 h before.

The electrodes were placed on the participant’s chest at the sternal angle using an
elastic strap, which was connected via Bluetooth to a HR monitor (V800, Polar Electro Oy,
Espoo, Finland). The equipment has been validated to record beat-to-beat recordings for its
use with HRV data analyses [50]. Participants were instructed to remain quiet, in silence,
with spontaneous and free breathing and refrain from sniffing, sighing, or other abnormal
breathing patterns [51], while resting in supine and sitting positions for 20 min in each
position. The beat-to-beat HR recordings were transferred to a computer and filtered using
a commercial software (Polar Flow®, Polar, Espoo, Finland). For HRV analyses, the HR



Int. J. Environ. Res. Public Health 2021, 18, 4606 7 of 18

beats obtained during the first 2 min interval were discarded and a 10 min recording of
HR beats was selected after manual artefact and ectopic beats correction when needed.
Only series with >95% of normal sinus beats were included in the study. Cleaned data
were then transferred to a dedicated HRV analytical software package (Kubios 2.2, The
Biomedical Signals Analysis Group, University of Kuopio, Kuopio, Finland) to obtain
linear and non-linear measurements [52].

The HRV parameters selected for analysis were standard deviation of normal–normal
R-R beats (SDNN), and root mean square of the successive differences (RMSSD) as time
domain parameters; sample entropy (SampEn), and exponent of short-term fractal scaling
(α1) as nonlinear analyses; and the spectral components of the low (LF, 0.04–0.15 Hz) and
high frequency (HF, 0.015–0.4 Hz) bands, total power (TP), and the LF/HF ratio, as the fre-
quency domain parameters. The spectrum resulting from the fast Fourier transforms (FFT)
modeling was derived from all the data present in the recorded signal [9]. A custom HRV
analysis software (Kubios 2.0, Biosignal Analysis and Medical Image Group, Department
of Physics, University of Kuopio, Kuopio, Finland) was used for filtering and analyzing
the R-R data.

2.5. Statistical Analysis

The Kolmogorov–Smirnov test was applied in order to verify data normality assump-
tions. The HRV parameters were converted to a natural logarithm scale (ln) to ensure
normal data distribution when appropriate. Age values were analyzed using Student’s
t-test. A two-way ANOVA of repeated measures was adopted to analyze parametric results
with moments and group as factors. When significant differences were found (p < 0.05),
post hoc Bonferroni’s comparisons were performed. Partial eta squared (ηp

2) was calcu-
lated to determine the effect size: Small (≥0.0099 and <0.0588), moderate (≥0.0588 and
<0.1379), and large effects (≥0.1379), respectively [53]. The Mann–Whitney test was used
to compare non-parametric results. On the other hand, the within-group analysis (between
moments) was conducted using the Wilcoxon test. The effect size of the nonparametric
data was based on Z-score values and converted to an estimated effect size (r): r = Z/

√
N,

where Z is Z-score and N corresponds to the number of observations. The Goodman’s test
for contrasts between and within multinomial populations was used to identify differences
in distribution between categories. The level of significance was considered to be 5%.

3. Results

The control and experimental groups aged 38.7 ± 10.6 and 36.1 ± 8.7 years, respec-
tively. Of note, while control group was composed by three women (37.5%) and five
men (62.5%), the experimental group had 11 women (57.9%) and 8 men (42.1%; p > 0.05).
Anthropometrical results are presented in Table 2. Exercise training intervention did not
change body mass, BMI, or arm, leg, waist, and hip circumferences (p > 0.05).

Table 2. Anthropometrical results according to group and moment.

