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Abstract: The design of compounds with directed action to a defined organ or tissue is a very
promising approach, since it can decrease considerably the toxicity of the drug/bioactive compound.
For this reason, this kind of strategy has been greatly important in the scientific community.
Dendrimers, on the other hand, comprise extremely organized macromolecules with many peripheral
functionalities, stepwise controlled synthesis, and defined size. These nanocomposites present several
biological applications, demonstrating their efficiency to act in the pharmaceutical field. Considering
that, the main purpose of this review was describing the potential of dendrons and dendrimers as
drug targeting, applying different targeting groups. This application has been demonstrated through
interesting examples from the literature considering the last ten years of publications.
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1. Introduction

The drug targeting of cells, tissues or specific diseases is a powerful tool in the treatment of
pathological disorders, since it may increase the chemotherapeutic effect and decrease the toxicity in
normal tissues [1]. Dendrimers, on the other hand, have been extensively applied in this field, once
drugs can be encapsulated inside them or conjugated in their surfaces through covalent bonds [1–3].

Dendrimers represent an emerging class of low polydispersity hyperbranched macromolecules,
which confer unique features such as: significant control over the molecular size, high branching
density, nanoscale size and great surface functionality [4–9]. Those structures are composed of
multifunctional core, which allows branches coupling, repeated branches layers from core named
as dendrons and functional surface groups [4,10,11] (Figure 1). The first unity containing a core
substituted with dendrons results in the first dendrimer generation. According to the increase of
branches number in the dendrimer structure, higher dendrimer generations can be obtained. Therefore,
the second layer of repeated units leads to the second dendrimer generation and thus subsequently [12].
Regarding to the dendrimer synthesis, these compounds can be, mainly, synthesized by convergent or
divergent approaches [3].

Dendrimers present a great structural chemical diversity, as, for example: PAMAM (poly(amidoamine)),
PPI (poly(propylenimine)), PLL (poly(lysine)), polyester, and PEHAM (poly(etherhydroxylamine))
dendrimers [7,12–15], among others.

Two features contribute to the dendrimer complexity, as generation number and surface terminal
groups. In relation to generations, there are dendrimers from the first up to the tenth generation, although
in the seventh-generation steric hindrance between the branches occurs, decreasing the synthetic yield
of these compounds. Also, high generations may have influence in dendrimer toxicity [4,16,17].
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In general, surface groups are anionic, cationic, or neutral and the toxicity studies have shown
the cationic dendrimers as the most cytotoxic [14,18,19]. To overcome the cytotoxicity induced by
dendrimers, diverse approaches have been developed based on suppression of the cationic surface
through PEGylation, acetylation and chemical modification with anionic or neutral molecules [12].

Dendrimers and dendrons have several biomedical applications [18], especially as drug delivery
systems [14,20–33]. Therefore, drug/bioactive agent may be either (1) loaded within the dendritic
structure through electrostatic, hydrophobic, and hydrogen bonding interactions, or covalently
conjugated to the dendrimer structure. Therefore, as drug/bioactive compound nanocarriers,
dendrimers can provide controlled and/or targeted drug delivery either through encapsulating
bioactive compounds [21,22] or (2) covalently conjugated to the dendrimer structure [34–39].
They present advantages as a well-defined chemical structure with low polydispersity and surface
functional groups. In addition, dendrimers are stable compounds and their pharmacokinetics
properties can be adjusted by controlling their size and shape [12].

It is also important to emphasize the multifunctional character of the dendrimers, which allow
the linkage of different ligands of multiple receptors, achieving the selectivity and even synergistic
effect [40].

Based on the foregoing interesting characteristics, this review aimed at describing the targeting
groups employed in dendrimer and dendrons to obtain targeted drug delivery systems, which showed
to be important in the field of pharmaceutical research. Table 1 reflects the targeting groups diversity
related to the disease and the dendrimer architectures.

Pharmaceutics 2018, 10, x FOR PEER REVIEW  2 of 27 

decreasing the synthetic yield of these compounds. Also, high generations may have influence in 
dendrimer toxicity [4,16,17]. In general, surface groups are anionic, cationic, or neutral and the 
toxicity studies have shown the cationic dendrimers as the most cytotoxic [14,18,19]. To overcome the 
cytotoxicity induced by dendrimers, diverse approaches have been developed based on suppression 
of the cationic surface through PEGylation, acetylation and chemical modification with anionic or 
neutral molecules [12]. 

Dendrimers and dendrons have several biomedical applications [18], especially as drug delivery 
systems [14,20–33]. Therefore, drug/bioactive agent may be either (1) loaded within the dendritic 
structure through electrostatic, hydrophobic, and hydrogen bonding interactions, or covalently 
conjugated to the dendrimer structure. Therefore, as drug/bioactive compound nanocarriers, 
dendrimers can provide controlled and/or targeted drug delivery either through encapsulating 
bioactive compounds [21,22] or (2) covalently conjugated to the dendrimer structure [34–39]. They 
present advantages as a well-defined chemical structure with low polydispersity and surface 
functional groups. In addition, dendrimers are stable compounds and their pharmacokinetics 
properties can be adjusted by controlling their size and shape [12]. 

It is also important to emphasize the multifunctional character of the dendrimers, which allow 
the linkage of different ligands of multiple receptors, achieving the selectivity and even synergistic 
effect [40]. 

Based on the foregoing interesting characteristics, this review aimed at describing the targeting 
groups employed in dendrimer and dendrons to obtain targeted drug delivery systems, which 
showed to be important in the field of pharmaceutical research. Table 1 reflects the targeting groups 
diversity related to the disease and the dendrimer architectures.  

 
Figure 1. Dendrimer general structure. 

 

Figure 1. Dendrimer general structure.



Pharmaceutics 2018, 10, 219 3 of 27

Table 1. Some targeting groups used for dendrons and dendrimers.

