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Simultaneous profiling of multiomic modalities within a single cell
is a grand challenge for single-cell biology. While there have been
impressive technical innovations demonstrating feasibility—for
example, generating paired measurements of single-cell transcrip-
tome (single-cell RNA sequencing [scRNA-seq]) and chromatin ac-
cessibility (single-cell assay for transposase-accessible chromatin
using sequencing [scATAC-seq])—widespread application of joint
profiling is challenging due to its experimental complexity, noise,
and cost. Here, we introduce BABEL, a deep learning method that
translates between the transcriptome and chromatin profiles of a
single cell. Leveraging an interoperable neural network model,
BABEL can predict single-cell expression directly from a cell’s
scATAC-seq and vice versa after training on relevant data. This
makes it possible to computationally synthesize paired multiomic
measurements when only one modality is experimentally avail-
able. Across several paired single-cell ATAC and gene expression
datasets in human and mouse, we validate that BABEL accurately
translates between these modalities for individual cells. BABEL
also generalizes well to cell types within new biological contexts
not seen during training. Starting from scATAC-seq of patient-
derived basal cell carcinoma (BCC), BABEL generated single-cell
expression that enabled fine-grained classification of complex cell
states, despite having never seen BCC data. These predictions are
comparable to analyses of experimental BCC scRNA-seq data for
diverse cell types related to BABEL’s training data. We further
show that BABEL can incorporate additional single-cell data mo-
dalities, such as protein epitope profiling, thus enabling transla-
tion across chromatin, RNA, and protein. BABEL offers a powerful
approach for data exploration and hypothesis generation.
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Single-cell technologies have made it possible to precisely
characterize cellular state using diverse modalities ranging

from gene expression and chromatin accessibility, to proteomics
and methylation (Fig. 1A) (1). Such fine-grained measurements
provide much more information beyond the average bulk state of
a tissue sample and have enabled novel insights into complex
biological systems. However, a notable limitation of standard
single-cell technologies is that they only capture one measure-
ment modality (e.g., only RNA sequencing [RNA-seq] or only
chromatin accessibility [assay for transposase-accessible chro-
matin using sequencing, ATAC-seq]) for each cell. This loses
critical information about how different layers of genomic reg-
ulation interact within individual cells.
More recently, multiomic single-cell methods jointly profiling

multiple modalities within the same cell have emerged (1, 2). For
example, SNARE-seq (single-nucleus chromatin accessibility
and mRNA expression sequencing) and sci-CAR (single-cell
combinatorial indexing profiling chromatin accessibility and
mRNA) combine chromatin accessibility with RNA gene ex-
pression measurements (3, 4), CITE-seq (cellular indexing of
transcriptomes and epitopes by sequencing) enables joint quan-
tification of RNA expression and protein markers (5), and Pi-

ATAC (protein-indexed assay of transposase accessible chro-
matin) and ASAP-seq (ATAC with select antigen profiling)
merge epigenomic and protein measurements (6, 7). These
methods’ paired measurements have helped researchers gain a
more comprehensive understanding of how different cellular
mechanisms interact. As an example, coassays of accessibility
and expression specifically identified distal cis-regulatory ele-
ments for genes that do not exhibit clear cell type-specific pro-
moter accessibility (4).
However, these joint single-cell methods face challenges of

their own. Single-cell multiomics methods often require addi-
tional precautions when preserving or isolating cells in order to
effectively capture a diverse range of molecules, with RNA often
being the most difficult to handle and store (8). Imperfections in
this step can lead to increased noise and drop-out in the resulting
data. As noise and sparsity are already substantial hurdles in ana-
lyzing single-cell data (9), this can make extracting reliable insights
from multiomic single-cell data particularly challenging. Beyond
technical feasibility, the increased costs of these multiomic experi-
ments can also limit the scale at which they can be performed (2).
With these challenges, it may not always be possible or practical to
experimentally jointly profile single cells, which motivates the
question of how we can extract the most information from samples
where only one modality can be captured.
We develop BABEL, a deep learning algorithm that compu-

tationally generates, from a single measured modality, other
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multiomic modalities in the same single cell. This enables re-
searchers to perform downstream multiomic analysis at single-
cell resolution as if joint profiling data had been collected. This
approach is analogous to translating sentences between lan-
guages with different grammatical and syntactic structures. BA-
BEL can accurately infer transcriptome-wide single-cell RNA
profiles from genome-wide single-cell ATAC profiles, and vice
versa (Fig. 1B). We focus on RNA and ATAC in this work,
because experimental methods for jointly profiling these mo-
dalities are more advanced and have the most data available.
After training BABEL on cells with jointly profiled chromatin

accessibility and transcriptomic measurements, we first demon-
strate that BABEL performs well on test cell types and tissues
distinct from the cell population used for training. We then show
that BABEL can be applied to single-modality single-cell ex-
periments, inferring high-quality cross-domain data that can be
analyzed to produce similar conclusions compared to carrying
out an entirely separate experiment. We then successfully apply
BABEL to analyzing patient basal cell carcinoma (BCC) samples
profiled using single-cell ATAC sequencing (scATAC-seq) (10).
Although this is particularly challenging due to the heterogeneity
of tumor microenvironments, BABEL’s predictions are concor-
dant with previous findings and help uncover additional infor-
mation compared to previous methods. Throughout our
analyses, we find that BABEL’s predictions are consistently
driven by individual cell signatures, rather than bulk approxi-
mations. Finally, as a proof-of-concept demonstrating BABEL’s
versatility and extensibility, we show that BABEL can predict
single-cell epitope profiles from scATAC-seq, enabling matched
single-cell chromatin, RNA, and epitope analysis even though
such data are not yet experimentally available.
Several prior works have applied deep learning methods to

single-cell data. Many of these focus on developing models to
denoise single-cell RNA-seq (scRNA-seq) data. Examples of

these methods include DeepCountAutoencoder, which trains an
autoencoder for denoising scRNA-seq data (11), and SAUCIE,
which uses a similar autoencoder along with clever regularization
to denoise, batch-correct, and cluster scRNA-seq data (12).
Other approaches, such as scVI, apply generative modeling to
develop models that facilitate downstream analyses like batch
correction and differential expression (13). scATAC-seq data has
been modeled with machine learning approaches as well, with
works like SCALE using autoencoders to learn latent represen-
tations conducive to clustering (14). Deep learning methods for
multiomic data have also been studied, but these prior works
generally did not have access to large-scale paired measure-
ments, which motivated complex techniques to align latent rep-
resentations (15–18) or constrained these works to bulk
measurements (19). More recently, new experimental techniques
for generating paired single-cell data have enabled more
streamlined multimodal modeling of protein epitopes and tran-
scriptomics (20) as well as of physiological profiles and tran-
scriptomics (21). BABEL builds off these prior works while
introducing strategies for more efficient model architectures and
latent space learning. BABEL is a method that accurately and
robustly translates between gene expression and chromatin ac-
cessibility profiles for individual cells.
BABEL addresses a different problem from typical multiomic

