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Abstract

Several arenaviruses can cause severe hemorrhagic fever (HF) in humans, representing a public health threat in
endemic areas of Africa and South America. The present study characterizes the potent virucidal activity of the
carboxamide-derivatized aromatic disulfide NSC4492, an antiretroviral zinc finger-reactive compound, against Junín
virus (JUNV), the causative agent of Argentine HF. The compound was able to inactivate JUNV in a time and
temperature-dependent manner, producing more than 99 % reduction in virus titer upon incubation with virions at
37°C for 90 min. The ability of NSC4492-treated JUNV to go through different steps of the multiplication cycle was
then evaluated. Inactivated virions were able to bind and enter into the host cell with similar efficiency as control
infectious particles. In contrast, treatment with NSC4492 impaired the capacity of JUNV to drive viral RNA synthesis,
as measured by quantitative RT-PCR, and blocked viral protein expression, as determined by indirect
immunofluorescence. These results suggest that the disulfide NSC4492 targets on the arenavirus replication
complex leading to impairment in viral RNA synthesis. Additionally, analysis of VLP produced in NSC4492-treated
cells expressing JUNV matrix Z protein revealed that the compound may interact with Z resulting in an altered
aggregation behavior of this protein, but without affecting its intrinsic self-budding properties. The potential
perspectives of NSC4492 as an inactivating vaccinal compound for pathogenic arenaviruses are discussed.
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Introduction

The Arenaviridae family consists of a unique genus,
Arenavirus, comprising at least 23 recognized species [1].
Arenaviruses are classified into two distinct groups: Old World
(OW) and New World (NW), both of which include important
human pathogens. Within the OW group, Lassa virus causes
severe hemorrhagic fever (HF) in West Africa and is associated
with significant morbidity and mortality in humans. The
prototypic arenavirus, lymphocytic choriomeningitis virus
(LCMV), usually associated with transient asymptomatic or mild
illness, has been also implicated as the etiologic agent of
aseptic meningitis in humans [2]. The NW group includes Junin

(JUNV), Machupo, Chapare, Guanarito and Sabiá viruses,
which are well-known agents causing HF in different regions of
South America. Because of their ability to establish chronic
infections in certain rodent hosts, arenaviruses are typically
associated with emerging endemic disease [3].

Arenaviruses are enveloped viruses; their genome is
composed of two single-stranded molecules of RNA called L
(ca 7.1 kb) and S (ca 3.4 kb), both exhibiting an ambisense
coding strategy. The S segment encodes the nucleocapsid
protein (NP) and the envelope glycoprotein precursor (GPC).
GPC is processed post-translationally yielding a mature
glycoprotein complex formed by three subunits that remain non
covanlently linked: the signal peptide SSP, the external
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receptor-binding GP1 and the transmembrane fusion GP2
protein [4-6]. The L segment encodes the RNA-dependent
RNA polymerase L and a small protein called Z. Several lines
of evidence indicate that Z is essential for viral particle
assembly and release [7-10]. Indeed, like the matrix protein of
other enveloped viruses, Z protein self-associates into
oligomeric forms, binds to cellular membranes, displays self-
budding activity and is able to mediate the incorporation of NP
and the envelope viral glycoproteins into virus-like particles
(VLPs) [8,9,11-14].

Among the recognized pathogenic arenaviruses, only LASV
and JUNV generate periodic annual outbreaks of Lassa fever
and Argentine HF, respectively, and represent the main health
threat in the family. At present, options for patient treatment are
very limited. Immune plasma transfusion is the current and
effective therapeutic intervention against Argentine HF,
reducing the mortality to less than 1% when administered up to
8 days post-onset of symptoms [15,16]. However, the immune
passive therapy presents several drawbacks such as the
development of a late neurological syndrome by 10% of treated
patients [15,16], the risk of transfusion-associated diseases,
and the difficulties for supply and maintenance of adequate
stocks of immune plasma. For Lassa fever patients,
administration of ribavirin (RIB), a guanosine analogue that
exhibits a broad spectrum of antiviral activity against RNA
viruses, has proved to be efficient in reducing fatality rates from
50 % to 5-9 % when given before day 6 in the course of illness
[17]. However, RIB therapy presents a series of disadvantages
including a high level of undesirable secondary reactions such
as thrombocytosis and anemia [18], the insufficient drug
availability and high cost in developing countries, and finally the
lack of knowledge about the mechanisms by which RIB exerts
its anti-arenaviral action [19,20]. Furthermore, the clinical
evaluation of RIB in other arenavirus HF patients did not show
efficacy in reducing mortality [15]. With respect to preventive
vaccination, the live attenuated JUNV vaccine Candid 1 was
generated in the early 1990s. The immunization of at-risk
population in Argentina with Candid 1 showed a protective
efficacy greater or equal to 84 % without adverse effects and
has led to a consistent reduction of Argentine HF in recent
years [21,22]. This vaccine was licensed for use exclusively in
Argentina and currently there is no evidence of cross protection
against the other HF-causing arenaviruses. For LASV, the
situation appears to be more complex and although there has
been much effort to develop vaccines against Lassa fever none
has been effective to warrant clinical trials [23]. Thus,
alternative strategies for treatment and prevention against
pathogenic arenaviruses are needed.