Variables Moment
Group

Effect Size (ηp
2)

Control Experimental

Body mass (kg) Initial 78.9 ± 14.7 76.5 ± 15.8 0.005
Final 78.8 ± 15.0 76.6 ± 15.8 0.005

ηp
2 0.001 0.001

BMI (kg/m2)
Initial 27.7 ± 3.9 27.2 ± 4.4 0.003
Final 27.7 ± 4.1 27.2 ± 4.4 0.003

ηp
2 0.000 0.000

Arm circumference (cm)
Initial 33.6 ± 3.9 32.8 ± 5.5 0.006
Final 34.2 ± 3.9 33.4 ± 4.3 0.007

ηp
2 0.020 0.056
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Table 2. Cont.

Variables Moment
Group

Effect Size (ηp
2)

Control Experimental

Leg circumference (cm) Initial 39.4 ± 2.0 39.8 ± 3.6 0.003
Final 39.3 ± 1.9 39.6 ± 3.5 0.002

ηp
2 0.005 0.021

Waist circumference (cm)
Initial 94.5 ± 11.9 88.3 ± 14.3 0.047
Final 93.4 ± 12.7 87.6 ± 13.5 0.043

ηp
2 0.049 0.045

Hip circumference (cm) Initial 104.9 ± 6.4 105.0 ± 7.1 0.000
Final 105.4 ± 6.6 105.5 ± 7.2 0.000

ηp
2 0.011 0.019

Waist-to-hip ratio Initial 0.90 ± 0.07 0.84 ± 0.10 0.087
Final 0.88 ± 0.07 0.83 ± 0.09 0.071

ηp
2 0.068 0.062

Note. BMI, body mass index; ηp
2, partial eta squared. Values expressed as mean ± standard deviation.

The exercise training increased maximal isometric handgrip strength, sit and reach
test performance, 1-min curl-ups test performance, and estimated VO2max after the experi-
mental period, when compared to the initial moment. Physical fitness testing exhibited
large effect sizes in response to CWIT (Table 3).

Table 3. Physical fitness testing results according to group and moment.

Variables Moment
Group

Effect Size (ηp
2)

Control Experimental

Handgrip strength (kgf) Initial 35.7 ± 14.8 30.9 ± 11.4 0.033
Final 37.9 ± 14.8 32.6 ± 11.6 # 0.039

ηp
2 0.116 0.163

Sit and reach test (cm)
Initial 22.9 ± 12.5 22.6 ± 11.4 0.000
Final 23.2 ± 11.6 25.3 ± 10.1 # 0.009

ηp
2 0.004 0.538

1-min curl-ups test (repetitions) Initial 15.4 ± 7.9 21.5 ± 8.6 0.107
Final 15.5 ± 11.1 24.7 ± 8.0 *,# 0.191

ηp
2 0.000 0.242

VO2max (mL/kg/min) Initial 33.92 ± 11.47 34.03 ± 5.36 0.000
Final 33.10 ± 11.93 36.45 ± 6.05 # 0.037

ηp
2 0.018 0.275

Time for completion Rockport Fitness
Test (min)

Initial 16.60 ± 1.05 15.90 ± 1.34 0.064
Final 16.80 ± 1.30 15.37 ± 1.59 * 0.166

ηp
2 0.009 0.139

Note. VO2max, estimated maximum oxygen consumption; ηp
2, partial eta squared. Values expressed as mean ± standard deviation;

* p < 0.05 versus control group-final; # p < 0.05 versus experimental group-initial.

Ratings of perceived exertion (RPE) immediately following completion of each station
during 8th, 16th, and 24th sessions are presented in Figure 2A. Within each session, values
of RPE increased approximately by two scores after each station (p < 0.05). Profiles of
responses were comparable among the sessions (p > 0.05). Heart rate (HR) for pre-exercise
and immediately following the completion of each station during the 8th, 16th, and 24th
sessions are presented as %HRmax in Figure 2B. No differences were identified for HR
between sessions (p > 0.05). Values of HR at A, B, and C increased ~60.0% above pre-exercise
levels (p < 0.05).
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Figure 2. (A) Rating of perceived exertion and (B) % maximal heart rate at pre-exercise (Rest) and
following completion of each exercise station (A, B, and C) during sessions 8, 16, and 24. Values
expressed as mean and standard error; * p < 0.05 versus initial moment within session.