data integration. Prior methods such as iCluster (22), Seurat
(23), ArchR (24), MAESTRO (25), MATCHER (26), and var-
ious matrix factorization approaches (27–29) excel at data inte-
gration, where they take two (typically unpaired) data modalities
that have already been measured and compute joint clustering,
identify cell-to-cell mappings, and infer cross-domain interac-
tions. BABEL’s goal is to build a generalizable model that takes
only one of these modalities and infers the other, thus enabling
multiomic analysis. BABEL provides a powerful tool for hy-
pothesis generation and exploratory analysis, especially in
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Fig. 1. Overview of cross-modality single-cell translation with BABEL. (A) Advances in single-cell sequencing technology have enabled a myriad of single-cell
modalities, ranging from gene expression to proteomics, as well as technologies jointly profiling combinations thereof. However, multimodal profiling also
presents challenges such as increased complexity, noise, and cost. (B) We investigate an alternative approach to single-cell multiomic profiling by using
machine learning to translate between single-cell omics measurements, thus enabling the inference of unmeasured modalities. For our study, we focus on
RNA expression and ATAC chromatin accessibility. C shows BABEL’s modeling strategy: Two encoders project ATAC (orange) and RNA (blue) into a shared
latent space (gray), and two decoders take points in the latent space and infer their corresponding ATAC or RNA profiles. These encoders and decoders are
interoperable by design, projecting into and out of the same latent representation. The RNA networks use a series of fully connected layers (blue schematic),
while the ATAC networks break into subconnections that limit the model to learning predominantly intrachromosomal weights (orange schematic), which
greatly reduces model complexity. D summarizes the four possible combinations of the encoders and decoders in our network and shows the joint loss
function (colors indicate data modality). We train the model by passing each paired ATAC/gene expression measurement through every combination of
encoders and decoders, and our loss L ensures that all four subnetworks work together to produce accurate translations.
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instances where the original sample might no longer be available,
cannot be reacquired, or does not contain all necessary mole-
cules, as is often the case for clinical or archival samples (30).

Results
BABEL Architecture and Design. BABEL consists of four modular
neural networks as subcomponents (Fig. 1C). Two encoder
networks are trained to project either RNA or ATAC profiles
into a single, shared 16-dimensional latent representation. Sim-
ilarly, two decoder neural networks are trained to take points in
this shared latent representation and infer their corresponding
RNA or ATAC profiles. This shared latent space simultaneously
summarizes the epigenetic and transcriptomic profiles of a cell
and can be thought of as an abstract, integrated representation
of cellular state. This latent space also serves as an intentionally
low-dimensional “information bottleneck” to encourage the
model to capture major cellular variation, rather than potentially
spurious deviations (SI Appendix, Supplementary Note and Table
S1). Our goal is then to learn encoder models that project single-
cell profiles into this cellular state latent space, along with de-
coder models that can infer observed phenotypes from this same
latent cellular representation.
While a standard autoencoder maps one data modality onto

itself (e.g., scATAC-seq to scATAC-seq), BABEL maps across
multiple modalities (e.g., it uses the same ATAC encoder to map
ATAC to ATAC and ATAC to RNA). This enables the model to
be more flexible and efficient. The networks responsible for
RNA encoding and decoding consist of fully connected layers
that project a continuous, transcriptome-wide expression vector
to and from the latent cellular representation (Fig. 1C). The
networks responsible for encoding and decoding a binarized
genome-wide ATAC chromatin accessibility signal are also
composed of fully connected layers, but we leverage the insight
that most chromatin accessibility interactions occur at an intra-
chromosomal level (31) to prune the majority of interchromo-
somal connections (Fig. 1C). This approach substantially reduces
the parameter space and helps the model avoid spurious corre-
lations (Methods and SI Appendix, Supplementary Note). We
binarize all ATAC measurements throughout this work—any
peak with nonzero signal is set to “1” and is otherwise “0.”
BABEL then predicts the probability that a peak is active
(i.e., 1). This approach for learning on scATAC-seq data has
been used in prior scATAC-seq models (14) and improves the
quality of BABEL’s ATAC predictions.
BABEL is trained using a loss function that requires both

encoders to be interoperable with either decoder. This is
expressed by enumerating all four possible compositions of our
two encoders and two decoders and simultaneously training all
four of these “paths” through our model to produce correct
outputs using four corresponding loss terms (Fig. 1D). Under
this formulation, the ATAC encoder’s latent output must be
consumable by both the ATAC decoder and RNA decoder while
producing correct outputs for both modalities, and the same goes
for RNA encoder. Similarly, the ATAC and RNA decoders must
understand the latent representation generated by either ATAC
or RNA encoder. This interoperability constraint leverages
paired data to learn a single, unified latent space that embeds
multimodal cell state without explicit latent space alignment,
while improving BABEL’s ability to generalize to unseen cell
types (SI Appendix, Supplementary Notes and Table S2). To
evaluate the correctness of inferred RNA values (whether these
inferences were generated from an ATAC or RNA input), we
use a negative binomial (NB) loss, which has seen success in
prior works imputing and denoising single-cell expression (11,
13). Notably, this loss encourages BABEL to estimate the
denoised single-cell expression, rather than the noisy experi-
mental counts (11). To evaluate the correctness of inferred
ATAC values, we use a binary cross entropy (BCE) loss—a

natural cost function for binary predictions used in prior deep
learning models for scATAC-seq data (14). After training, BA-
BEL can translate between a continuous vector representing an
individual cell’s (denoised) transcriptome-wide gene expression
spanning 34,861 genes, and a probability vector describing
genome-wide ATAC accessibility profiles spanning 223,897 high-
resolution peaks with mean and median widths of 796 and 573
base pairs.

BABEL Performs Cross-Domain Translation with High Accuracy. We
train BABEL using single-cell multiomic data jointly profiling
ATAC chromatin accessibility and RNA gene expression gen-
erated on 10x Genomics’ multiomic platform, which starts from
single nuclei (Methods). These data span cells collected from
several human primary cell types and transformed cell lines:
peripheral blood mononuclear cells (PBMCs), colon adenocar-
cinoma COLO-320DM (DM) cells, colorectal adenocarcinoma
COLO-320HSR (HSR) cells, and lymphoblastoid GM12878
cells. We pool and cluster the PBMC, DM, and HSR cells to-
gether, reserving one cluster for validation (n = 2,881 cells) and
one cluster for test (n = 1,979 cells), with the remaining cells (n =
28,408) being used for training (Fig. 2A and SI Appendix, Table
S3). Although BABEL itself is agnostic of cluster identity,
cluster-based data splits reduce similarity between data splits,
challenging the model to generalize to new cell populations.
Jointly profiled GM12878 cells are held out from any training
purposes, serving as a measure of generalization even more
challenging than the test cluster.
BABEL achieves strong performance for cross-domain infer-