In an effort to analyze alternative therapeutic molecules, we
have previously shown that antiretroviral compounds with
diverse chemical structures, which target to the zinc finger
motifs in the human immunodeficiency virus type 1 (HIV-1)
nucleocapsid protein [24,25], also display antiviral and virucidal
activity against arenaviruses [26-29]. Moreover, the
carboxamide-derivatized disulfide NSC4492 was demonstrated
to exhibit a moderate antiviral activity as well as a very potent
virucidal effect against JUNV and other arenaviruses, including
the non-pathogenic Tacaribe (TCRV) virus [30]. Here, we have

further investigated the mechanism of JUNV inactivation by
NSC4492 and analyzed the in vitro inhibitory activity of this
compound. The potent virucidal effect exhibited by NSC4492
on arenaviruses points this compound as a promising tool not
only for prophylactic therapy but also for its potential use in the
production of inactivated virus vaccines.

Materials and Methods

Compound
The carboxamide-derivatized aromatic disulfide NSC4492

was provided by the National Cancer Institute, Frederick, MD,
USA. Stock solutions at a concentration of 100 mM were
prepared in dimethylsulfoxide (DMSO). Working solutions of
NSC4492 were prepared by dilution of the 100mM stock in the
appropriate culture medium.

Cells and viruses
Vero cells were grown as monolayers in Eagle’s minimum

essential medium (MEM, Invitrogen-Life Technologies)
containing 5 % inactivated bovine serum and 50 µg/ml
gentamycin. Maintenance medium (MM) consisted of MEM
supplemented with 1.5 % bovine serum. CV1 cells and BSR
cells (a BHK-21 clone) were grown in Dulbecco's MEM (D-
MEM, Invitrogen-Life Technologies) and Glasgow MEM (G-
MEM, Invitrogen - Life Technologies, USA), respectively,
supplemented with 2 mM glutamine, 10% fetal bovine serum
(FBS) and penicillin (100 U/ml)-streptomycin (100 µg/ml)
(Invitrogen-Life Technologies).

All experiments were performed using the attenuated strain
IV4454 of JUNV [31]. Virus stocks were prepared in Vero cells
and titrated by plaque assay on the same cells.

Virus inactivation
For virus inactivation assays, treatment of JUNV with

NSC4492 was carried out by mixing an aliquot of a viral
suspension containing approximately 1x106 plaque-forming
units (PFU) with the same volume of the appropriate NSC4492
working solution followed by incubation at the temperature and
times indicated. As control, an equivalent aliquot of the virus
suspension was incubated in parallel with MM under the same
conditions. Then, samples were chilled, further diluted with MM
and used to determine the remaining viral titer by plaque
assay. In a similar inactivation assay, we have previously
determined that the incubation of virus with MM containing
DMSO 1:5000-1:100000 (dilutions of solvent corresponding to
the working solutions of NSC4492) did not affect JUNV
infectivity. Incubation times required to produce 50, 90 and 99
% reduction in virus titer, T-50, T-90 and T-99, respectively
were calculated from the inactivation kinetics curve.

Virus adsorption and internalization
For evaluation of adsorption, Vero cells were infected with

JUNV suspensions previously treated or not with NSC4492, at
a multiplicity of infection (m.o.i.) of 1 PFU/cell. The indicated
values of m.o.i. always refer to starting PFU activity previous to
inactivation. After 5 and 60 min of adsorption at 4°C, cells were
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extensively washed with cold PBS and total RNA was extracted
by using RNeasy Mini Kit (Qiagen) according to the
manufacturer´s instructions. To monitor cell-bound viral RNA,
cDNA was generated from purified RNA by using murine
reverse transcriptase M-MLV (Invitrogen-Life Technologies)
and random primers. This cDNA was amplified by real time
PCR using SYBRGreen (Roche) detection and specific primers
for the Z gene. Actin mRNA was amplified with the
corresponding gene specific primers. The primer sequences
and reaction conditions for real time RT-PCR were previously
reported [32]. Average viral RNA Ct values were normalized to
the average Ct values of actin and ΔΔCt based fold-change
calculations were set relative to untreated-virus infected cells
using Bio-Rad iQ5 2.1 software.