The CWIT significantly (p < 0.05) increased several facets of quality of life in the
experimental group. Most changes exhibited large effect sizes in response to the CWIT
intervention (Table 4).

Table 4. Quality of life results according to group and moment.

Scores Moment
Groups

Effect Size (ηp
2)

Control Experimental

Physical functioning Initial 69.4 ± 10.1 71.6 ± 11.4 0.009
Final 66.9 ± 15.8 76.6 ± 8.8 # 0.144

ηp
2 0.025 0.196

Physical role limitations Initial 87.5 ± 35.3 76.3 ± 32.8 0.024
Final 84.3 ± 26.5 93.4 ± 14.0 # 0.052

ηp
2 0.003 0.194
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Table 4. Cont.

Scores Moment
Groups

Effect Size (ηp
2)

Control Experimental

Body pain Initial 77.9 ± 22.2 70.2 ± 18.6 0.033
Final 68.3 ± 28.4 77.4 ± 18.2 0.039

ηp
2 0.053 0.068

General health perceptions Initial 71.1 ± 14.2 75.6 ± 14.9 0.020
Final 71.5 ± 21.4 81.7 ± 13.3 # 0.084

ηp
2 0.000 0.220

Vitality Initial 64.4 ± 21.4 59.7 ± 17.4 0.014
Final 59.4 ± 28.6 72.4 ± 13.4 # 0.096

ηp
2 0.024 0.276

Social functioning Initial 78.1 ± 30.4 87.5 ± 19.9 0.035
Final 76.5 ± 29.4 90.1 ± 11.5 0.109

ηp
2 0.003 0.020

Emotional role functioning Initial 87.5 ± 35.3 82.4 ± 30.1 0.006
Final 75.0 ± 38.8 89.5 ± 22.3 0.057

ηp
2 0.047 0.035

Mental health
Initial 73.5 ± 27.9 73.9 ± 14.7 0.000
Final 80.5 ± 19.7 83.1 ± 10.6 # 0.008

ηp
2 0.054 0.193

Note. ηp
2, partial eta squared. Values expressed as the mean ± standard deviation; # p < 0.05 versus experimental group-initial; two-way

repeated measures ANOVA and Bonferroni’s test.

Analyses of HRV changes in the supine position are presented in Table 5. The ex-
perimental group showed higher values of SDNN, LF, and TP after the exercise training
intervention in comparison to the initial moment. These changes exhibited large effect
sizes. Other HRV measures in time and frequency domains, as well as non-linear analyses
were not changed by the exercise training intervention (p > 0.05).

Table 5. Analysis of heart rate variability parameters on supine position according to group and moment of evaluation.

Variables Moment
Groups

Effect Size (ηp
2)

Control Experimental

Time domain

SDNN (ms)
Initial 35.70 ± 13.07 31.74 ± 17.50 0.034
Final 37.04 ± 12.71 41.42 ± 22.85 # 0.000

ηp
2 0.006 0.328

RMSSD (ms)
Initial 37.46 ± 19.40 36.51 ± 25.64 0.010
Final 37.45 ± 14.38 42.31 ± 23.57 0.003

ηp
2 0.002 0.199

Frequency domain

LF (ms2)
Initial 602 ± 334 358 ± 423 0.149
Final 645 ± 457 841 ± 1044 # 0.004

ηp
2 0.000 0.369

HF (ms2)
Initial 655 ± 660 629 ± 722 0.015
Final 585 ± 522 945 ± 1090 0.018

ηp
2 0.018 0.202

Total (ms2)
Initial 1306 ± 798 1024 ± 1065 0.064
Final 1294 ± 939 1916 ± 2316 # 0.003

ηp
2 0.006 0.293

LF/HF
Initial 1.38 ± 0.74 0.90 ± 0.75 0.086
Final 1.51 ± 0.83 1.09 ± 0.82 0.057

ηp
2 0.012 0.059
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Table 5. Cont.