ence on all test data. Inferring RNA expression from ATAC
accessibility, it achieves a Pearson correlation of 0.62 and a
Spearman’s correlation of 0.35 (Fig. 2 B and C). Inferring ATAC
from RNA on this same test cluster, BABEL achieves an area
under the receiver operating characteristic (AUROC) of 0.92.
We use different metrics for evaluating ATAC and RNA pre-
dictions due to the binary versus continuous nature of these
modalities. BABEL’s performance is consistent across cluster-
based cross-validation as well, exhibiting ATAC to RNA Pear-
son’s correlations ranging from 0.62 to 0.82 with a median of
0.80, and RNA to ATAC AUROCs ranging from 0.87 to 0.92
with a median of 0.87 (Fig. 2B and SI Appendix, Table S3).
We evaluated k-nearest-neighbor (KNN) models to establish

performance baselines for these translation tasks, using the same
cluster-based data splits. A KNN model takes each query point,
identifies the (k = 10) most similar cells in the training set, and
computes an average of those cells (see Methods for more de-
tails). KNN achieves a Pearson correlation of 0.27 when inferring
RNA from ATAC on the aforementioned test set, and an
AUROC of 0.84 when inferring ATAC from RNA. BABEL
significantly outperforms both of these baselines.
To quantify BABEL’s ability to generalize to a different cell

type, we applied BABEL trained on PBMC, DM, and HSR data
to paired single-cell ATAC/gene expression data profiling
GM12878, without any tuning or modification. This constitutes a
challenging test since the GM12878 lymphoblastoid cell line ex-
hibits substantial differences from the three cell types used for
training. BABEL generalizes well to the GM12878 external eval-
uation set with an ATAC to RNA Pearson correlation of 0.59,
Spearman correlation of 0.38, and an RNA to ATAC AUROC of
0.65 (Fig. 2 B and D). BABEL’s performance on GM12878 is also
robust across cross-validation, where the training and validation
clusters shift, and the five resultant models are evaluated on the
same GM12878 evaluation set (Fig. 2B and SI Appendix, Table S4).
Performance is similar for intradomain translations (i.e., inferring
RNA output from RNA input and ATAC from ATAC input),
which further validates BABEL’s subcomponent networks (SI Ap-
pendix, Tables S3 and S4).

Wu et al. PNAS | 3 of 11
BABEL enables cross-modality translation between multiomic profiles at single-cell
resolution

https://doi.org/10.1073/pnas.2023070118

G
EN

ET
IC
S

IN
A
U
G
U
RA

L
A
RT

IC
LE

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2023070118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2023070118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2023070118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2023070118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2023070118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2023070118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2023070118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2023070118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2023070118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2023070118/-/DCSupplemental
https://doi.org/10.1073/pnas.2023070118


Since one key objective of BABEL is to infer RNA gene ex-
pression from ATAC accessibility, existing tools that infer gene
activity scores from ATAC data offer natural benchmarks. Like
BABEL, these tools attempt to estimate the gene expression
corresponding to an ATAC profile, drawing from observations
and patterns present in prior data. Critically, while BABEL uses
machine learning techniques to train a model, these existing
tools use expert knowledge to hand-craft formulas based on prior
observations that accessibility near a gene correlates with its
expression. We specifically evaluated the approaches imple-
mented by state-of-the-art scATAC-seq analysis suites ArchR
(24) and MAESTRO (25). Evaluating the ArchR and MAE-
STRO gene activity scores on the GM12878 paired data yields
Pearson’s correlations of 0.15 and 0.19, respectively, compared
to BABEL’s 0.59 (Fig. 2 B and E). Since GM12878 was never
used for training BABEL, nor was it the singular benchmark for
developing gene activity scores, this represents a fair comparison
where all methods are given similar input and are asked to
generate similar outputs. For benchmarking the opposite RNA
to ATAC translation, we are not aware of any prior methods that
perform single-cell prediction. BIRD is a recently developed
relevant method, although it is trained to make cluster-
aggregated predictions of ATAC signals instead (32, 33), and
consequently may be less flexible when applied to cell types it has
not seen before. BABEL compares favorably to BIRD as well (SI
Appendix, Fig. S1).
We additionally investigated how BABEL could perform on

nonhuman data. We trained a separate version of BABEL on
paired single-cell ATAC/gene expression data from the adult
mouse cerebral cortex, generated via the SNARE-seq joint
profiling protocol, which like the 10x multiomic data, profiles
individual nuclei (3). On the held-out test cluster, BABEL achieves
an ATAC to RNA Pearson correlation of 0.55, and an RNA to

ATAC AUROC of 0.80 (SI Appendix, Fig. S2). As a second,
independent mouse experiment, we trained BABEL on paired
single-cell ATAC/gene expression data profiling mouse skin,
generated via the SHARE-seq protocol (34). Unlike previous
datasets, this SHARE-seq dataset is generated from single cells,
rather than nuclei. On the held-out test cluster, BABEL exhibits an
ATAC to RNA Pearson correlation of 0.53, and an RNA to ATAC
AUROC of 0.80 (SI Appendix, Fig. S3). All of these values are
similar to those we observed on the human dataset. Together, these
results demonstrate that BABEL is applicable across different
species and can be successfully trained using data generated by a
variety of experimental protocols.

BABEL Cross-Modality Inference Captures Empirically Validated Cell
States. It is especially interesting to apply BABEL in settings
where we do not have paired measurements, but where BABEL
has been trained on reasonably similar cell types. This can enable
exploratory analyses and hypothesis generation on new data via
computationally imputed paired measurements. As a case study
for this application, we reconstruct expression profiles for a set
of healthy PBMC cells profiled using scATAC-seq. These un-
paired data were generated using a different experimental pro-
tocol than was used to generate BABEL’s paired training data,
and thus exhibit markedly different noise patterns that we do not
explicitly adjust for (SI Appendix, Fig. S4). We use the pretrained
BABEL to impute transcriptome-wide RNA expression signa-
tures for each cell. We then apply standard preprocessing (size
normalization and log-transformation) to BABEL’s inferred
single-cell expression, and visualize the cells using the uniform
manifold approximation and projection (UMAP) algorithm (35,
36) applied to their imputed expression signatures. We color
each cell by its original ATAC-based cell type (SI Appendix, Fig.

PBMC (n=11,842)
DM (n=9,539)

HSR (n=11,887)
GM12878 (n=7,361)

Training Data

Within cell type

test cluster

External cell type

(GM12878) test data

BA

C D E

Fig. 2. Summary of train and test data, and BABEL’s performance. (A) We train BABEL using PBMC, DM, and HSR cells with jointly profiled ATAC and RNA
measurements. Data from these three are pooled and clustered (“Training Data” box), with one cluster reserved as a test cluster. Splitting by cluster reduces
similarity between train and test data. Moreover, we exclude a set of jointly profiled GM12878 cells from all training purposes, used only for model evaluation
(“External cell type” box). (B) BABEL’s performance on the test cluster and external GM12878 evaluation set, with cross-validation performance ranges in
brackets (SI Appendix, Tables S3 and S4). To contextualize BABEL’s ATAC to RNA performance, we evaluate comparable gene activity score estimation
methods from ArchR and MAESTRO. (C) Density scatterplot showing the expression of each gene in each cell within the test cluster (x axis represents empirical
expression; y axis represents BABEL’s inferred expression). BABEL exhibits a strong correlation of 0.62 on the test cluster. (D) Similarly shows BABEL’s in-
ferences on the external GM12878 evaluation set. (E) ArchR gene activity scores for these GM12878 cells, which are less accurate than BABEL’s inferences.
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S5A) to visualize how well these are retained in BABEL’s im-
puted RNA profiles (Fig. 3A).
For comparison, we include a parallel clustering and analysis