For quantification of internalized virus, after adsorption as
above cells were further incubated in MM at 37°C for 1 h. Then,
culture media were discarded; cells were washed with PBS and
treated with a solution of 1 mg/ml proteinase K (Invitrogen-Life
Technologies) for 45 min at 4°C. Proteinase K was inactivated
with PBS- 0.2% bovine serum albumin (BSA) containing 2 mM
phenylmethylsulfonyl fluoride, detached cells were transferred
into a tube and washed twice with PBS-0.2 % BSA by low-
speed centrifugation. Total RNA was extracted from pelleted
cells and internalized viral RNA was evaluated by real time RT-
PCR, as above.

Virus uncoating
Vero cells grown in coverslips were infected with NSC4492-

treated or untreated JUNV at a m.o.i of 10 PFU/cell. After 1 h of
adsorption at 4°C, cells were washed and incubated at 37°C in
MM with the addition -or not- of concanamycin A at a final
concentration of 50 nM. At the indicated times, cells were fixed
in 4% paraformaldehyde for 10 min at 37 °C, then incubated
with 20 mM NH4Cl for 10 min at 37 °C and permeabilized with
PBS 0.5 % Triton X-100 for 15 min at room temperature.
Cytoplasmic NP immunofluorescence staining was carried out
with the monoclonal antibody (mAb) SA02-BG12 [33], followed
by Alexa Fluor 488-goat anti-mouse IgG (Invitrogen-Life
Technologies) as secondary antibody. After a final washing
with PBS, cells were mounted in a glycerol solution containing
1,4-diazabicyclo[2, 2, 2]octane (DABCO) and visualized under
confocal fluorescence microscope.

Virus macromolecular synthesis
To analyze virus RNA synthesis, Vero cells were infected

with NSC4492-treated or untreated JUNV at a m.o.i of 1 PFU/
cell. At 1, 2.5, 5, 7 and 12 h p.i, total RNA was extracted by
using RNeasy Mini Kit (Qiagen) and employed for cDNA
synthesis by using M-MLV (Invitrogen-Life Technologies, USA)
and a genomic sense JUNV GPC-specific primer. The cDNA
was further amplified using GPC-specific primers by real time
PCR as above. Average viral RNA Ct values were normalized
to the average Ct values of actin and ΔΔCt based fold-change
calculations for untreated and treated- virus infected cells were
set relative to the value of untreated-virus infected cells at 1 h
p.i., defined as 1, using Bio-Rad iQ5 2.1 software.

To determine viral protein expression, Vero cells grown in
coverslips were infected with NSC4492-treated or untreated

JUNV (m.o.i. 1 PFU/cell). At 16 h p.i., cells were fixed and
processed for cytoplasmic and membrane
immunofluorescence. For NP cytoplasmic staining, cells were
fixed in methanol for 10 min at -20°C and then incubated with
the mAb SA02-BG12, followed by fluorescein isothiocyanate
(FITC)-goat anti-mouse IgG (Sigma Aldrich Co). For membrane
staining, cells were fixed in 4% paraformaldehyde for 10 min at
37 °C and then incubated with 20 mM NH4Cl for 10 min at 37
°C. Then, cells were incubated with mAb QC03-BF11 for
GPC/GP1 [33], followed by the FITC-labeled IgG as secondary
antibody. In both cases, after a final washing with PBS, cells
were stained with Evans Blue and mounted in DABCO.

VLP purification and Western blotting
Approximately 4 x 105 BSR cells grown in a 12-well dish