Directing
Group Disease Dendrimer Results References

Peptides

Cancer PAMAM The RGD modified dendrimer showed a higher therapeutic effect on melanoma cells and a higher accumulation in tumor regions [41]
Cancer PAMAM The modified PAMAM dendrimer showed a selective intake in melanoma cells. However, showed a low tumor intake [42]
Cancer Janus The modified dendrimer showed an increased targeting property and optimized release property [43]
Cancer PPI dendron The modified dendron showed a significantly higher cellular uptake and selectivity for lysosomes [44]
Cancer PAMAM Higher in vitro uptake and in vivo accumulation [45]
Cancer PEG The dendrimer showed an excellent load capacity and synergic effect of both substituents in vivo and in vitro [46]
Cancer PAMAM The modified dendrimer showed a greater cellular uptake of 5-FU [47]
Cancer PLL The dendrimer showed a high cellular uptake and could be carried into lysosomal compartments [48]
Cancer Substance P dendron The SP dendron showed a higher cellular uptake and decreased tumor cell viability [49]
Cancer PAMAM The (GFLG) dendrimer–DOX was more accumulated in tumor area than in liver and other organs [50]
Cancer PLL dendron The dendritic drug delivery system showed better biosafety and higher in vitro cytotoxicity [51]
Cancer PLL dendron The modified dendrimer demonstrated targeting ability at both in vitro and in vivo assays, also it exhibited tumor growth inhibition [52]
Cancer DendGDP The conjugate dendrimers presented superior cell uptake than free DOX in vitro trials [3]

Folate

Cancer PPI The modified dendrimer showed lower toxicity and higher cellular uptake [53]
Cancer PAMAM The modified dendrimer showed higher tumor cell cytotoxicity [54]
Cancer PAMAM The FA modified dendrimer showed a lower healthy cell toxicity and higher cancer cell accumulation [55]
Cancer PAMAM The FA modified dendrimer showed a better activity against tumor cells [56]
Cancer PAMAM The designed G5 PAMAM coupled to MTX and FA was more efficient and presented higher action in tumor cells [57]
Cancer PAMAM The modified dendrimer showed a lower toxicity and increased half-life [58]
Cancer PAMAM There was not a difference in the activity between the G3 and G5 dendrimer. Both showed a good delivery system for the drug [59]
Cancer PAMAM The dendrimer improved the solubility of the flavonoid and showed a high selectivity for HeLa cells [60]
Cancer PAMAM The dendrimer showed a high accumulation on tumor sites, which indicates a promising use as drug delivery and diagnostics [61]

Arthritis PAMAM The dendrimer showed a higher plasma concentration, higher selectivity, and lower gastric toxicity [62]
Arthritis PAMAM The indomethacin-FA-dendrimer showed a more controlled release than other dendrimers [63]
Cancer PAMAM These dendrimers showed high loading capacity, low cytotoxicity, and redox-driven cleavage through disulfide bridges [64]

Carbohydrates

Cancer PAMAM The conjugated dendrimers showed a much higher HepG2 uptake than the non-conjugated [65]
Malaria PPI The galactose conjugated dendrimer was able to decrease the hemolytic property of the primaquine [66]

HIV PPI Dendrimers were able to decrease the drug toxicity. However, the mannose derivative presented 12-times-higher cellular uptake when compared with
that free drug [67]

HIV TPPI Both dendrimers showed good results in cell uptake assays, since mannose interacted with lectin receptor and TPPI was absorbed via phagocytosis [67]
Cancer Arginine dendron In vitro assays exhibited excellent biocompatibility. LP-g-G3P/DOX was internalized into the hepatoma carcinoma cells, inhibiting cell proliferation [68]
Cancer PPI The dendrimer exhibited lower hemolytic property than free drug and a better accumulation in the brain than in other organs, such as liver and kidney [69]

Monoclonal
antibodies

Cancer PAMAM The modified dendrimer was capable of selectively bind to the prostate specific membrane antigen receptor [70]
Cancer PAMAM This molecule presented high affinity for HER, which resulted in significant internalization of IL-6-G5 PAMAM dendrimers into HeLa cells [1]
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Table 1. Cont.

Directing
Group Disease Dendrimer Results References

Other
Targeting

groups

Cancer PAMAM The uptake and selectivity in HeLa cells were more appropriate for biotinylated dendrimers and more selective for cancer cells [71]
Cancer PAMAM The dendrimer showed better cellular uptake profile than labeled dendrimer, mainly by respective receptors [72]
Cancer PAMAM The dendrimer system is a promising nanocarrier because it provides great drug encapsulation, high targeting, and fast drug release in tumor [73]

Cancer PAMAM The PEGylated dendrimer increased cytotoxicity in murine model of B16 melanoma cells and higher free drug concentration in the tumor and greater
anticancer action [41]

Cancer PEG dendron The dendrimer demonstrated higher stability, lower toxicity, greater intracellular uptake, prolonged half-life time, improved biodistribution and
enhanced anticancer potency [74]

Cancer PEG This dendrimer reduced the cell viability and uptake, showing efficient inhibition and accumulation [75]
Cancer PAMAM The dendrimer showed a higher inhibitory effect in the in vivo tests and a higher release rate [76]
Cancer PLL The dendrimer enhanced tumor volume control, permeability, retention effects and heart toxicity, when compared to DOX [51]
Cancer Peptide dendron This dendron showed an excellent biocompatibility exhibiting pH-responsive, providing their disassembly and controlling encapsulated DOX [77]

Cancer Dendronized
heparin The dendronized derivative demonstrated high antitumor activity on breast cancer cell line, as well as antiangiogenics effects and apoptosis induction [78]

Malaria PAMAM The dendrimer prodrug showed a better IC50 values however in vivo results showed no difference [79]
Neuroinflammation PAMAM The dendrimer cell uptake was enhanced, increasing the drug residence time, delivering specific retinal area, and reducing side effects [80]
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1.1. Peptides as Targeting Groups

Some overexpressed enzymes in cells/tissues have been interesting by means of their specific
peptides used as targeting groups to achieve selectivity.

Cathepsin B, a lysosomal cysteine protease overexpressed in several cancer tissues, is known to
degrade extracellular matrix during invasion and metastasis. Additionally, it is commonly observed
as a prognostic factor in breast tumor. The tetrapeptide Gly Phe-Leu-Gly (GFLG) is a substrate of
cathepsin B, which demonstrated good blood stability during delivery and allows intralysosomal
drug release after endocytosis. PEGylated PAMAM dendrimers conjugated to DOX and GFLG spacer
were described as an enzyme-responsive drug delivery system for breast tumor therapy. Peptide
dendrimer–DOX compounds improved in vivo antitumor activity over commercial DOX formulation
at the same dose. Additionally, the dendrimer provided lower toxicity as analyzed by acute changes in
body weight, blood cell counts and histological analysis [81].