of empirical single-cell expression in healthy PBMCs (Fig. 3B).
We find many similarities between our imputed visualization and
this empirical visualization. There are three major clusters in
both the imputed and empirical data. One major cluster corre-
sponds to B cells (Fig. 3 A and B, Top), one consists of CD14+/
CD16+ monocytes and dendritic cells (Left), and one primarily
contains CD4, CD8, and natural killer (NK) cells (Bottom Right).
These results suggest that BABEL’s imputed single-cell gene
expression retains much of the empirical global gene expression
patterns and relationships. Further analysis also reveals that this
overall concordance is consistent across variants of BABEL
trained on different cross-validation folds (SI Appendix, Table
S5) and is also recapitulated in BABEL’s latent representation
(SI Appendix, Fig. S5). This consistency suggests that BABEL
can recognize complex relationships between cells in its
input—despite variable noise patterns—and leverages these bi-
ological relationships when generating latent representations
and predicting transcriptomic profiles. This property helps BA-
BEL generalize to more contexts (SI Appendix, Supplementary

Note) and suggests that BABEL’s latent representation could be
a potentially interesting basis for downstream analyses like
clustering or lineage tracing.
In addition to examining cell cluster concordance, we evaluate

how well BABEL imputes expression of well-known marker
genes for specific cell types. CD14 is a canonical marker for
CD14+ monocytes. Coloring each cell in BABEL’s expression
UMAP by its imputed CD14 expression, we find that CD14 ex-
pression coincides very well with CD14+ monocyte cells (as
identified via standard scATAC-seq analysis methods; Fig. 3C,
Left). As expected, experimentally measured CD14 expression
overlaps nearly perfectly with CD14+ cells as well (Fig. 3 C,
Right). Performing a similar comparison for LYZ, another well-
known marker for CD14+ cells, we see that BABEL likewise
reproduces experimentally validated expression distributions
(Fig. 3D). Such concordance extends to other cell types as well.
Examining the expression of GNLY, a marker for NK cells
(Fig. 3E), and MS4A1, which corresponds to B cells (Fig. 3F), we
consistently see that BABEL’s imputed marker gene expression
matches the correct cell types just as the empirically measured
expression does. This shows that BABEL is not just predicting
average expression of genes across all cells regardless of ATAC

C

A B

E

D

F

Fig. 3. BABEL’s ATAC to RNA translation closely matches empirical results on unpaired PBMCs. (A) UMAP visualization of single-cell expression profiles
imputed by BABEL from scATAC-seq, colored by ATAC-derived cell type identities. (B) UMAP visualization and cell types in empirical PBMC scRNA-seq for
comparison. These two plots exhibit highly concordant global structure (i.e., both show three main cell groups) as well as very similar inter-cell type rela-
tionships. C highlights the expression of CD14 (a marker for CD14+ monocytes) within BABEL’s inferred gene expression (Left) and the empirical measure-
ments (Right). In both cases, CD14 expression is highly correlated with CD14+ monocytes, as expected. (D) Similarly illustrates expression of LYZ, which is also a
marker for CD14+ monocytes. E and F highlight expression of GNLY and MS4A1, which are markers for NK and B cells, respectively.
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profile but is performing highly specific expression inference for
individual cells. These results suggest that BABEL can facilitate
downstream cell type analysis by computationally generating
missing data modalities. Although BABEL’s strong performance
here benefits from having seen similar PBMC cells in its training
set (SI Appendix, Supplementary Note and Fig. S6), generalizing
to this external PBMC dataset is nonetheless challenging due to
aforementioned differences in experimental protocols used to
generate the data.
We also performed the opposite study, taking a set of PBMC

cells profiled using unpaired scRNA-seq and inferring their
genome-wide chromatin accessibility signatures. Having previ-
ously explored the performance of BABEL’s RNA to ATAC
predictions, we now assess the usefulness of these predictions by
investigating whether they recover meaningful biological signals.
We focus on a cluster of NK cells (overexpressing GNLY), as
these cells appear to have the most unambiguous transcriptomic
signature. Among BABEL’s accessibility predictions, we identi-
fied the 10 most predictive peaks for these NK cells and deter-
mined the nearest annotated transcribed region for each
resultant peak (see Methods for more details). This highlights
known NK pathways and proposes potential unstudied regula-
tory interactions. BABEL’s predictions implicate a region prox-
imal to CD96, a well-characterized regulator of NK cell function
(37, 38). BABEL’s predictions also highlight LINC01550, a long
noncoding RNA identified as an immune-related oncogenic
biomarker (39), and FOXP1, a transcriptional regulator in T cell
development (40). This case study shows that BABEL can make
reasonable expression-to-accessibility predictions that may be
useful for hypothesis generation.

BABEL Can Generate New Insights for Patient Samples. We next
apply BABEL to scATAC-seq data acquired from BCC tumors
to investigate its application on challenging patient samples
without any additional fine-tuning or training. These samples,
acquired from seven BCC patients, represent malignant, stromal,
and immune cells present within the tumor microenvironment
both before and after anti-programmed cell death protein 1 (PD-
1) immunotherapy, and were profiled using scATAC-seq to
generate chromatin accessibility profiles for 37,818 cells (10).
These cells were originally analyzed using standard scATAC-seq
methods by calculating gene activity scores with Cicero (41) and
using these scores to label cell types and infer lineages.
A superset of these BCC samples has also been studied in a

separate, unpaired experiment using scRNA-seq profiling (42),
which enables evaluation of aggregate concordance metrics.
Specifically, we leverage the intuition that by averaging across all
cells in a single-cell experiment, the resulting per-gene pseudo-
bulk expression values should be comparable across related ex-
periments. We compared pseudobulk RNA expression profiles
derived from BABEL’s inferred single-cell expression against
empirical pseudobulk from the corresponding patients’ tissue-
matched scRNA-seq, and found good agreement (Pearson’s
r = 0.70; Fig. 4A). This concordance also holds when we examine
specific cell types, rather than the global population (SI Appen-
dix, Fig. S7). Furthermore, the mismatch between BABEL pre-
diction and empirical scRNA-seq tended to manifest as
increased predicted expression for genes with low observed ex-
pression, which could have been experimentally underreported
due to drop-outs. For context, we also calculated the pseudobulk
correlation of Cicero’s gene activity scores against the empirical
pseudobulk and observed a weaker correlation of 0.27 (Fig. 4B).
Overall, BABEL’s predicted RNA expression profiles based on
BCC scATAC-seq are robust. More generally, we propose that
aggregate concordance metrics like those described here can
serve as simple checks when applying BABEL to a new sample.
Comparing BABEL’s aggregated predictions to known bulk
signatures and observing a high correlation would indicate that