were transfected with (amounts per well) 1 µg of plasmid
pJUNV Z-HA, expressing an HA-tagged version of JUNV Z
(JUNV Z-HA) along with 1 µg of plasmid pCMV-T7pol, which
expresses the bacteriophage T7 RNA polymerase [34]. At 4 h
post-transfection supernatants were removed, cells were
washed twice with PBS, and supplemented with G-MEM 2%
FBS containing or not NSC4492 at a final concentration of 25
µM. Control cultures were supplemented with medium plus the
corresponding volume of DMSO. Following incubation at 37°C
for 48 h, culture supernatants were harvested and cell
monolayers were lysed in non-reducing SDS-PAGE sample
buffer (Invitrogen Life-Techcnologies). VLPs were purified from
the cell culture supernatants by ultracentrifugation through 20%
(wt/vol) sucrose cushions at 34,000 rpm for 2 h at 4°C in a
Beckman SW 50.1 rotor. Purified VLPs, resuspended in
nonreducing sample buffer, and cellular lysates were resolved
by SDS-PAGE in gels containing 12% polyacrylamide and then
transferred to nitrocellulose membranes. Blots were probed
with a rabbit anti-HA polyclonal antibody (Santa Cruz
Biotechnology) for 2 h at 37°C followed by incubation with
horseradish peroxidase-conjugated anti-rabbit secondary
antibody (Jackson ImmunoResearch) according to the
supplier’s specifications. Detection was achieved by enhanced
chemiluminescence, using SuperSignal West Pico
chemiluminescent substrate (Thermo Scientific). Quantification
of protein bands were carried out by densitometry using
ImageJ software [35]. To normalize the amount of Z to the
amount of actin in cell extracts, blots were stripped and then
reprobed with an anti-actin primary antibody (Sigma-Aldrich
Co), followed by enhanced chemiluminescence and
quantification by densitometry, as above.

Results

JUNV inactivating activity of NCS4492: Time and
temperature dependence

Previously, we performed a screening of a panel of aromatic
disulfides and found that the carboxamide-derivatized
NSC4492 (Figure 1A) is a very potent virucidal agent against
two closely related NW arenaviruses, TCRV and JUNV, with
inactivating concentration 50% (IC50) values in the range of
0.2-0.7 µM [30]. To further characterize the inactivating
properties of NSC4492, the temperature dependence of its
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biological effect was analyzed by incubation of JUNV in the
presence of increasing concentrations of NSC4492 at 4, 25 or
37°C (Figure 1B). The results showed a very weak inactivating
effect at 4°C, with about 40% remaining infectivity at
concentrations of the compound as high as 20 µM. The
inactivating effect was drastically enhanced when virus
treatment was carried out at 25°C, being maximal upon
incubation at 37°C (Figure 1B), indicating that the interaction
between NSC4492 and virions is temperature dependent. Next,
the kinetics of JUNV inactivation by NSC4492 was evaluated
using the optimal temperature and compound concentration
established from Figure 1B, 37°C and 10 µM. A very significant
loss of infectivity was observed as early as 10-15 min after
addition of the compound to the virus suspension since the
value of T-50 obtained from data shown in Figure 1C was 10.5
± 1.8 min. The virucidal effectiveness of the disulfide was
further evidenced by the strong inactivation produced after 30
min of incubation, with more than 99 % reduction of viral
infectivity and values of T-90 and T-99 of 23.0 ± 3.9 and 29.4 ±
0.3 min, respectively. Finally, complete inactivation of JUNV
with more than 4 log reduction in virus titer was observed after

45 min of treatment. These results lead us to adopt incubation
conditions assessing potent virus inactivation (10µM NSC4492
for 90 min at 37°C) for the following experiments.

Mode of inactivation of JUNV virions by NSC4492
As a first approach to elucidate the mechanism of JUNV

inactivation by the disulfide NSC4492, we analyzed the effect
of the compound on virus entry. To this end, the binding ability
of NSC4492-inactivated virions to the cell membrane was first
evaluated. Vero cells were inoculated with JUNV previously
treated or not with NSC4492 and the amount of cell-bound
JUNV RNA that remained after extensive washing of the cell
monolayers was quantified by real time RT- PCR. As shown in
Figure 2A, treatment with NSC4492 did not alter the level of
cell-associated viral RNA detected at the beginning (0 min) of
the adsorption step. Moreover, similar levels of viral RNA were
observed at 60 min post- inoculation with either treated or
untreated virions, suggesting that the receptor binding capacity
of inactivated JUNV is comparable to that of control infectious
particles.