With the purpose of decreasing cytotoxicity and clearance, increasing selectivity and accumulating
drug in breast tumor area, Li and coworkers [50] synthesized a dendrimer with two different
dendrons (Figure 2). One of them, mPEGylated, was used to enhance molecular weight and size,
decreasing renal filtration, thus accumulating it by enhanced permeability and retention (EPR) effect.
Other PEGylated dendron, glycylphenylalanyl-leucylglycine conjugated with DOX (mPEGylated
dendrimer-GLFG-DOX) is considered substrate for cathepsin. Through ex vivo studies, free DOX
presented lower accumulation in tumor area as well as higher amount in other tissues such as in liver
and kidneys. Meanwhile, the dendrimer was more accumulated in tumor area than in liver and other
organs. In addition, they described this dendrimer as a possible control for tumor metastasis and
in tumor growth inhibition, showing better effects than free DOX. The same group also used GFLG
dendrimer, linking a targeting group conjugated to DOX (GFLG-DOX) on the surface. Applying the
same strategy showed previously, the authors analyzed the dendrimers for ovarian tumor treatment,
observing less activity than free DOX. Notwithstanding, a significant cytotoxicity against normal cell
line was not observed at in vitro assays. On the contrary, at in vivo test, the dendrimer demonstrated
higher anticancer efficacy than free DOX and could induce higher apoptosis levels. Histological
analysis showed no toxicity and dendrimer presented more accumulation in tumor tissue [81].
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GFLG dendrons conjugated to DOX were developed to self-assemble into nanoparticles.
PEGylated dendron-GFLG-DOX demonstrated responsive-enzyme ability and, according to the
in vitro assays, nanoparticles could kill breast cancer cells. Moreover, conjugated dendrimer was
safer and showed higher antitumor activity than free DOX, due to enzyme-sensitive linker employed
to compose PEGylated peptide dendron [50]. The same research group synthetized PEGylated PLL
dendron, using Pro-Val-Gly-Leu-Ile-Gly (PVGLIG) peptide as spacer group, which is sensitive to
matrix metalloprotease-2/metalloprotease-9, and was functionalized with DOX. This conjugated
drug was evaluated for delivery in breast cancer cells through two mechanisms: increase of EPR
factor due to PEG and via substrate enzyme-sensitive. The dendritic drug delivery system showed
better biosafety, comparatively to free DOX, through in vivo assays. This compound exhibited higher
in vitro cytotoxicity in breast tumor cells, in the presence of metalloprotease-2 enzyme. The association
of peptide dendron PEGylation and enzyme-sensitive property revealed to be an efficient and safe
possibility for drug delivery system.

As reported in another work, a Janus peptide dendron-drug, composed by a sequence of PVGLIG
peptide, sensitive to metalloproteases 2 and 9, and PEG, was synthesized [82]. Janus dendrimer,
also called surface-block codendrimer, is a kind of compound containing a double-faced head
with different properties [83]. DOX side effects with the dendrimer were lower comparatively
to free drug administration. In addition, DOX activity was the same as the free drug after the
complex administration

Transferrin (Tf) is a targeting group for brain action, due to Tf receptor overexpression on the
brain capillaries endothelial surfaces. Besides that, several cancer tissues overexpress Tf receptor on
the surface of tumor cells, which provides iron to cells growth and participates in their survival [52,84].
HAIYPRH is a peptide with high affinity to Tf receptor and PEGylated PAMAM dendrimers were
functionalized with it to deliver loaded DOX. The complex showed a high rate of internalization and
selectivity, compared to free drug.

Based on the same approach, wheat germ agglutinin (WGA) showed high affinity for the brain
capillary endothelium, with high binding for tumor cells and reduced toxicity for normal cells.
It was used so that PEGylated dendrimers containing both directing groups (Tf and WGA) and
encapsulated DOX were designed to obtain targeting systems (Figure 3). Those dendrimers could cross
blood-brain barrier and improve the cell uptake by brain tumor. The authors related the decrease of
DOX cytotoxicity to the normal tissues, while it inhibited the growth of C6 glioma cells. Additionally,
if there was DOX accumulation in tumor tissue, the inhibition rate to the C6 glioma cells increased,
resulting in the blood-brain barrier transport improvement and synergistic effect of both endocytosis
mechanisms (Tf and WGA) [84].

With the purpose of improving blood-brain barrier transport and drug accumulation in the
glioma cells Li and colleagues [52] designed two dendrimer types based on G4 PAMAM dendrimer.
One of them has DOX, PEG and Tf (G4-DOX-PEG-Tf) added on G4 PAMAM surface and the
other has dual-targeting composed of DOX, PEG, Tf and tamoxifen added in G4 PAMAM surface
(G4-DOX-PEG-Tf-tamoxifen). Dual-targeting dendrimer presented better transport ability in vitro
blood-brain barrier trials. In addition, G4-DOX-PEG-Tf-tamoxifen had enhanced cytotoxicity against
tumor cells and improved the drug delivery.

The association of chemotherapy and gene therapy is a promising strategy for treatment of cancer
as, together, these techniques can provide synergic actions. Liu and colleagues [85] synthetized a
copolymer with β-cyclodextrin (CD) core and poly(L-lysine) dendron (PLLD) to co-deliver docetaxel
antitumor drug and MMP-9 siRNA plasmid for nasopharyngeal carcinoma therapy. MMP-9 siRNA
was more effective for nasopharyngeal carcinoma therapy, when a folate modified (FA-CD-PLLD)
was employed as targeting moiety. In addition, FA-CD-PLLD showed good blood compatibility
and non-toxicity. According to the authors, this is a promising strategy for nasopharyngeal
carcinoma therapy.
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The use of Folic Acid (FA) as directing group is described in item 1.2, showing many
interesting examples.Pharmaceutics 2018, 10, x FOR PEER REVIEW  7 of 27 
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for drug delivery to brain tumor [84].

Lee and coworkers [3] also applied the tetrapeptide GFLG for anticancer drug targeting, aiming to
evaluate if the tetrapeptide can deliver DOX to the site of action. The conjugate dendrimers presented
superior cell uptake than free DOX in vitro trials, although the tumor growth inhibition was lower
than the DOX alone. This might have happened due to the drug delayed release from the dendrimer.
In vivo studies showed positive results such as high dendrimer concentration on the induced tumor,
prolonged accumulation on the tumor site and low deposition in other organs.

The protein αvβ3 integrin is overexpressed in melanomas, glioblastomas, and ovary cancer and,
most importantly, it presents low expression in normal cells. The tripeptide arginine-glycine-aspartate
(RGD) presents high interaction with cancer-related integrin and it is one of the most studied targeting
group for cancer therapy. PAMAM (poly(amidoamine)) dendrimers coupled to the RGD peptide
ensured the release of cytotoxic agents into the illness cells, showing no toxicity to normal ones [42].
The respective dendrimers were also covalently conjugated to RGD and they were applied as imaging
agent for angiogenesis.