BABEL is likely making reasonable predictions, whereas low
correlation might suggest BABEL may not generalize well on a
particular sample.
We overlay BABEL’s predicted expression on the ATAC-

based UMAP projection for these cells (Fig. 4C), which consist
of several populations of CD4+ and CD8+ T cells, B cells, NK
cells, malignant tumor cells, among others. We explored whether
BABEL could accurately predict cell type specific expression for
marker genes corresponding to each cell type. CD3E is a marker
gene for T cells, and we see that BABEL recovers this rela-
tionship (Fig. 4 D, Left), much as gene activity scores do
(Fig. 4 D, Right). CD86, a marker for myeloid cells, exhibits high
specificity and concordance with gene activity scores as well
(Fig. 4E). BABEL’s predicted single-cell expression of KLRC1
(killer cell lectin-like receptor C1), a marker for NK cells, is also
highly concordant with both annotated cell types and gene ac-
tivity scores (Fig. 4F). In fact, the distribution of BABEL’s imputed
KLRC1 expression appears to be even more specific to the NK cell
clusters than gene activity scores—Cicero also predicts KLRC1
activity in epigenetically similar cytotoxic CD8+ T cell clusters (43,
44). We observe similar specificity improvements for IFNG, which
encodes the interferon gamma protein and is specifically expressed
in CD8+ activated T cells in scRNA-seq experiments measuring
these BCC samples (42). BABEL’s predicted IFNG expression is
much more localized than the corresponding gene activity scores
(Fig. 4G) and better approximates empirical scRNA-seq. These two
examples highlight concrete cases where BABEL offers clear im-
provements over traditional gene activity scores. However, BABEL
is less accurate if the cell type corresponding to a marker gene is not
present in its training data. For example, KRT14 is a prominent
marker for malignant BCC cells, but since there are no basal epi-
thelial cells in BABEL’s training data, BABEL predicts a weak
signal for KRT14 (Fig. 4H).
BABEL can also help develop more nuanced understandings

for certain cell types in this study. The original scATAC-seq BCC
study identified a set of T follicular helper (Tfh) cells that exhibited
striking epigenomic similarity to exhausted CD8+ T cells (TEx),
suggesting that Tfh and TEx differentiation may be driven by a
shared regulatory program (10). Using BABEL’s predictions, we
find that this Tfh cell cluster may also overexpress common im-
munosuppressive genes such as CTLA4 (Fig. 4I), PAK2, and FAS
(45–47). While CTLA4 is also overexpressed in Tfh based on gene
activity scores, PAK2 and FAS gene activity scores show weak to no
overexpression, despite all three of these genes being overexpressed in
Tfh cells in the tissue-matched scRNA-seq study (SI Appendix, Fig.
S8). Here, BABEL’s ATAC-based inferences help recover an addi-
tional parallel between TEx and Tfh cells that is confirmed by scRNA-
seq, whereby these cell types not only share epigenetic similarity, but
are also similar in their overexpression of immunosuppressive factors.

BABEL Can Be Extended with Additional Data Modalities. We finally
demonstrate that BABEL can be easily extended to predict ad-
ditional data modalities, such as protein epitope profiles. We
trained an auxiliary protein epitope decoder network using
33,287 jointly profiled RNA and protein epitope measurements
of human bone marrow cells, profiled using CITE-seq (23). This
protein decoder network leverages BABEL’s pretrained latent
representation to infer protein epitope profiles (see Methods for
more details). The resulting protein decoder network can accu-
rately impute epitope profiles from expression profiles on the
test cluster and on novel PBMC cells (SI Appendix, Fig. S9 A and
B). As a proof-of-concept, we show that BABEL’s interoperable
structure also enables us to generate epitope profiles of a cell
from its scATAC-seq profile (SI Appendix, Fig. S9 C–E). BA-
BEL’s ability to make these predictions without explicitly train-
ing the ATAC-protein modality pair further illustrates the
potential power and versatility of its computational cross-
modality translation approach. As more single-cell modalities
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become available, BABEL can flexibly incorporate these data
and link increasingly diverse layers of molecular information,
even across modalities yet to be jointly profiled.

Discussion
BABEL learns a set of neural networks that project single-cell
multiomic modalities into a single shared latent representation
capturing cellular state, and subsequently uses that latent rep-
resentation to infer observable genome-wide phenotypes. To
achieve our specific task of translating between RNA gene ex-
pression and ATAC chromatin accessibility profiles, we leverage
best practices for modeling scRNA-seq described in previous
works, while introducing two techniques. First, BABEL’s net-
works for chromatin accessibility data are designed to focus on
more biologically relevant intrachromosomal patterns. Second,
BABEL’s interoperable encoder/decoder modules effectively
leverage paired measurements to learn a meaningful shared latent
representation without the use of additional manifold alignment
methods. We demonstrate that our resultant BABEL model per-
forms well across a variety of contexts, including held-out test
clusters, data generated from different experimental protocols, and
even aberrant patient carcinoma samples involving different tissues
from those used to train BABEL. Although our evaluation focuses
on predicting gene expression from accessibility due to the relative
interpretability of gene expression, we also demonstrate the utility
of the opposite expression-to-accessibility translation. By providing
paired single-cell RNA gene expression and ATAC chromatin ac-
cessibility measurements without costly experiments, BABEL can
be a valuable tool for hypothesis generation and exploration.

We also carefully investigated potential limitations of BABEL.
Across our experiments, BABEL performs best when asked to
make predictions on cells for which it has seen similar training
examples. When faced with completely foreign cell types such as
malignant BCC cells, BABEL does not consistently recover ex-
pression of well-known markers like KRT14, whereas Cicero’s
more conventional gene activity scores do. This limitation is
shared by most machine learning approaches; samples deviating
too far from the training set often exhibit poor predictive per-
formance (48). As a practical metric, we suggest that aggregate
pseudobulk correlation can be a litmus test indicating the quality
of BABEL’s imputations on new data. Researchers using BA-
BEL could easily compute such pseudobulk correlations against
a growing library of publicly available (bulk or single cell)
datasets to evaluate whether BABEL produces trustworthy in-
ferences for their specific experiments. BABEL’s predictions are
also limited by the mutual information shared by accessibility
and transcriptomic measurements. For example, changes in
chromatin accessibility do not always directly or immediately
correlate with transcriptomic changes (34); similar variability in
BABEL’s predictions is expected.
Beyond translating between expression and chromatin acces-

sibility profiles, we also demonstrated that BABEL provides a
computational framework that can be extended to translate be-
tween other single-cell modalities via additional encoder and
decoder networks. Given additional joint single-cell profiling
data, BABEL can act as a pretrained network for transfer
learning, especially since its components are interoperable. This
can reduce the amount of new data required. New modalities