Figure 1.  Time and temperature dependence of NSC4492 inactivating activity on JUNV.  (A) Chemical structure of NSC4492.
(B) Suspensions containing 1 x 106 PFU of JUNV were incubated with increasing concentrations of NSC4492 at 4°C (■), 25°C (●) or
37°C (▲) for 90 min. Then, the remaining infectivity was titrated by plaque assay in Vero cells. (C) Suspensions containing 1 x 106

PFU of JUNV were incubated with 10 µM NSC4492 at 37°C. At the indicated times, the remaining infectious virus was determined
as in (B). Each value represents the mean of triplicate assays ± standard deviation (SD).
doi: 10.1371/journal.pone.0081251.g001
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Figure 2.  Entry of JUNV particles treated with NSC4492.  (A) Binding. JUNV treated -or not- with 10 µM NSC4492 for 90 min at
37°C was adsorbed at 4°C to Vero cells. Immediately after inoculation (time 0) or 60 min later, the inoculum was removed, total
RNA was extracted and the amount of cell-bound viral RNA was determined by real-time RT-PCR using JUNV Z gene specific
primers and cellular actin amplification for normalization. (B) Internalization. Vero cells were inoculated with JUNV inactivated or not
with NSC4492 as in (A). After adsorption for 1 h at 4°C followed by removal of the inoculum, cells were shifted to 37°C. At the
indicated times, non internalized virus was removed by treatment with proteinase K, total RNA was extracted and real-time RT-PCR
was performed as in (A) to determine the relative amount of internalized viral RNA. Results in (A) and (B) are expressed as fold
difference of viral RNA level in cells infected with NSC4492-treated JUNV as compared to the corresponding untreated JUNV, set
as 1. The values are averages of duplicate independent experiments ± SD. (C) Uncoating. Vero cells grown in coverslips were
mock-infected or infected at 4°C with JUNV suspensions previously treated or not with NSC4492. Unadsorbed virus was removed
and cells were supplemented with MM containing or not concanamycin A and incubation proceeded at 37°C for 5 or 60 min. Then,
cells were processed to detect NP by IF staining. Representative cells of all fields in each sample are shown in the figure.
Magnification: 600X plus digital zoom 2.5X.
doi: 10.1371/journal.pone.0081251.g002
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Next, a virus internalization assay was employed to analyze
the effect of NSC4492 on virion uptake. Briefly, JUNV
previously treated -or not- with NSC4492 was adsorbed to Vero
cells for 1 h. Following incubation at 37°C to allow virus entry,
cell monolayers were treated with proteinase K to remove
adsorbed but not internalized virus, and intracellular JUNV
RNA was quantified by real time RT- PCR. The results showed
levels of viral RNA in cell monolayers inoculated with
NSC4492-treated JUNV that were comparable to those in
untreated JUNV-infected cells (Figure 2B). These results
clearly demonstrated that NSC4492 did not impair the uptake
of JUNV into the host cells.

To further assess the effect of NSC4492 on virus entry, we
examined the ability of treated virus to exit the endosomal
compartment and release the viral ribonucleoprotein into the
cytoplasm. Cells were inoculated with untreated or NSC4492-
treated virus and the presence of virions into cytoplasmic
endosomal vesicles was detected by IF staining of NP. As
control, untreated virus-infected cells were incubated with
concanamycin A, a specific inhibitor of vacuolar-type ATPase
activity that has been reported to raise endosomal pH of
enveloped virus-exposed cells thus preventing membrane
fusion [36,37]. As expected, cells infected with untreated virus
showed a decreased amount of NP after 60 min of incubation
at 37°C, as compared with that observed immediately after
adsorption (Figure 2C), indicating that virion uncoating
occurred and nucleocapsids were released from cellular
endosomes after fusion. Cultures infected with NSC4492-
treated virions revealed a pattern of NP immunofluorescence
that was comparable to that observed for control untreated
virus at 0 and 60 min of infection. In contrast, blockage of virus
uncoating was visualized in cultures infected with control virus
and treated with concanamycin A: a pattern of bright
intracellular NP staining was observed at both times post-
infection, with a strong accumulation of fluorescence in the
perinuclear zone after 60 min of internalization (Figure 2C).
When cells infected with NSC4492-inactivated JUNV were
treated with concanamycin A, a similar pattern of NP
fluorescence retention in the perinuclear region was detected
(Figure 2C), indicative that the uncoating of inactivated virions
is dependent on endosomal acidification, similar to untreated
virus and in accordance with the penetration mechanism
reported for JUNV [38,39]. Altogether, these results suggested
that virion uncoating from the endosomal compartment was not
impaired by treatment of JUNV with NSC4492.