Using the same approach, Ma and coworkers [45] conjugated PAMAM with RGD and
encapsulated methotrexate (MTX) and observed this conjugate could reduce MTX toxicity mostly due
to the slow drug release from the carrier. In vivo assays showed higher accumulation in tumor site,
when compared to free MTX and non-functionalized dendrimer. Other examples comprehended Alexa
Fluor 488, biotin or MTX connected to the branches. According to the authors, these findings could be
a breakthrough development to delivery systems of multiple drugs and imaging agents.

Jiang and coworkers [43] developed a dual-targeting Janus dendrimer based on peptide dendrons
for bone cancer. The branch was designed by peptide functionalized 5-fluorouracil (5-FU) and
RGD (bone targeting group due to interaction with αvβ3 integrin receptor overexpressed in bone
metastatic cells and osteoclasts). Four different dendrons that demonstrated binding ability to HAP
(hydroxyapatite—inorganic component in hard tissues as bone and tooth) were synthesized. These
target compounds could reduce toxicity in normal tissues and sustain the release.

Other strategy to target bone tissue was to use poly aspartic acid (Aspn). In 2009, Ouyanga
and coworkers [86] developed dendritic compounds with two or three fragments of Asp(4–6) to
increase the delivery of naproxen and improve its therapeutic index. All compounds presented good
pharmacokinetic and pharmacodynamic properties, although the trimer had a slower binding rate
than the dimer, due to steric hindrance. Other Janus dendrimers changed sequences of aspartic and
glutamic acid aiming to deliver naproxen to the bone tissue with no significant differences [87].
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PPI (poly(propyleneimine)) dendrons were planned based on octa-guanidine residues as a
molecular carrier. These compounds contained DOX, as well as lysosomal peptide to mimic cell-
penetrating peptide features. The nanocarrier named as G8-PPI showed to be non-toxic and higher
cellular uptake ability compared to arginine-octamer. It also exhibited excellent selectivity towards
lysosomes in HeLa cells, being considered, therefore, an important candidate for targeting cancer
therapy [46]. The same research group has developed dendron (G8-PPI) with FA, targeting group to
folate receptor) and peptide FKE (Phe-Lys-Glu–substrate for cathepsin B overexpressed on neoplastic
cells). G8-FKE-FA-DOX (Figure 4) demonstrated an excellent response to folate receptor-targeting,
as well as increased cellular uptake and intracellular lysosome-mediated DOX delivery. In addition,
G8-FKE-FA-DOX triggered the programmed cell death through extrinsic and intrinsic pathways,
without affecting normal and folate receptor-negative cells [44].
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Tat peptide, GRKKRRQRRRPQ, a transactivator of human immunodeficiency virus and a
cell-penetrating peptide, can also be used to target cancer cells. G4 PAMAM dendrimer was conjugated
to it to increase its internalization. Assays in heart, lung and spleen tissues showed that it presented
low accumulation in healthy organs [88].

HER (Human Epidermal Growth Factor Receptor) is an important target for diverse types of
cancer, being peptide H6 one of its ligands. In this context, PEGylated G4 PAMAM dendrimers were
functionalized with peptide H6 to carry DOX for specific action in breast cancer cells. They did not
show toxicity, while the DOX-encapsulated dendrimers presented high cytotoxicity [89].

Directed drug delivery system for pancreatic cancer was designed using tumor target peptide
plectin-1, which is a biomarker for this kind of cancer, and siRNA. Nuclear receptor siRNA reduces
the expression of antiapoptotic proteins, such as Bcl-2 and survivin. Consequently, tumor growth is
not expected due to induction of apoptosis. The hydrophobic drug conjugated was paclitaxel and a
synergistic effect was observed using siRNA. In vitro assays showed high dendrimers accumulation
because of receptor-mediated endocytosis. Additionally, there was an increase in cell uptake and high
transfection in Panc-1 cell lines [90].

The aptamer AS1411 is a selective oligonucleotide that binds to nucleolin, a nucleus membrane
protein, which is overexpressed in some tumor cells, as gastric cancer. In general, aptamers are
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small single stranded RNA that can recognize and link, with high affinity, to other molecules by
tridimensional folding [91]. Behrooz and colleagues [47] designed targeted polymers composed
of PEGylated PAMAM dendrimers functionalized with aptamer AS1411 to deliver 5-FU and they
succeeded. Based on the role of mucin on tumor growth and metastases [48] and in the importance
of aptamers as targeting group, Masuda and coworkers [92] designed a sixth-generation glutamic
acid modified with PLL dendrimer coupled to anti-MUC1 aptamer responsible for targeting several
epithelial tumors. They observed that the dendrimer presented high cellular uptake and could
be carried into the lysosomal and endosomal compartments. On the other hand, Taghdisi and
coworkers [93] developed a polymer based on DNA dendrimer composed of MUC1 and AS1411
aptamers, employing the anticancer drug epirubicin, which shows cardiotoxicity and brown marrow
suppression. Selectivity was achieved as the cellular viability assay demonstrated that normal cells
were not affected, while tumor cells were destroyed after administration.

Neurokinin-1 receptors, overexpressed in some cancer cells, are part of a family of undecapeptides
of tachykinin neuropeptides. The substance P (SP) is rapidly internalized due to neurokinin-1
interaction. Therefore, Wu and coworkers designed a SP dendron with branches containing 5-FU and
near-infrared labeled (Figure 5). SP dendron showed effectiveness in decreasing cell viability of tumor
cells when compared to normal cells, which suggests an effective targeting feature [49].
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The use of peptides as directing group for dendrimer nanocarriers for drugs has arouse increasing
interest despite of their instability. The approaches herein discussed gave a panel of what can be done
for achieving selectivity with these groups.

1.2. FA as Targeting Group

FA is an important targeting group once folate receptor is overexpressed in diverse types of
human carcinomas, such as ovary, colon, lung, and breast, being one of the most studied ligands.
Folate receptor is a tumor marker that binds to folate-drug conjugates with high affinity, which can
provide drug delivery by receptor-mediated endocytosis (Figure 6) [56,94,95].
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FA-conjugated G5 PPI (poly(propylenimine) dendrimers were designed by loading DOX in
the interior of dendrimer [53]. Other report showed DOX encapsulated in FA-G5 dendrimer
and the DOX was released via photocleavable action [96]. Wang and colleagues [54], conversely,
described G5 PAMAM dendrimers conjugated to FA, labeled with fluorescein isothiocyanate carrying
2-methoxyestradiol (2-ME), which led to cell death. Dendrimer release rate was more controlled than
free drug in two pH conditions (7.4 and 5.0). No toxicity was observed in non-drug dendrimer and
only 2-ME dendrimer was able to lower cell viability in KB cells.