Variables Moment
Groups

Effect Size (ηp
2)

Control Experimental

Non-Linear

SampEn Initial 1.792 ± 0.137 1.698 ± 0.277 0.032
Final 1.673 ± 0.212 1.629 ± 0.295 0.006

ηp
2 0.044 0.036

DFA Alfa 1
Initial 0.988 ± 0.218 0.836 ± 0.275 0.071
Final 0.991 ± 0.100 0.948 ± 0.280 0.007

ηp
2 0.000 0.194

Note. SDNN, standard deviation of normal–normal beats; RMSSD, root-mean-square of successive RR intervals. LF, low frequency; HF,
high frequency; LF/HF, ratio between high and low frequencies; ηp

2, partial eta squared. Values expressed as the mean ± standard
deviation; # p < 0.05 versus experimental group-initial; two-way RM ANOVA and Bonferroni’s test.

Regarding the seated position, results of HRV are presented in Table 6. Interaction
between group and moment was statistically significant (p < 0.05) for all time domain
measures. The two measures were increased after the exercise training intervention when
compared to the initial moment in the experimental group. Regarding the frequency
domain measures, the experimental group presented a greater LF and TP after the training
intervention when compared to the initial evaluation. All significant changes exhibited
large effect sizes. Regarding the non-linear results, only detrended fluctuation analysis
(DFA) Alfa-1 was increased between moments, in despite of the studied group (p = 0.040).

Table 6. Analysis of heart rate variability at time and frequency domains on sitting position according to group and moment
of evaluation.

Variables Moment
Groups

Effect Size (ηp
2)

Control Experimental

Time domain

SDNN (ms)
Initial 38.45 ± 12.70 31.04 ± 12.12 0.086
Final 36.90 ± 15.53 39.43 ± 17.88 # 0.003

ηp
2 0.018 0.348

RMSSD (ms)
Initial 34.56 ± 11.11 29.05 ± 12.75 0.058
Final 29.04 ± 12.37 34.30 ± 13.73 # 0.032

ηp
2 0.088 0.147

Frequency domain

LF (ms2)
Initial 907 ± 872 486 ± 569 0.136
Final 875 ± 756 795 ± 789 # 0.012

ηp
2 0.001 0.403

HF (ms2)
Initial 562 ± 398 434 ± 497 0.064
Final 460 ± 389 541 ± 397 0.005

ηp
2 0.047 0.120

Total (ms2)
Initial 1555 ± 1069 995 ± 1066 0.117
Final 1407 ± 1101 1426 ± 1088 # 0.000

ηp
2 0.016 0.343

LF/HF
Initial 1.86 ± 1.36 1.52 ± 1.08 0.018
Final 2.55 ± 2.22 1.60 ± 1.10 0.082

ηp
2 0.078 0.003

Non-Linear

SampEn Initial 1.628 ± 0.175 1.596 ± 0.200 0.092
Final 1.490 ± 0.225 1.556 ± 0.266 0.020

ηp
2 0.006 0.015

DFA Alfa 1
Initial 1.059 ± 0.186 1.007 ± 0.300 0.008
Final 1.214 ± 0.232 1.083 ± 0.296 0.047

ηp
2 0.126 0.075

Note. SDNN, standard deviation of normal–normal beats; RMSSD, root-mean-square of successive RR intervals. LF, low frequency; HF,
high frequency; LF/HF, ratio between high and low frequencies; ηp

2, partial eta squared. Values expressed as the mean ± standard
deviation; # p < 0.05 versus experimental group-initial; two-way RM ANOVA and Bonferroni’s test.
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Based on HRV in sitting position, in terms of ∆% between moments of evaluation,
the CWIT intervention promoted a significant increase only in HF (control, −4.84 ± 4.93;
experimental, 6.57 ± 15.13; p = 0.029) and total power (control, −2.0 ± 6.8%; experimental,
7.4 ± 8.8%; p = 0.013).