After penetration into the host cell, synthesis of viral RNA
and proteins is the subsequent step in virus multiplication
cycle. First, to analyze the possible targeting of NSC4492 on
viral RNA synthesis, the levels of JUNV RNA in cells infected
with treated or untreated virions were comparatively quantified
during 12 h of infection, the time required to complete the
multiplication cycle of JUNV [40], by using real time RT- PCR.
The amounts of viral RNA in cells infected with untreated or
treated virions were calculated in comparison to the content of
viral RNA in control infected cells at 1 h p.i., defined as 1. As
seen in Figure 3A, the time course of JUNV RNA synthesis in
control infected cells was in accordance with previous studies
[32,41] with increasing levels of intracellular RNA from earlier

to later times. At 1 h p.i., the content of viral RNA in cells
infected with inactivated virions was similar to that in control
infected cells, confirming that entry and uncoating are not
affected and that the initial amount of RNA delivered into the
cells through infection was similar. By contrast, the relative
contents of viral RNA in cells infected with NSC4492-
inactivated JUNV decreased with time, indicating that no new
RNA molecules were synthesized whereas initially internalized
viral RNA was degraded. The maximal difference between cells
infected with control and treated virions was observed at 12 h
p.i., when the peak in RNA synthesis was detected for
untreated virions (Figure 3A). These results suggested that
NSC4492 impairs the ability of virions to direct viral RNA
synthesis.

To further corroborate these results, the level of viral protein
expression in infected cells was analyzed by indirect
immunofluorescence. Both NP and GPC/GP1, the major
structural arenavirus proteins, were clearly detected after 16 h
of infection with untreated virus (Figure 3B). In contrast, no viral
proteins could be observed either in the cytoplasm or the
surface of cells infected with NSC4492-treated JUNV (Figure
3B). Altogether, these results demonstrated that treatment with
NSC4492 completely abolished the ability of JUNV particles to
drive the biosynthesis of viral macromolecules within the host
cell.

Effect of NSC4492 on particle budding
After RNA and protein synthesis, virus assembly and

budding represent the final step of JUNV multiplication cycle. It
is known that arenavirus Z protein drives the cell surface
budding of arenavirus particles in infected cells and is able to
direct self-assembly and budding of VLPs, in the absence of
any other viral protein [8,9,12,13,42,43]. To evaluate if
NSC4492 affects these late processes, we analyzed the effect
of the compound on the ability of Z protein to drive VLP
formation by employing a well-established VLP assay
previously reported [12]. Briefly, mammalian cells were
transfected with the plasmids pJUNV Z-HA and pCMV-T7pol to
express only JUNV Z-HA followed by incubation of cells with or
without NSC4492 for 48 h. Then, VLPs were purified from cell
supernatants, aliquots of both cell lysates and purified VLPs
were resolved in SDS-polyacrylamide gels and Z protein was
detected by immunoblotting (Figure 4). Reprobing of blots with
an anti-actin antibody was performed to control for gel loading.
Evaluation of the cell lysates revealed comparable levels of Z
protein normalized to cellular actin in the presence or absence
of the compound, both under reducing or non-reducing
conditions (lanes 1 to 4), indicating that NSC4492 did not
substantially affect Z expression in transfected cells. With
respect to VLP formation, the level of Z self-budding, calculated
as the ratio between Z protein detected in VLPs to total Z
protein (VLPs plus lysates), was not diminished by NSC4492
(lanes 5 to 8). When samples were analyzed under reducing
conditions, similar levels of Z as a monomer were detected in
VLPs formed either in the presence or absence of the
compound (lanes 5 and 6). By contrast, analysis under non-
reducing conditions clearly showed an altered pattern of Z
protein electrophoretic migration in VLPs released from
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NSC4492-treated cells compared to control samples, with
decreased amount of Z monomer and increased amount of

higher molecular weight multimers (lanes 7 and 8). Overall,
these results suggested that NSC4492 altered the capacity of Z

Figure 3.  Analysis of viral macromolecule synthesis in cells infected with NSC4492-inactivated JUNV.  (A) RNA synthesis.
Vero cells were infected with JUNV previously treated or not with NSC4492. Total cellular RNA was extracted at the indicated h p.i.
and viral RNA was quantified by real-time RT-PCR using primers specific for JUNV GPC. Results are expressed as fold difference
of viral RNA level in cells exposed to untreated or NSC4492-treated JUNV as compared to viral RNA level at 1 h p.i. in cells infected
with untreated JUNV, reference point defined as 1. The values are averages of duplicate independent experiments ± SD. (B) Protein
expression. Vero cells were mock-infected or were inoculated with untreated or NSC4492-inactivated JUNV. At 16 h p.i., either
cytoplasmic or membrane IF staining was performed to detect NP or GP1/GPC proteins. Magnification: 400X.
doi: 10.1371/journal.pone.0081251.g003
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protein to self-aggregate into oligomers, although this alteration
did not impact on the ability of Z to drive VLP formation.