Experiments employing KB cells with overexpressed folate receptor, as well as KB cells
containing normal FA receptor, demonstrated that 2-ME dendrimer was more recognized by cells with
overexpressed FA receptor. This research group applied the same strategy for DOX, which showed
sustained release without pH influence [97]. Similar approaches were used by Majoros and
coworkers [55] and Shukla and coworkers [98]. Both studies used FA to deliver MTX to cancer
tissues and the conclusions were the same: the conjugate was not toxic to healthy cells and caused cell
growth inhibition. Other study performed by Singh and his group [99] aimed to synthesize PAMAM
dendrimers with FA and PEG as targeting moieties. These dendrimers were further loaded with 5-FU
to evaluate their capacity to specifically deliver this drug to cancer cells. PEG moiety increases the
circulation time of the drug and the folate moiety delivers the 5-FU in a site-specific way in both
receptor-mediated endocytosis and through EPR due to reduced lymphatic drainage. This effect occurs
in most solid tumors, to increase the vascular permeability to provide nutrients and oxygen in tumor
area for their growth [100,101].

Thomas and coworkers (64) studied FA as a directing group covalently coupled to G5 PAMAM
dendrimers as a selective delivery system to the MTX. Another research synthesized G5 PAMAM
conjugated to MTX (Figure 7) with the purpose of enhancing affinity by folate receptor [102]. MTX
was employed for its dual activity, as a targeting and cytotoxic agent. Therefore, G5-MTX displayed
better activity against tumor cells and promoted more effectively their death in contrast with free
drug in in vitro tests [103]. Myc and colleagues [57] also designed G5 PAMAM coupled to MTX
and FA to confirm their specificity and efficacy. In cytotoxicity assays, dendrimer was more efficient
and presented higher action in cells with overexpressed FA receptor comparatively to normal cells,
inhibiting the tumor growth.
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It is important to notice that the conjugation of PAMAM with FA reduces the cationic toxicity
of the dendrimer, as shown by Kersharwani and coworkers [58] in anticancer formulations in the
drug targeting.

PAMAM G3 and G5 containing FA and ursolic acid (UA-anticancer agent) were developed to
overcome UA pharmacokinetic problems and provide the selectivity towards cancer cells. There was
no difference regarding the release rate between G3 and G5 dendrimers. The findings suggested these
compounds as good delivery systems [104].

FA was also conjugated to PAMAM dendrimers to load baicalin to improve water solubility
and tumor selectivity. Even though this flavonoid presents anticancer effects, it displays low water
solubility and bioavailability [105]. In another work, PAMAM dendrimers functionalized with FA
were designed to deliver a highly hydrophobic flavonoid derivative, the 3,4-difluorobenzylidene
diferuloylmethane. This study aimed to improve the water solubility and achieve the transport
selectivity to overexpressed FA receptors in HeLa and ovarian cancer cells. Targeted dendrimers
exhibited remarkable antitumor activity with greater accumulation in FA receptor-overexpressing
cells, larger apoptosis rate, high expression of tumor suppressor phosphatase and tensin homolog,
and inhibition of nuclear factor kappa B. All findings indicated the selective ability of this system [60].
The same research group developed PAMAM dendrimers composed of superparamagnetic iron
oxide nanoparticle core (SPION), ornamented with FA on surface (FA-PAMAM) and containing
3,4-difluorobenzylidene diferuloylmethane via encapsulation to increase solubility and selectivity
for ovarian and HeLa cancer cells (Figure 8). The compounds displayed a better anticancer action
in targeted dendrimers than in non-targeted derivatives. Also, a larger population of cells suffering
apoptosis due to upregulation of tumor suppressor phosphatase and tensin homolog, caspase 3,
and inhibition of NF-κB were shown. In addition, these compounds have been studied as imaging
agent in diagnostic, enhancing Magnetic Resonance contrast and fluorescence microscopy [61].
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FA can also be used as directing group for inflammatory tissues. Indomethacin (anti-arthritis
drug) was encapsulated in a G3.5 PAMAM dendrimer functionalized with PEG and FA. The study
demonstrated the increase of plasma residence time of the complexes, as well as their higher
concentration in inflamed tissue, reducing the stomach bleeding [62]. In other study four types
of dendrimers were proposed contained different composition in terms of FA. The results
suggested the folate amount provides an enhancement of the controlled delivery system.
Indomethacin-FA-dendrimers increased plasma circulation time and reduced the cellular uptake
by reticuloendothelial system [63].

PAMAM dendrimer and dendron have provided high ability for drug and gene delivery,
exhibiting stability, and creating complexes with DNA. Dendron coated mesoporous particles have
also been used for intracellular plasmid-DNA delivery. Mesoporous silica nanoparticles have attracted
interest due to their multifunctional properties and have been studied as a template for drug delivery.
Weiss and colleagues [64] investigated the application of mesoporous silica nanoparticles coated
with PAMAM dendrons and FA for drug targeting to cancer cells. These dendrimers showed high
loading capacity, low cytotoxicity, and redox-driven cleavage through disulfide bridges. Their targeting
potential were able to enhance cellular uptake.

Magnetic resonance imaging agents were designed using G5 PAMAM dendrimer conjugated
to FA to obtain targeted magnetic resonance imaging contrasts. These compounds were coupled to
DOTA(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) chelator, forming stable complexes with
gadolinium (Gd III). 3D Imaging assays in model murine of human cancer revealed the signal increase
in tumors with targeted GdIII-DOTA-G5-FA, comparatively to the non-targeted GdIII-DOTA-G5
contrasts [106].

Another application of imaging agent using G3 PAMAM dendrimers was saccharide-terminated
(D-glucohepton-α-1,4-lactone) functionalized to MTX, antifolate agent. Surface Plasmon Resonance
studies indicated a three time increase recognizing G3-MTX by FA receptor in comparison to free
FA [107].

Dendron micelles were developed for a drug delivery platform based on nanoparticles able
to carry the drug into polyethylene glycol corona. The compounds were developed using various
PEGs molecular weight to build the dendrons. Moreover, the conjugated constituents were varied to
dendrons-FA and incorporated into dendron micelles, obtaining self-assembled nanostructure based
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on copolymers, containing an amphiphilic triblock. According to the authors, these compounds may
be employed further to design efficient targeted nanocarriers for the treatment of several diseases [108].

Considering the number of examples of FA-conjugate dendrimers, briefly presented herein, it is
clear the importance of using this directing group either in therapeutic agents or as imaging agents.