Fig. 4. BABEL makes accurate predictions on clinical basal cell carcinoma (BCC) scATAC-seq samples and generates new interpretations. (A) Correlation of
transcriptome-wide pseudobulk expression: x axis represents expression within a tissue-matched scRNA-seq study averaged across cells; y axis represents
BABEL’s predicted single-cell expression from scATAC-seq data, also in pseudobulk. The strong correlation, especially compared to a similar plot for gene
activity scores (B), suggests that BABEL generalizes well to patient cancer samples. (C) ATAC-based UMAP visualization of these BCC cells. Produced using data
from ref. 10. We use this projection as a scaffold to visualize BABEL’s imputed single-cell RNA expression. D highlights BABEL’s imputed expression of CD3E
(Left), a T cell marker, compared to gene activity scores (Right). BABEL recapitulates expected expression of CD3E here, as well as for the myeloid marker CD86
(E). For NK marker KLRC1 (F) and CD8+ activated T cell marker IFNG (G), BABEL predicts more localized, specific expression than gene activity scores. However,
for genes that have little to no presence in the training data such as KRT14, BABEL shows weaker performance (H). BABEL also lets us expand on prior
conclusions, predicting more distinct overexpression of immunosuppressive genes like CTLA4 (I) in the Tfh cluster (SI Appendix, Fig. S8), strengthening these
cells’ reported similarity to exhausted CD8+ cells.
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could learn to project into or predict from the same predefined
latent space, which simplifies the learning problem and enables
translation between unmeasured domain pairs, as shown with
BABEL’s ATAC to protein predictions.
BABEL can be combined with other analysis workflows to

improve multiomic integration. For example, single-cell gene
integration algorithms commonly rely on gene activity scores to
bridge the gap between ATAC and RNA modalities, thus en-
abling cluster-to-cluster or cell-to-cell mapping; substituting gene
activities with BABEL’s more accurate expression inferences
could greatly improve these integration techniques. BABEL
could also be extended by combining its multiomic approach with
existing single-omic methods that use variational inference to
perform clustering, batch correction, or similar tasks, thus en-
abling a new class of multimodal algorithms. BABEL’s imputa-
tions can expand the representational space of each cell, for
example by generating transcriptomic profiles that more clearly
illustrate the effects of subtle changes in chromatin accessibility
(e.g., KLRC1 in BCC NK cells). This richer representation might
be combined with multiview clustering to more robustly identify
groups of related cells.
More broadly, we envision BABEL as a powerful tool for

single-cell regulome analysis in an increasingly multiomic world.
As methods for measuring different modalities of information
within a cell become more available, we will increasingly face
trade-offs between the number of modalities, depth of analysis,
sample number, and cost. Approaches like BABEL can greatly
improve data efficiency beyond the Pareto frontier defined by
technological limitations of comeasurement. Once a class of
samples has been jointly profiled by single-cell multiomic ap-
proaches, scientists can study future instances of such samples (in
detailed time courses, perturbation, etc.) with the most eco-
nomical or technically feasible modality, and infer the remaining
information using BABEL. These considerations may be par-
ticularly valuable for human clinical samples, which are limited
in quantity and perhaps stored in archival formats that do not
permit measurement of all modalities (30). By analogy, in 1804,
Lewis and Clark took 2 y to explore, map, and journey from St.
Louis to the Pacific coast, but travelers today can easily navigate
this route in a matter of days, leveraging existing information
rather than painstakingly remapping the terrain. We hope that
BABEL, along with other multiomic data inference tools, may
provide similarly rapid and cost-effective data navigation and
insights going forward.

Materials and Methods
Data Preprocessing.We treat single-cell expression data as continuous values.
To preprocess expression data, we start with a matrix of unnormalized
counts per gene per cell generated using Hg38 (or mm10 for mouse data).
These can be produced using tools like CellRanger. We remove genes
encoded on sex chromosomes and cells expressing fewer than 200 genes or
more than 7,000 genes (2,500 for mouse data). For the combined DM, HSR,
and PBMC human data, this retains 34,861/36,417 cells. This retains 34,180/
34,774 cells for SHAREseq mouse data, and 10,302/10,309 cells for SNAREseq
mouse data. We then size-normalize the data, such that each cell’s counts
sum to the median counts per cell. We log-transform the size-normalized
counts and standardize these to zero mean and unit variance. We also clip
values within the top and bottom 0.5% of the overall distribution. When
preprocessing external single-cell expression data for model evaluation, we
perform this same series of preprocessing steps.

We treat scATAC-seq data as a binary signal, as we found that a contin-
uous representation made the prediction problem significantly more diffi-
cult without providing a meaningful measure of increased accessibility. To
preprocess scATAC-seq data, we start with a matrix of cells by peaks, also
generated using Hg38 (or mm10 for mouse data). Such matrices can be
produced by tools like ArchR or Signac. We remove peaks on sex chromo-
somes, merge overlapping peaks, and binarize the data by replacing all
nonzero values with a value of 1. We then remove peaks occurring in fewer
than five cells or more than 10% of cells. This retains 223,897/245,139 peaks
for human data, 215,083/238,720 peaks for SNARE-seq, and 326,037/338,304

peaks for SHARE-seq. Removing overly rare peaks helps prevent the model
from overfitting on just a handful of examples, while removing overly
common peaks helps the model focus on learning important variation be-
tween cells. Overall, BABEL is given a filtered, binarized view of the original
ATAC peaks.

When predicting on ATAC inputs that may not match the specific peaks
BABEL is trained on, we repool the input peaks to match BABEL’s peaks. First,
we use liftOver (49) to convert Hg19 coordinates to Hg38 coordinates, if
necessary. We then take each input peak, determine which BABEL peak(s) it
overlaps, and transfer the source peaks’ values to the overlapped peaks(s)
using an “or” operator to combine multiple values. If an input peak has no
overlap, it is dropped. For example, if one of BABEL’s ATAC peaks was
chr1:1000–2000, and it was given an input with peaks chr1:950–1150 and
chr1:1190–2090, the input to BABEL’s chr:1000–2000 peak would be the
result of an “or” operator on the values at the two input peaks. This process
reduces the resolution of input datasets somewhat, but we find that BABEL
is able to make robust predictions regardless.

Many of the described preprocessing steps are done via the Python
packages Scanpy, version 1.4.3, and AnnData, version 0.6.22 (50).

Data Splits. Training, validation, and test splits were defined by clustering the
log-normalized, size-normalized RNA expression data using the Leiden al-
gorithm (51) with a resolution of 1.5. The two largest clusters form valida-
tion and test clusters, with remaining cells comprising the training set.
Cluster-based data splits reduce the model’s propensity to perform well on
validation or test sets by simply “memorizing” a similar cell seen during
training. Performance on the test cluster is thus a stronger indicator for how
well the model will generalize.

For cross-validation, we evaluate five different combinations of validation
and test clusters; no cluster is used more than once as a validation set or as a
test set. These folds are created by rotating through the five largest clusters.
The first cross-validation split corresponds to using the aforementioned two
largest clusters as validation and test and is the model we use when
reporting non–cross-validation results in our manuscript.

BABEL Architecture. BABEL was implemented using the PyTorch (version 1.2.0)
and Skorch (version 0.7.0) Python libraries. BABEL consists of four primary
components: two encoder networks, and two decoder networks. Each encoder is
responsible for projecting either RNA or ATAC input into the shared latent space,
and each of the two decoders infers RNA or ATACoutputs from this shared latent
space. These networks are designed to be interoperable—the RNA encoder is
compatible with both the RNA decoder and the ATAC decoder, and similarly for
the ATAC encoder. Each decoder is also interoperable with both encoders. BA-
BEL does not leverage cluster information in its modeling approach.