Discussion

The studies here reported confirm previous results [30] about
the potent virucidal activity of the disulfide NSC4492, a
compound able to inactivate JUNV particles in the range of
micromolar concentrations leading to total loss of infectivity at
controlled experimental conditions. Our earlier studies also
demonstrated the arenavirus-inactivating effect of another
disulfide, the compound NSC20625, likely caused by
interaction of the drug with the Z protein [28,29]. Moreover,
NSC20625 was shown to induce metal-ion ejection from
purified LCMV Z protein, with the consequent loss of its native
structure and stability [28]. In the present study, we further
analyzed the mode of interaction of NSC4492 with JUNV which
results in loss of virion infectivity.

Aromatic disulfides, like NSC4492, display a well-known
antiretroviral activity through its interaction with the retrovirus
nucleocapsid (NC) protein zinc finger motifs [24,44,45]. Several
studies demonstrated that treatment of virions with the

compounds results in zinc ejection from the zinc fingers of NC
protein with the consequent formation of multimeric aggregates
by intra- or intermolecular NC cross-linkage [44,46-48]. These
alterations within the viral core structure correlate with loss of
virion infectivity by blockade of reverse transcription [47,49].

Sequence comparisons and structural studies revealed that
three of the arenavirus proteins display zinc-binding motifs. The
matrix Z protein contains a conserved RING motif that
coordinates two zinc ions. The structural integrity of the RING
is required for proper protein folding [50], and is essential for Z-
mediated inhibition of viral RNA synthesis as well as for the
interaction between Z and other viral and cellular proteins
[12,14,51-54]. The transmembrane GP2 contains a zinc-
binding domain consisting of two arrays of conserved Histidine
and Cysteine residues that coordinate two zinc atoms. This
motif has been implied in maintaining the structure and function
of the envelope tripartite glycoprotein complex [55,56]. Finally,
a CCHE zinc-binding site has been described in the C-terminal
domain of the nucleoprotein NP, which is likely important for
stabilizing the overall structure of the domain [57-60].

Based on these precedents, our hypothesis was that
NSC4492 might target the arenavirus Z protein and/or any of

Figure 4.  Effect of NSC4492 on Z-VLP production.  BSR cells were transfected with plasmids pJUNV Z-HA and pCMV-T7pol, to
express JUNV Z-HA protein. After 4 h, transfection medium was replaced with fresh medium with (+) or without (-) 25 µM NCS4492
and incubation proceeded for 48 h. Aliquots of both cell extracts and VLPs purified from cell supernatants were boiled in SDS-PAGE
sample buffer after addition (+) or not (-) of 0.1% dithiothreitol (DTT) and then analyzed by Western-blotting, using an anti-HA
antibody. Protein bands were quantified by densitometry and the amount of Z in cell lysates was normalized to the amount of actin.
Self-budding (%) corresponds to the ratio between Z protein detected in VLPs to total (VLPs plus lysates) Z protein. Bands
consistent with monomeric, dimeric, and multimeric forms of Z are indicated.
doi: 10.1371/journal.pone.0081251.g004
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the viral proteins carrying zinc-binding motifs. We used
different experimental approaches to identify the step of virus
multiplication cycle as well as viral component/s targeted by the
compound. To examine the possible effect of NSC4492 on the
arenavirus glycoprotein complex, the initial events leading to
virus entry were evaluated. Our results showed that NSC4492-
treated virions exhibit abilities to bind cell surface receptors, to
penetrate and uncoat into the host cell that were comparable to
those of infectious particles (Figure 2). In fact, the infection of
cells with treated JUNV in the presence of concanamycin A
evidenced that inactivated virions employed an endocytic route
dependent on acid pH for membrane fusion similarly to control
untreated virions. These results indicated that the biological
functions of the envelope glycoprotein complex are not affected
by treatment with NSC4492, implying that the zinc finger motif
present in GP2 is likely not altered by the compound.

To test whether Z protein can be a target of NSC4492, we
analyzed the effect of the compound on the ability of Z to drive
particle assembly and budding. A change in the electrophoretic
mobility pattern of Z protein was observed when Z-VLPs
produced by NSC4492-treated cells were analyzed under non-
reducing conditions (Figure 4). These results are consistent
with previous findings showing that treatment of purified
recombinant LCMV Z protein with the disulfide NSC20625
induces the formation of high molecular weight Z multimers
[28]. Nevertheless, the NSC4492-induced change in the profile
of Z oligomers did not correlate with an impaired VLP
formation, as no difference in the amounts of Z-VLPs released
from either NSC4492-treated or control cultures was observed
(Figure 4). These results indicated that the compound does not
affect the intrinsic Z self-budding activity.