1.3. Carbohydrates as Targeting Groups

The use of carbohydrates is largely widespread in the research of drug targeting, considering the
variety of receptors that can recognize them. As the kind of receptors changes from tissue to tissue,
the targeting dendrimer containing carbohydrate may be more efficient [109]. The interaction with the
carbohydrates in the membrane leads to selective internalization providing the carbohydrate receptor
is specifically identified.

With this purpose, the asialoglycoprotein receptors (ASGPR) are highly employed as target.
ASGPR are present on the surface of hepatic tumor cells, which allows the use of glycosylated
nanocarriers for development of targeted drug delivery systems. N-acetylgalactosamine (NAcGal)
is a selective sugar, substrate for ASGPR. Considering that, NacGal has been coupled to the G5
PAMAM dendrimers through peptide and thiourea bonds to act on ASGPR, being responsible for
receptor-mediated endocytosis. These dendrimers functionalized with NAcGal were planned for drug
targeting in hepatic cancer, aiming to compare the cell uptake with functionalized or non-functionalized
dendrimer. According to the authors, NAcGal application is a promising strategy in drug targeting [65].

Another report showed the conjugation of galactose and DOX in PAMAM dendrimers to obtain
a targeted drug for hepatoma cells [1]. Bhadra and coworkers [66] used galactose and primaquine
conjugated with PPI dendrimer for malaria (Figure 9). The galactose conjugated dendrimer was able
to decrease the hemolytic property of the primaquine and target the erythrocytes better than other
evaluated nanoparticles.

Dutta and coworkers [67] designed dendrimers composed of mannosylated-PPI (MPPI) containing
efavirenz and PPI-efavirenz to reach macrophages. Once HIV virus is inside these immune system
cells, it is expected that the dendrimer cited above can be more efficient to combat it. Both dendrimers
were able to decrease the drug toxicity. However, the mannose derivative presented 12-times-higher
cellular uptake when compared with that of free drug and the dendrimer conjugate without the target
carbohydrate. In another study, applying the same antivirus agent, MPPI and T-Boc-glycine-PPI (TPPI)
dendrimers were described to decrease serum concentrations and drug side effects. Both dendrimers
showed good results in cell uptake assays, since mannose interacted with lectin receptor and TPPI was
absorbed via phagocytosis. The same group designed other two types of G5 PPI dendrimers as carriers
with and without mannose (MPPI and PPI, respectively). MPPI showed more prolonged release ratio
than PPI and, in in vitro cellular uptake assays, MPPI was more effective than free lamivudine and
free dendrimer. Furthermore, significant improvement of anti-HIV activity was observed by MPPI
when compared to the free drug, which could be related to the cellular uptake enhancement [109].
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Figure 9. PPI G5 dendrimer conjugated with galactose and encapsulated with primaquine [66].

In other study, mannosylated PEGtide dendrons, G1 to G5, were synthesized containing
amino acids, PEG and functionalized with mannose to reach macrophage. These compounds
demonstrated good water solubility and potential biocompatibility due to high PEG in dendritic
structure. Mannosylated dendrons presented higher uptake than non-mannose derivatives in murine
models. Therefore, dendrons were mannose-dependent receptor for cell uptake. PEGtide dendrons
could be an efficient platform to drug delivery and imaging applications [59].

Potential targeted drug delivery system was developed with arginine G3 dendron covalently
attached to a hydrophilic polysaccharide (pullulan), which is a neutral linear compound. The LP-g-G3P
is composed of lactosylated pullulan-graft-G3arginine dendrons, which showed self-assemble ability,
as well as small size particles, low polydispertion and higher affinity to lectin receptor (Figure 10).
DOX was encapsulated in LP-g-G3P through multiple interactions, was internalized into the hepatoma
carcinoma cells, inhibiting cell proliferation. This type of targeted dendrimer showed to be a promising
directed drug delivery system [68].
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Blood-brain barrier membrane can overexpress several types of receptors and proteins responsible
for transportation to the brain, as for example sialic acid receptors and glucose transporters. Patel and
coworkers compared the efficiency in drug targeting of PPI dendrimers functionalized with sialic acid
(SPPI), glucosamine (GPPI) and concanavalin A (CPPI). Paclitaxel was entrapped in dendrimer cavities.
All derivatives exhibited lower hemolytic property than free drug. Moreover, the dendrimers presented
a better accumulation in the brain than in other organs, such as liver and kidney when compared to
free paclitaxel and PPI. For targeting potential, SPPI demonstrated the best results, implying the sialic
acid receptor as a good strategy for drug delivery in central nervous system [69].

1.4. Monoclonal Antibodies as Targeting Group

Monoclonal antibodies developed against specific antigens may aid to target drug delivery to
the site of action [70]. However, few examples have been found, considering the profile of these
compounds, which could lead to many unwanted reactions in the body.

Prostate specific membrane antigen J591 antibody was conjugated to the G5 PAMAM dendrimer,
being capable of selectively bind to the prostate specific membrane antigen receptor [70].

Interleukins have been employed in dendrimers functionalization for drug delivery of some
diseases such as cancer, which can overexpress receptors for these molecules. Interleukin-6 (IL-6)
is a crucial cytokine, which acts in angiogenesis, owing to fast tumor neovascularization. IL-6 was
coupled to PAMAM dendrimer and the internalization and competitive assays indicated its fast and
efficient cellular uptake. This molecule presented high affinity for HER, which resulted in significant
internalization of IL-6-G5 PAMAM dendrimers into HeLa cells via receptor-mediated endocytosis.
The same research group compared IL-6 and RGD functionalized PAMAM dendrimer to target HeLa
cells. DOX was encapsulated inside the dendrimer and, then, its cellular uptake and in vitro toxicity
were compared to free drug. Both functionalized dendrimers were less toxic than free DOX due to
slow release of the drug from dendrimer, demonstrating better cellular uptake when compared to free
drug [1].

1.5. Other Targeting Groups

Besides those groups described before, whose action has been evidenced by several studies, many
different types of targeting group were found as potentially interesting with the purpose of selectively
directing the drug action to specific cells/tissues.

Biotin is a micronutrient, which participates in fatty acid biosynthesis, gluconeogenesis, cell
growth and catabolism. In addition, biotin level is rapidly increased in tumor cells, proving to
be an interesting approach [1,71]. PAMAM dendrimers were functionalized with RGD peptide
and then, biotinylated [110]. In another study, biotinylated G4 and G5 PAMAM were planned to
overcome the blood-brain barrier. The uptake and selectivity in HeLa cells were more appropriate for
biotinylated dendrimers and more selective for cancer cells, without toxicity [111]. Sodium-dependent
multivitamin transporter has been indicated as responsible for biotin uptake. All findings imply that
this is an interesting approach to improve therapeutic efficacy and decrease side effects of anticancer
agents [1,110].