The RNA decoder outputs two parameters for each gene, mean and
dispersion, which jointly describe the likelihood of each gene’s observed
expression under a negative binomial distribution. Coupled with a negative
binomial loss, this helps BABEL learn to estimate the true, “de-noised” ex-
pression values (the mean parameter) rather than the noisy observed values.
The ATAC output consists of a single value per peak bounded between [0, 1].
These ATAC outputs can be binarized using an approach described in SCALE
(14), where each entry in the predicted cell by peak matrix is set to “1” if its
value is greater than both the corresponding column and row means and
“0” otherwise.

For the RNA encoder, we project the input vector of genome-wide ex-
pression (n = 34,861 for the human model, n = 22,541 for SNARE-seq, and
n = 22,315 for SHARE-seq) to 64 dimensions, followed by a parametric ReLU
(PReLU) nonlinear activation. We then project to the 16-dimensional shared
latent space, again with PReLU activation. The RNA decoder “inverts” this
network architecture. It starts by applying a fully connected layer and PReLU
activation to project the 16-dimensional latent representation to 64 di-
mensions. It then projects this 64-dimensional layer into two outputs
matching the input expression vector in size. These are passed through an
exponential and softplus activation to estimate the mean and dispersion.

For the ATAC encoder and decoder, we leverage the insight thatmost DNA
accessibility interactions occur on an intrachromosomal level, rather than
across different chromosomes (31). Instead of using fully connected layers
simultaneously spanning all ATAC peaks across the genome, we use a series
of much smaller fully connected layers, each processing only a single chro-
mosome’s peaks. Each chromosome’s peaks are first transformed into a
32-dimensional representation (with PReLU activation), followed by a
16-dimensional representation (with PReLU activation), which is concate-
nated across all chromosomes. For the human genome with C = 22 auto-
somes, this concatenated layer has 16 × 22 = 352 dimensions. We project this
concatenated layer to our 16-dimensional shared latent representation,
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using a fully connected layer with PReLU activation. This final layer is not
chromosome-specific and allows the model to learn some interchromosomal
interactions. The ATAC decoder “inverts” the ATAC encoder. It starts by
projecting the 16-dimensional latent representation to a C × 16 hidden layer
(with PReLU), which splits into C blocks of 16 dimensions. Each of these C
blocks passes through an independent set of fully connected layers, map-
ping to a hidden layer of 32 dimensions with PReLU and finally to the peak
predictions with a sigmoid activation. A naive approach with fully genome-
wide connections would necessitate nearly C times as many parameters (SI
Appendix, Supplementary Note).

BABEL Training. The RNA decoder outputs a mean ŷ and dispersion θ vector
for each gene. These two vectors parameterize the likelihood of observing
the measured expression y under a NB distribution, as shown below (Γ de-
notes the gamma function):

P(y; ŷ, θ) = Γ(y + θ)
y!Γ(y) ( θ

θ + ŷ
)θ( ŷ

θ +   ŷ
)y .

Intuitively, we want to find the mean and dispersion ŷ, θ that maximize the
likelihood of the observed data. This is equivalent to minimizing the nega-
tive log likelihood, which we use as our loss as follows (e is a small constant
for numerical stability):

LNB(y; ŷ, θ) = −θ(log(θ + e) − log(θ +   ŷ)) − y(log(ŷ + e) − log(θ + ŷ))
−log  Γ(y + θ) + logΓ(y + 1) + logΓ(θ + e).

Since the ATAC decoder generates a binary prediction for each peak across
the genome, we use a BCE loss where x represents the measured ATAC signal
at each bin, and x̂ represents our model’s prediction:

LBCE(x; x̂) = −(x logx̂ + (1 − x)log(1 − x̂)).
Given these building blocks, we can formulate the overall loss function for our
model. Recall that we want each encoder to be composable with either
decoder, such that all our networks are interoperable. We express this in our
overall loss L by including a term for each of our four encoder/decoder
combinations. Here, r and a denote the measured RNA and ATAC signals,
respectively; subscripts denote the source modality used to infer either RNA
or ATAC (e.g., rATAC represents the inferred RNA values from ATAC input):

L = LNB(r,   rRNA) + βLBCE(a,   aATAC ) + βLBCE(a,   aRNA) + LNB(r,   rATAC ).
The first two terms encapsulate how well our model can “reconstruct” the
RNA and ATAC inputs via intradomain inference. The latter two terms en-
capsulate how well our model performs cross-domain prediction
(i.e., inferring ATAC profiles from RNA expression and vice versa). The con-
stant β ensures that the BCE and NB losses are numerically within the same
order of magnitude. Based on manually examining the magnitude of loss
components over the first few training epochs, we set β = 1.33 for all results
described in this paper.

We trained our model using the Adam optimizer (52) with a batch size of
512 and a learning rate of 0.01. We reduce the learning rate and perform
early stopping based on validation set loss. We also use batch normalization
and gradient clipping to aid in training stability.

Baseline KNN Model. We implemented two KNN models to contextualize
BABEL’s ATAC to RNA and RNA to ATAC translation performance. Both
models compare each query cell to every cell in its training set, computing
pairwise Euclidean distance in feature space (binarized counts for ATAC to
RNA, log-scaled size-normalized counts for RNA to ATAC). KNN takes the top
k = 10 “closest” training cells and averages them to generate a prediction.
The value k = 10 was chosen because it exhibits relatively good performance.
Taking k = 1, for example, performs substantially worse with a Pearson
correlation of 0.12 when inferring ATAC to RNA on the test set, and an
AUROC of 0.59 when inferring RNA to ATAC, compared to 0.27 and 0.84 for
k = 10.

Evaluation Metrics and Statistical Analysis. We use several metrics to evaluate
BABEL’s outputs. As we binarize ATAC chromatin accessibility, we use
AUROC to evaluate the quality of our ATAC predictions. As we consider RNA
expression to be continuous, we use Pearson’s and Spearman’s correlations
to evaluate the quality of our RNA expression predictions and gene activity
scores. Scatterplots and density scatterplots are labeled with Pearson’s cor-
relation values. Since scRNA-seq analyses like clustering and dimensionality
reduction are predominantly performed on log-counts, all such correlations

are computed and shown in log space. For both correlation and AUROC, we
effectively consider each gene/peak in each cell a separate observation/
prediction.

To generate pseudobulk RNA expression signatures, we average the size-
normalized, log-scaled expression of each gene across all cells. We then
compare these per-gene means across similar samples using Pearson’s cor-
relation. In cases where we compare bulk expression across two different
genome assemblies (i.e., Hg19 and Hg38), the pseudobulk is reported on the
intersection of genes in the assemblies.

All metrics are calculated using the Python packages Sklearn version 0.21.2
(53), SciPy version 1.2.1 (54), and NumPy. When performing UMAP dimen-
sion reduction on single-cell expression data, we use the size-normalized,
log-scaled expression. UMAP was calculated using Scanpy (50) using hyper-
parameters taken from Seurat’s default settings. When visualizing single-cell
ATAC-seq measurements, we use a term-frequency times inverse
document-frequency (F-IDF) transform before applying UMAP.