Regarding relative variation between positions, RMSSD were lower in final in com-
parison to the initial moment within the control group. Other HRV parameters were not
significantly changed following this analysis (see Table 7).

Table 7. Analysis of heart rate variability in terms of relative variation (%) between supine and sitting positions of evaluation
according to group and moment.

Variables Moment
Groups

Effect Size (EF)
Control Experimental

Time domain

SDNN 1 Initial 11.6 (−27.0–50.0) 11.2 (−45.7–100.0) 0.097
Final −2.2 (−24.2–24.9) −1.1 (−16.3–5.9) 0.056

EF 0.035 0.013

RMSSD 2 Initial −0.23 ± 25.39 −5.65 ± 31.02 0.008
Final −22.64 ± 10.65 # −10.34 ± 29.39 0.050

EF 0.162 0.020

Frequency domain

LF 1 Initial 46.3 (−48.5–189.2) 29.3 (−62.9–423.5) 0.046
Final 55.8 (−46.1–207.4) 29.4 (−54.4–166.4) 0.066

EF 0.035 0.966

HF 2 Initial 19.2 ± 85.7 4.7 ± 66.4 0.009
Final 25.8 ± 144.4 5.2 ± 74.8 0.010

EF 0.003 0.000

Total 2 Initial 31.9 ± 64.0 34.5 ± 82.7 0.000
Final 30.7 ± 67.4 21.6 ± 67.1 0.004

EF 0.000 0.021

LF/HF 1 Initial 59 (−44–196) 50 (−77–1445) 0.148
Final 56 (−63–548) 49 (−20–1758) 0.005

EF 0.035 0.013

Non-Linear

SampEn 1 Initial −9.2 (−20.8–−2.5) −8.3 (−23.4–72.6) 0.105
Final −13.4 (−29.1–35.5) −2.4 (−22.3–17.2) 0.065

EF 0.128 0.250

DFA Alfa 1 1 Initial 4.3 (−24.4–49.6) 13.0 (−17.1–245.2) 0.169
Final 15.8 (−1.9–55.1) 10.8 (−4.0–44.2) 0.179

EF 0.385 0.104

Note. SDNN, standard deviation of normal–normal beats; RMSSD, root-mean-square of successive RR intervals. LF, low frequency; HF,
high frequency; LF/HF, ratio between high and low frequencies; EF, effect size. 1 Values expressed as the median and total amplitude; EF
expressed as r estimated. 2 Values expressed as the mean ± standard deviation; EF expressed as partial eta squared (ηp

2); # p < 0.05 versus
experimental group-initial.

4. Discussion

According to initial hypothesis, the CWIT program improved physical fitness, quality
of life, and HRV parameters in sedentary adult workers, with only 2 40-min sessions per
week, over 12 weeks. Thus, the current intervention increased handgrip strength, muscle
flexibility and endurance, as well as aerobic fitness (see Table 3). Furthermore, CWIT also
resulted in greater scores of several facets of quality of life (see Table 4), and several HRV
parameters in the supine (see Table 5) and seated (see Table 6) position. Of note, the HRV
parameters were mostly increased in the seated position.

Exercise variables, such as frequency, intensity, and duration, have been previously
manipulated in order to create an overload and to achieve a subsequent training effect [54].
In this context, HR is often used as a parameter to set exercise intensity due to the expected
linear relationship between HR, VO2, and exercise intensity [54]. During the CWIT protocol,
participants reached 85–90% of HRmax values during all stations, according to measures
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obtained after each session. Consequently, it is plausible that the volunteers had been
working at an appropriate intensity throughout the training sessions, thereby stimulating
cardiovascular adaptation. In this context, caution should be taken when using HR in an
attempt to assess the intensity of resistance exercise alone [32], as CWIT is a combined
exercise training protocol. According to Gotshalk et al. [55], CWIT produced HR values
within the recommended range for developing cardiovascular fitness; however, the VO2
may not follow the same response in other exercises [56]. Therefore, future studies should
consider both VO2 and blood lactate values in order to better describe the CWIT acute
effects to better understand the chronic adaptations.