Other potential targeting group is the follicle stimulating hormone receptor, which is overexpressed
by ovarian cancer cells. Taking this into account, Modi and colleagues [72] designed G5 PAMAM
labeled with fluorescein and follicle stimulating hormone 33, since it presents high affinity to follicle
stimulating hormone receptor. The dendrimer showed better cellular uptake profile than labeled
dendrimer, mainly by respective receptors.

Wen and colleagues [112] designed a nanoparticle conjugated with dendrons to deliver a
photosensitizer. Natural nanoparticle Cowpea mosaic virus (CPMV) was used due to its target property.
Additionally, CPMV has been shown to be selective for subpopulation of macrophages in cancer cells.
The photosensitizer can react under light, resulting in reactive oxygen species, killing cells. Porphyrin
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is widely employed as photosensitizer, because it leads to electrostatic interaction with CPMV-dendron
surface. The study succeeded in deliver the photosensitizer in the proper site.

It is important to consider the tendency of designing theranostic agents, that aggregates drugs
and photosensitizers [113].

Jin and colleagues [73] synthesized a PAMAM dendrimer derivative, poly(2-(N,N-
diethylamino)ethyl methacrylate), with methoxy-poly(ethylene glycol)-poly(amido amine) loaded
with 5-FU (Figure 11). The poly(2-(N,N-diethylamino)ethyl methacrylate derivative is a nanostructure
sensitive to pH, from which 5-FU release is favored in the tumor acidic medium. This does not
happen in the blood, due to the neutral/basic environmental characteristics. According to the authors,
this system is a promising nanocarrier because it provides great drug encapsulation, high targeting,
and fast drug release in tumor.
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methoxy-poly(ethylene glycol)-poly(amido amine) for 5-FU encapsulation [73].

Polyethylene glycol (PEG) has been widely used in dendrimers with many purposes, as,
for example, to confer biocompatibility through cytotoxicity and hemolytic toxicity reduction,
improvement in water solubility, decreased particle aggregation and opsonization by the
reticuloendothelial system and tumor accumulation increase by EPR as well [41]. The examples
that follow present some of those applications.

Acid-sensitive bindings between drugs and PEGylated PAMAM dendrimers allowed drug release
from polymer-drugs into the acidic cellular environment after tumor cell internalization, preserving
the stable compounds in the bloodstream [114]. The first acid-sensitive bond polymer proposal
was the cis-aconityl linkage in G4 PEGylated dendrimers, developed to obtain a selective drug
delivery system for tumor action containing DOX. Therefore, the cis-aconityl acid-sensitive binding was
introduced between DOX and the polymer carrier, resulting in PPCD (PEG-PAMAM-cis-aconityl-DOX
conjugates). In addition, the researchers synthesized the acid-insensitive derivative composed by
succinic bond, producing PPSD (PEG-PAMAM-succinic-DOX conjugates) for comparison. PPCD
increased cytotoxicity in murine model of B16 melanoma cells, due to drug release in lysosomes after
cellular uptake. PPSD derivatives released DOX in any pH condition showing low cytotoxicity in
tumor cells. This evidenced the importance of acid-sensitive bindings as a targeted group.

Super stealth liposomes with PEG-dendron-phospholipid using a β-glutamic acid dendron as an
anchor to PEG attachment and several distearoyl phosphoethanolamine lipids were synthesized [74].
The liposomal composition demonstrated higher stability, lower toxicity, greater intracellular uptake,
prolonged half-life time, improved biodistribution profile and enhanced DOX anticancer potency.

In the same way, a micellar drug delivery system was designed, containing dendrons conjugated
to a hydrophilic PEG linear polymer of well-defined structure. Their biodegradable polyester dendrons
were coupled to an antiangiogenic drug, combretastatin-A4, aiming to obtain proper sized flower-like
hydrosoluble micelles for passive tumor targeting, enhancing the permeability and retention. The drug
release from this conjugate occurred in acidic conditions, which is an interesting profile. In assays to
evaluate the antiangiogenic efficacy, this dendrimer reduced the cell viability and uptake, showing
efficient inhibition [75].
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Another approach was based on the difference between physiological and tumor pH to lead
a smart drug delivery system. In this context, Qi and coworkers [76] designed a dendrimer
with carboxymethyl chitosan (CMCS) as shell and PAMAM as core, responsible for interacting
via electrostatic adsorption. There was high drug release due to the positive charge in PAMAM
surface masked by negative CMCS charge, decreasing dendrimer clearance and toxicity. Moreover,
when dendrimer reached tumor area, CMCS became positively charged, leaving PAMAM
surface, owing to pH difference. Through this approach, DOX was encapsulated in PAMAM
(PAMAM-DOX-CMCS) and its rate release was correlated with the conjugate (Figure 12) increase,
when pH dropped from 7.4 to 6.5 in 48 h, while free DOX was insensitive to pH. PAMAM-DOX-CMCS
exhibited greater uptake than free DOX, indicating that CMCS was releasing from PAMAM surface at
pH 6.5 and afterwards, through positive surface charge.
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In previous studies, Li and coworkers [51] showed that supramolecular hybrid dendrimers exhibit
50,000 times more gene transfection efficiency to tumor cells than single dendrons. Taking this into
account, they synthesized a supramolecular dendritic system composed of PLL and poly(L-leucine),
which interacts through non-covalent bonds, leading to an amphiphilic self-assembly structure,
mimicking a virus capsid. DOX was encapsulated in hydrophobic supramolecular dendritic pocket
(D-CLNs) and at in vitro test, this molecular architecture disassembled, and drug was released.

Another way to target tumor tissue is through pH-sensitive compounds, using a group that links
to the dendrimer via pH-sensitive bond, as, for instance, the hydrazone bond [115] or conjugating the
respective drug in a G5 PAMAM with succinimydilpropylamine on the dendrimer surface [116]. They
showed an interesting profile of selectively deliver DOX. In both cases, DOX release was dependent of
pH, as proposed.

Also using a pH-sensitive hydrazine bond, a novel amphiphilic fluorinated peptide dendron
functionalized with dextran was successfully synthetized. This conjugate has demonstrated
self-assembly ability in carrying hydrophobic drugs. In in vitro assays, this dendron showed an
excellent biocompatibility for normal and tumor cells, exhibiting a stimulus-induced self-disassembled
endo/lysosome pH-responsive, providing their disassembly, and controlling encapsulated DOX [77].