Analysis on Jointly Profiled Multiomic Datasets. Single-cell paired RNA and
ATAC-seq libraries for GM12878 were generated on the 10x Chromium
Single-Cell Multiome ATAC + Gene Expression platform following the
manufacturer’s protocol and sequenced on an Illumina NovaSeq 6000. The
single-cell paired RNA and ATAC-seq reads were aligned to the hg38 ref-
erence genome using cellranger-arc count (10x Genomics, version 1.0.0).

We compare BABEL’s ATAC to RNA predictions to gene activity scores
generated by ArchR version 0.9.5 (24) and MAESTRO version 1.2.1 (25). We
used ArchR’s default parameters with the Hg38 assembly and MAESTRO’s
“enhanced” estimation mode with default parameters and the Hg38 as-
sembly. We also compare BABEL’s RNA to ATAC predictions to similar out-
puts generated by BIRD (32, 33). We use BIRD v1.1.1 and the authors’
preconfigured human Hg38 v1.4 model.

Unpaired PBMC Analysis. Single-cell ATAC-seq healthy PBMC data for ana-
lyzing BABEL’s ability to infer single-cell expression profiles from scATAC-seq
data are available from 10x Genomics. We used the filtered peak matrix,
passed through liftOver for coordinate conversion from Hg19 to Hg38, as
input to BABEL. Cell type annotations were obtained using Signac, version
1.0.0, for scATAC-seq analysis. UMAP visualization is generated from BABEL’s
imputed RNA expression signatures after size-normalization and log trans-
formation. To contextualize the reconstructed gene expression results, we
used healthy PBMC scRNA-seq data publicly available through 10x Genomics,
which was then analyzed and visualized using Seurat v3.2.0.

Single-cell RNA-seq PBMC data for analyzing BABEL’s ability to infer
scATAC-seq accessibility profiles from transcriptomic data are available from
10x Genomics. Cluster assignments were obtained via Seurat. BABEL was
used to infer genome-wide chromatin accessibility profiles. We then used
ScanPy to identify the top 10 marker peaks for each cluster. Specifically, this
trains a logistic regression model for each cluster, attempting to classify cells
as “in-cluster” versus “not-in-cluster.” This approach is powerful for scRNA-
seq data (55) and is also showcased in the Signac PBMC scATAC-seq vignette.
The peaks with the largest weights in the logistic regression model are
regarded as more informative. These peaks were associated with their
nearest annotated transcript within 10 kilobases using Ensembl’s v100
annotation (56).

Basal Cell Carcinoma Analysis. When evaluating BABEL’s ATAC to RNA per-
formance on BCC samples, we use scATAC-seq data as published in the
original manuscript (10), passed through liftOver for Hg38 conversion.
UMAP plots for this dataset are based on the scATAC-seq measurements.
Gene expression is predicted by BABEL based on single-cell ATAC and is size-
normalized and log-transformed prior to analysis and plotting.

To find overexpressed marker genes corresponding to a cluster of cells, we
use Scanpy to perform a Wilcoxon rank-sum test with Benjamini–Hochberg
correction, comparing the (predicted) expression of each gene within the
cluster against its expression in all other cells. We then take the top 100 most
significant results (or fewer if doing so would include nonsignificant results
with adjusted P > 0.05). The resulting list can then be manually examined for
overexpression of key genes, which we explore and report in our manuscript.

Extending BABEL to Predict Protein Epitopes. To preprocess single-cell epitope
data, we apply a centered log-ratio (CLR) transformation to each cell’s
protein counts. CLR normalization is commonly used for modeling epitope
data (5, 57). The CLR transformation for a count vector x (with added
pseudocounts) measuring n proteins in a cell is given by the following ex-
pression, where g(x) denotes the geometric mean:
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CLR(x) = ln[ x1
g(x),   . . . ,

xn
g(x)].

Additionally, we filter cells based on their expression profiles using the
preprocessing cutoffs discussed in the data preprocessing section above.

To extend BABEL to predict CLR-normalized protein epitopes, an auxiliary
protein decoder network takes, as input, BABEL’s 16-dimensional latent
representation, and predicts CLR-normalized protein counts. This decoder
network consists of fully connected layers projecting from hidden layers of
size 16, 64, to an output of 25 dimensions, with hyperbolic tangent (tanh)
activations save for the final output layer, which uses an identity activation.
This protein decoder network is trained on CITE-seq paired single-cell pro-
tein epitope and RNA expression measurements using a mean-squared-error
loss. In this process, BABEL’s encoder networks and latent representation is
fixed. Training/validation/test data splits are defined by single-cell expres-
sion clusters, as was done to train the main BABEL model. To generate
protein epitope predictions from scATAC-seq data, we first use BABEL to
infer a corresponding expression profile, and then infer single-cell epitopes
from this inferred expression profile.

Plotting. All plots were generated using Matplotlib (58), Seaborn (https://
seaborn.pydata.org) adjustText (https://github.com/Phlya/adjustText), mpl-
scatter-density (https://github.com/astrofrog/mpl-scatter-density), Astropy
(59, 60), and Scanpy (50) libraries under Python 3.7.

Data and Code Availability. Human data jointly profiling PBMC cells’ ex-
pression and chromatin accessibility is available from 10x Genomics’ data
portal (https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/
1.0.0/pbmc_granulocyte_sorted_10k). Human data jointly profiling DM and HSR
cells’ expression and chromatin accessibility is available through Gene Expression
Omnibus (GEO) (accession no. GSE160148). Human data jointly profiling
GM12878 cells is available through GEO (accession no. GSE166797). SNARE-seq
mouse data are publicly available at GEO (accession no. GSE126074). SHARE-seq
mouse data are available at GEO (accession no. GSE140203).

PBMC scATAC-seq data are available through 10x Genomics’ data portal
(https://support.10xgenomics.com/single-cell-atac/datasets/1.2.0/atac_v1_pbmc_10k).
A tissue-matched 3k PBMC scRNA-seq dataset is available through 10x Ge-
nomics’ data portal (https://support.10xgenomics.com/single-cell-multiome-
atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k). PBMC scRNA-seq
data for evaluating RNA to ATAC translation is available through 10x Ge-
nomics’ data portal (https://support.10xgenomics.com/single-cell-gene-ex-
pression/datasets/3.0.0/pbmc_10k_v3). BCC scATAC-seq data are available
through GEO (accession no. GSE129785), with Cicero gene activity scores
available on the authors’ GitHub. Corresponding BCC scRNA-seq data are
available through GEO (accession no. GSE123813). GM12878 scRNA-seq data
are available from GEO (accession no. GSE126321). CITE-seq data on human
bone marrow cells is available through GEO (accession no. GSE128639).
CITE-seq data on PBMCs is available through 10x Genomics’ data portal
(https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.1.0/
5k_pbmc_protein_v3_nextgem).

All study data are included in the article and/or supporting information.
All code required to reproduce the BABEL model and our reported results,

including data preprocessing and model training, have been deposited on
GitHub (https://github.com/wukevin/babel).
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