On the other hand, the RPE scale has been widely used as a method for estimating
exercise intensity and evaluating exercise tolerance [42]. Although RPE has been used to
monitor exercise intensity in response to other resistance training protocols [57,58], RPE
have been only reported in a previous similar research using circuit training protocols [32].
When interpreting the RPE results from the current study, it should be noted that partici-
pants were asked to provide RPEs upon completion of each station (A, B, C), which also
included the cycling exercise following each exercise station. It is noteworthy that the pro-
file of the HR and RPE curves are relatively similar across the 8th, 16th, and 24th sessions
with gradual increases observed at each exercise time point, therefore suggesting RPE could
be an appropriate method for characterizing exercise intensity during CWIT protocols.

Several changes in the work environment have contributed to an increase in sedentary
behavior accompanied by a decline in physical activity at workplaces. Because of this, it is
possible to observe several negative effects on functional capacities, as muscle strength,
endurance, and flexibility of workers [1]. CWIT is characterized by low and high-intensity
interval training (HIIT) of different exercise modalities [59,60], thus promoting beneficial
effects on muscle strength and flexibility. Other authors observed that a 12-week moderate
intensity exercise training (5 days × week–1 with 40 min × session–1) improved peak
oxygen uptake and BMI in overweight and obese participants [61]. Hence, future studies
with other CWIT schemes should examine health-related and body composition outcomes
over similar and longer intervention periods. In the present study, it is possible that
sex distribution, as well as the lack of nutritional intervention, and the low frequency
of CWIT practice (2×/week), may be associated with the absence of changes in body
composition parameters. A lower body fatness and an increased muscle mass are most
commonly observed in response to more time and days devoted to weekly exercise training
regimens [62].

On the other hand, adequate levels of muscle strength are essential to musculoskeletal
performance and quality of life. Handgrip strength is an index of the general muscle
strength that is easily measured using a hand dynamometer. Handgrip strength has been
used for risk stratification to predict individuals’ future health problems [48]. The results
from previous studies suggest that more prolonged exercise protocols may be more effective
to impact handgrip strength. Previously, a short-term HIIT program (six sessions over
two weeks) resulted in negative emotions and exertion in sedentary middle-age men, thus
impairing physical and mental well-being [63]. This is contrary to the current study in
which the participants exhibited an improved quality of life while experiencing a moderate
training load, which highlights the suitability of the current protocol in contrast to other
high-intensity exercise modalities.

Moreover, some hypertrophy and sarcomere genesis cannot be disregarded. Growth of
filaments and sarcomeres in longitudinal series can influence flexibility development [64],
which may be behind the enhanced performance in the sit-and-reach test. In this regard,
regular stretching practice at the end of CWIT sessions could have also contributed to
this muscle improvement. Another important effect promoted by CWIT was the greater
levels of endurance, demonstrated by increased abdominal endurance capacity, and es-
timated VO2max after a 1-mile test on a track. Abdominal fitness test (1-min curl-up
test) is performed against body mass load and configures an important index for mus-
cle endurance [45]. The VO2max is an important index of functional aerobic capacity.
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Sedentary individuals have commonly presented lower VO2max when compared to active
people, and regular exercise training may attenuate these differences [65]. Previously, one
study reported that a low-volume HIIT induced significant improvements in VO2max,
cardiometabolic risk markers and psychological health in physically inactive adults [66],
which is in agreement with the current study.