Heparin, an inhibitor of serine proteases in blood coagulation, is also used in antitumor
chemotherapy due to its ability of inhibiting tumor growth and metastasis. Based on those properties



Pharmaceutics 2018, 10, 219 18 of 27

a novel drug delivery system to carry DOX containing heparin dendronized was designed and
synthesized via click chemistry. An acid-labile hydrazone bond was employed for breast tumor
therapy. Dendronized heparin-DOX conjugate was not toxic, comparatively to free DOX in histological
analysis. Additionally, the dendronized derivative demonstrated high antitumor activity on breast
cancer cell line, as well as antiangiogenics effects and apoptosis induction. According to the She and
colleagues work [78], this conjugate may not only be a background for safe nanoparticles design but
also an efficient carrier for drug delivery.

An alternative to PAMAM dendrimers for drug delivery via encapsulation was developed using
other polymeric structures. Although PAMAM dendrimers with antimalarial drugs exhibited specific
binding, their IC50 were modest against Plasmodium-infected cells. Taking this into account, a Janus
dendrimer (with two different generations GA and GB—Figure 13 and hybrid dendritic-linear-dendritic
block copolymers (with two different generations GC and GD—Figure 13) were synthesized, with three
encapsulated drugs (chloroquine-CQ, primaquine-PQ and rhodamine B) against Plasmodium falciparum.
In vitro tests showed better efficacy of the conjugate when compared with free CQ. However, in vivo
assays have shown no drug efficacy improvement when GD-CQ is compared with CQ. In both cases,
the mice survival was slightly better for GD-CQ and GC-PQ dendrimers (Figure 13) [79].

Dendrimers composed of fluocinolone acetonide were designed to treat neuroinflammation in
the outer retina, when coupled to G4-OH PAMAM through the spacer glutaric acid. Conjugated
dendrimer labeled to fluorescein isothiocyanate (label to cell uptake visualization) presented higher
uptake than free-fluorescein isothiocyanate according to Royal College of Surgeons retinal degeneration
rat models. Iezzi and coworkers [80] used dendrimers conjugated to Cy5.5-mono-NHS ester (another
labeled non-susceptible to tissue autofluorescence) to explain that effect and observed the same profile
mentioned above, in which, after 35 days of administration, the dendrimers were still present in
target cells. Additionally, the dendrimer containing fluocinolone acetonide showed better performance
than the free drug in attenuation neuroinflammation and neuroprotection. According to the authors,
dendrimer cell uptake was enhanced, increasing the drug residence time, delivering specific retinal
area, and reducing side effects due to PAMAM dendrimers intrinsic ability to their localization within
activated microglia.
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2. Concluding Remarks

Selectivity has been the goal of chemotherapeutic agents, mainly for cancer. That is why most
papers herein presented are related to tumor targeting. It is interesting that most of the examples
are referred to doxorubicin (DOX) conjugation, probably because it has been used for many kinds of
tumors and its severe side effects not rarely compromise its therapeutic application. Besides DOX,
methotrexate (MTX) is the prototype in the design of selective conjugate compounds. On the other
hand, dendrons and dendrimers, as well, are interesting kind of polymers whose properties favor their
use either to attach covalently or to encapsulate bioactive compounds giving prodrugs and delivery
forms of drugs, respectively. Those carriers are very flexible, in terms of positions they furnish for
bonding different molecules, including target groups. Using dendrons and dendrimers it is possible to
achieve selective delivery, provide the specific and proper target group is chosen.

Different kinds of targeting groups have been used and this is possible due to the advance
in the study of molecular biology and genetics, which allows the discovery of cell receptors and
selective mechanisms of drug release. Obtaining selective dendrimer conjugate drug compounds has
been a complex goal, but the interesting properties the matrix imparts in terms of toxicity, solubility,
bioavailability, and effectiveness, among others, compensates for the complexity mentioned before.

Although cancer has shown to be one of the main cases of death worldwide, it is important
to think about other classes of diseases, as the neglected ones. This review shows few examples
of application of the approach of targeting drugs by means of dendrons or dendrimers for those
diseases. The reason probably is the low interest the research on this kind of drugs arouses in general,
which leads to the thinking that the complexity, besides the costs, do not compensate the low revenues
for pharmaceutical industries.

Our team has been using dendrons and dendrimers and some selective groups based on specific
cell receptors to obtain target drugs (data not published). We have been working on neglected diseases
and mainly for Chagas disease, leishmaniasis and malaria our goal is to obtain dendrons and/or
dendrimers through prodrug design using drugs and/or bioactive compounds. We intend to stimulate
research groups working either on target dendrons or dendrimers to apply their ideas to obtain specific
conjugate compounds for neglected diseases. It is worth noting that the 17 diseases that the World
Health Organization (WHO) considers neglected ones are responsible for 1 billion people infected
worldwide [117].
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Abbreviations

2-ME 2-methoxyestradiol
5-FU 5-fluorouracil
ASGPR Asialoglycoprotein receptors
Aspn Poly aspartic acid
CD β-cyclodextrin
CMCS Carboxymethyl chitosan
CPMV Cowpea mosaic virus
CPPI PPI dendrimer conjugated with concanavalin A
CQ Chloroquine
CLNS Supramolecular dendritic system composed of PLL and poly(L-leucine)
DOTA 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid
DOX Doxorubicin
EPR Enhanced permeability and retention effect
FA Folic acid
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FKE Tripeptide Phe-Lys-Glu
Gd III Gadolinium
GFLG Tetrapeptide Gly Phe-Leu-Gly
HAP Hydroxyapatite
HER Human epidermal growth factor receptor
IL-6 Interleukin-6
MPPI Mannosylated-PPI
MTX Methotrexate
NAcGal N-acetylgalactosamine
PAMAM Poly(amidoamine) dendrimer
PEG Polyethylene glycol
PEHAM Poly(etherhydroxylamine) dendrimer
PLL Poly(lysine) dendrimer
PLLD Poly(L-lysine) branch
PPCD PEG-PAMAM-cis-aconityl-DOX conjugates
PPI Poly(propylenimine) dendrimer
PPSD PEG-PAMAM-succinic-DOX conjugates
PQ Primaquine
PVGLIG Hexa-peptide Pro-Val-Gly Leu-Ile-Gly
RGD Tripeptide Arg-Gly Asp
SP Substance P
SPION Superparamagnetic iron oxide nanoparticle core
SPPI PPI dendrimer functionalized with sialic acid
Tf Transferrin
TPPI T-Boc-glycine-PPI
UA Ursolic acid
WGA Wheat germ agglutinin
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