The crucial process affected by NSC4492 in inactivated
virions was viral RNA synthesis. Although the amount of viral
RNA delivered to the cytoplasm at early times after uncoating
(1 h in Figure 3A) is comparable between cells infected with
control or treated JUNV, de novo synthesis of RNA is not
driven by inactivated virions even at late times when one cycle
of multiplication of JUNV is completed (12 h in Figure 3A). This
strong inhibition of viral RNA synthesis in cells infected with
inactivated JUNV suggests the possibility that NSC4492 may
target the nucleocapsid functionality. Arenavirus nucleocapsids
functional for RNA synthesis are formed by association of
genomic RNA with the L polymerase and many molecules of
NP in an helicoidal structure. It is interesting to note that
arenavirus L and NP proteins interact with each other and that
this interaction is thought to have an important role during
replication and transcription [53,61]. Since no zinc-binding
motifs have been identified within the L protein so far, it is
tempting to speculate that an effect of the compound on the
zinc-binding domain of NP may account for the observed
results. One possibility is that an NSC4492-induced alteration
on NP may influence the NP-L interaction and, consequently,
affect the biological function of both proteins. However, the
possible targeting of NSC4492 on the L protein cannot be ruled
out.

Otherwise, it cannot be discarded that conformational
changes of Z induced by the compound could be indirectly
involved in the impairment of viral RNA synthesis observed in

cells infected with NSC4492-inactivated JUNV. Several studies
have reported that Z protein is able to modulate viral RNA
synthesis through interaction with the L polymerase [14,53,62].
The structural change produced in Z by the disulfide may alter
the binding affinity of Z to L leading to a blockade of the RNA
polymerase activity. Further research is required to fully
elucidate whether NSC4492 is targeted to reactive motifs in
one or more viral components to produce complete JUNV
inactivation.

The susceptibility of different zinc-binding motifs to aromatic
disulfides and other zinc finger-reactive compounds is still not
fully understood. However, molecular modeling and
experimental studies suggest that the impact of these
compounds on zinc fingers depends on the interplay of multiple
factors, such as binding affinity, ligand reactive proximity and
sufficient redox properties to react with the cysteines and
promote zinc ejection [63,64]. For instance, the Z protein-
reactive disulfide NSC20625 would not impact on other cellular
RING proteins, such as the promyelocytic leukemia protein
PML [28]. Thus, it is not surprising that differential structural
features of arenavirus zinc-binding domains could be related
with the apparent differential reactivity of NSC4492 towards
each of the arenavirus proteins.

Due to its potent virucidal effect at low doses (Figure 1),
NSC4492 might be considered as a promising tool for
prophylactic treatments aimed at limiting the spread of
arenaviruses, considered as viral biowarfare agents [65].
Furthermore, based on the inability of NSC4492-inactivated
JUNV particles to drive viral RNA and protein synthesis within
the host cell with apparent preservation of viral glycoprotein
functions, the compound may be envisaged as a good
candidate for its use in the generation of inactivated virus
vaccines. For retroviruses, diverse zinc finger-reacting
compounds have been studied for their potential use in
inactivated vaccine development. The 2,2’-dipyridyl disulfide,
also known as aldithriol-2 (AT-2), as well as N-ethylmaleimide
(NEM) were reported to inhibit virion infectivity by reacting with
the nucleocapsid protein without altering the antigenic
properties of the virus [66,67]. Similarly, preservation of the
integrity of conformational epitopes in the viral envelope
glycoprotein upon hantavirus inactivation by NEM has also
been reported [68].

At present, the only approved vaccine for use against HF
arenaviruses is the live attenuated Candid 1 vaccine, which
has been licensed exclusively in Argentina after a clinical study
in agricultural workers at risk [21,22]. While the Argentine HF
vaccination program has been successful in reducing morbidity
and mortality by JUNV, no approved vaccines are currently
available for other pathogenic arenaviruses. Among OW
arenaviruses, Lassa fever virus is the most prevalent with over
300,000 infections and several thousand deaths occurring
annually in Africa [69]. However, it is still a neglected tropical
disease lacking any preventive vaccine or specific
chemotherapy. Data presented here along with the reported
effectiveness of NSC4492 against the prototype OW LCMV
suggest the interesting perspective on evaluating the activity of
this disulfide against both OW and NW pathogenic
arenaviruses. Further work on the protective efficacy of treated
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virions in an animal model will be required to validate the
possible usage of NSC4492 as an inactivating vaccinal
compound.
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