Considering HRV results, total power is considered an estimate of global activity
of autonomic nervous system (ANS) [9,11]. HF (0.15 Hz–0.4 Hz) is a marker of cardiac
autonomic parasympathetic nervous system activity, while LF (0.04–0.15 Hz) may reflect a
combination of both sympathetic and parasympathetic influences [9]. Similarly, a combined
aerobic and resistance training promoted significant improvements in HRV parameters in
sedentary, hypertensive women [36]. Increased HRV due to exercise training interventions
is a potential protection against risk factors and cardiac mortality [67].

Regarding time domain variables, SDNN is a time domain parameter which represents
overall variability [9]. On the other hand, RMSSD is the most robust and widely used
HRV index and has been reported to be a valid estimate of cardiac vagal modulation [68].
Despite this, RMSSD recordings have revealed large day-to-day variation as a result of
different conditions of evaluation [69,70]. Considering the potential effects of evaluating
HRV in different positions, it should be noted that the supine position provided more
reliable HRV parameters in comparison to other conditions to evaluate HRV in response to
training interventions [71,72]. The supine position maximizes the parasympathetic tone,
which is important for monitoring in continuous aerobic sports; however, this is not the
case of combined demands that rely on anaerobic intermittent bouts (as CWIT) which
increase sympathetic activation and vagal withdrawal [27,73]. These differences between
different positions with respect to HRV measures [28] may explain the greater changes in
HRV parameters observed in the seated vs. supine position. This is an important finding if
we consider that our participants mostly work in the seated position.

HRV has been commonly associated with high levels of endurance [45] and several
cardiovascular benefits [67], which configure important effects of the CWIT protocol in
the present study. Progressive and permanent alterations of HRV in response to extended
training periods are an adaptive physiological effect of regular exercise [67,74]. In this
aspect, changes in HRV after high-intensity exercise training have generally been associated
with inhibition of the sympathetic influences, while aerobic demands are more related to
vagal modulations. During exercise training, vagal activity is reduced while sympathetic
activity is augmented in response to overload. Afterwards, parasympathetic response is
increased after regular exercise training practice in order to normalize heart rate [52]. Like
CWIT, interval training is constituted by peaks of high-intensity exercise alternating with
periods of low-intensity demands [32,60,62]. As a result, sympathetic and parasympathetic
nervous systems must be stimulated in order to provide satisfactory balance and responses
to positively adapt to the regular exercise-training.

In this study, CWIT was characterized by a reduced weekly duration and frequency,
in comparison to the recommendations of the WHO [38]. This was necessary to increase
compliance and to meet the workplace schedule. Despite this, the present intervention
was capable of improving the fitness level and quality of life in adults with work-related
sedentary behavior. Moreover, it has been confirmed that CWIT maximized fitness benefits
in a reduced amount of time [32].

This investigation has some limitations. This is a semi-randomized controlled trial,
therefore future randomized controlled trials (RCTs) should confirm our findings in future
experiments with more participants of both sexes. Since previous studies have documented
substantial impacts of similar protocols on anthropometrical measures [12,62], it may
be speculated that the current protocol was suboptimal in terms of frequency of weekly
practice. Moreover, it is noteworthy that there was no diet recommendation nor nutritional
control during the study development. Therefore, future investigations should consider
these factors when looking for improved body composition. In addition, the effects of
CWIT on male and female participants were not evaluated separately and this can be also
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considered an important limitation. Finally, as some fitness parameters such as VO2max
were estimated from validated formula, future studies should provide objective evaluations
of these and other physical and physiological measures (e.g., blood lactate during training
sessions) for a better characterization of both acute and chronic adaptations.

5. Conclusions

The CWIT used in the current study was associated with improvements in several
fitness parameters, including muscle flexibility and aerobic capacity, as well as increases
of vitality scores and cardiac autonomic control in adult sedentary workers. Therefore,
we may recommend the use of this time-efficient and well tolerated protocol in future
interventions with sedentary workers. Examination of different body positions when
evaluating changes in HRV after a training intervention, appears to be a relevant aspect to
be considered in further studies.
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