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Generation of Bose-Einstein 
Condensates’ Ground State 
Through Machine Learning
Xiao Liang1,2, Huan Zhang1,2, Sheng Liu1,2, Yan Li3 & Yong-Sheng Zhang   1,2

We show that both single-component and two-component Bose-Einstein condensates’ (BECs) ground 
states can be simulated by a deep convolutional neural network. We trained the neural network via 
inputting the parameters in the dimensionless Gross-Pitaevskii equation (GPE) and outputting the 
ground-state wave function. After the training, the neural network generates ground-state wave 
functions with high precision. We benchmark the neural network for either inputting different coupling 
strength in the GPE or inputting an arbitrary potential under the infinite double walls trapping 
potential, and it is found that the ground state wave function generated by the neural network gives 
the relative chemical potential error magnitude below 10−3. Furthermore, the neural network trained 
with random potentials shows prediction ability on other types of potentials. Therefore, the BEC 
ground states, which are continuous wave functions, can be represented by deep convolutional neural 
networks.

Because it is difficult to find analytical solutions of non-linear Hamiltonians, investigations of many-body systems 
rely heavily on numerical simulations. In many-body physics, several methods such as the matrix product state 
(MPS)1 and density matrix renormalization group (DMRG)2,3 have shown to be effective in solving for the eigen-
states of one-dimensional or two-dimensional chain systems4. For systems with more than one dimension, tensor 
network states5–10 and quantum Monte Carlo methods11–14 have been widely used.

Currently, artificial intelligence has shown its capability for playing GO15. In the last decade, machine learning 
technology has attracted increasing interest for solving computational problems16–20. Several works have investi-
gated accelerating computation with the help of artificial neural networks (ANN), for example, the use of ANN to 
optimize density-functional theory (DFT) has been intensely investigated21–25. Recently, the restricted Boltzmann 
machine (RBM) has been investigated to find the ground state of spin lattice systems26, and the RBM representa-
tion ability was further investigated in27. Furthermore, the effectiveness of RBM attracts interest for comparing 
neural network representations to the traditional quantum state representations28. In addition to RBM, more 
advanced neural networks such as convolutional neural network have been shown to effective in distinguishing 
the phases of many-body systems29.

The difference between using the ANN to find a solution of a Hamiltonian and directly solving a Hamiltonian 
is that ANN accepts inputs and outputs as features and tries to determine the mathematical relationships between 
these features without using the governing equations. It has been shown that ANN is a powerful approach in 
pattern recognition problems, such as categorizing a large number of images. The neural network is tested by 
minimizing the distance between the predicted and real features. The efficiency of the training process depends 
on both the optimization method and on whether the structure of the neural network is suitable to “learn” the 
features. It has been shown that the wave functions of lattice systems such as the Ising model and the antiferro-
magnetic Heisenberg model can be represented by RBM. This naturally raised the question of whether neural 
networks can represent continuous systems.

Based on quantum mechanics, the wave function contains the complete information regarding a quantum 
system. Recently, deep convolutional neural networks have been shown to be effective in solving the Schrodinger 
equation within supervised learning30, where the neural network is trained by using the potential field as the input 
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and the ground-state energy as the output. What’s more, machine learning can help to generate Bose-Einstein 
condensate (BEC) experimentally31. We investigate whether the deep convolutional neural network can generate 
ground-state wave functions. We take the Bose-Einstein condensates32 as our example, for which the dynamics 
are governed by Gross-Pitaevskii equation (GPE)33–35. Currently, imaginary time evolution is the main method 
for numerically solving for the ground state of GPE36. Since the initial state is evolving in imaginary time, after 
many iterations, only the lowest energy part of the initial wave function will dominate. Here, we train the deep 
convolutional neural networks that generate the ground states of single-component and two-component BECs 
for both one and two dimensions. Instead of inputting the features and outputting the classification labels, we 
train the neural network using the GPE parameters as input and the ground-state wave functions as the output.

Results
Results for Single-Component BEC.  We trained the deep convolutional network with coupling strengths 
in the range of [0, 500] using 50000 uniformly distributed samples, and in all of the samples, the trapping poten-
tial used in the dimensionless GPE is 0.5x2. The samples were generated using the Trotter-Suzuki code37. The 
ground states are based on the solutions of one-dimensional GPE:
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there are 512 points in the position space x ∈ [−12, 12], and each sample is obtained after 105 iterations with a 
time step of 10−4. When training the neural network, we randomly select 5000 samples as the validation set, and 
the remaining 45000 samples are used for training. The distance between the predicted wave function and the 
original imaginary time evolved wave function is the mean-squared error between the two distributions, and this 
distance is calculated by ∫ ψ ψ| − |x x dx( ) ( )predict raw

2 . After training, the distance for either the training set or the 
validation set is reduced to 10−5.

Our results for the one-dimensional BEC are depicted in Fig. 1. In Fig. 1(a), we compare the wave functions 
obtained by neural network predictions with imaginary time evolutions. The neural network is trained by the 
ground states g ∈ [0, 500], and it predicts ground states with high precision. To further evaluate the quality of 
the neural network, we compare the chemical potentials based on the predicted state and on the state obtained 
by imaginary time evolution. The chemical potentials μ were calculated according to: μ = 〈ψ|Ĥ|ψ〉/〈ψ|ψ〉, and 
are shown in Fig. 1(b). We use the relative chemical potential error |μpredict − μ0|/μ0 to reveal the quality of the 
predicted ground states, where μpredict is the chemical potential that is calculated for the predicted state and μ0 is 
the original chemical potential. As shown in Fig. 1(b), the magnitude of the relative error is on the order of 10−3 
for most g values. In the marginal area of the training set where g = 500, the relative μ error is 0.0034936 and the μ 
difference is 0.1432696. When g = 0, the relative μ error is 0.1645099, and the chemical potential is 0.5.

It should be noted that the input into the neural network is only a single parameter g, and the output is the 
corresponding wave function, so this treatment can be viewed as interpolation. Solving for the ground states in 
this situation is not sufficient to demonstrate the “learning” ability of neural networks. Therefore, we now bench-
mark the neural network on one-dimensional arbitrary potentials. We noticed that generating ground-state wave 
functions of Schrödinger equations has been benchmarked in38. In our cases, because of the repulsive interaction 
between the atoms, the shape of the ground-state wave function is very different from the cases in38, and it is cru-
cial to enhance the network’s generation ability under strong interaction and densely distributed arbitrary poten-
tials. In our cases, the trapping potential of the dimensionless GPE is provided by the infinite walls at x = ±10, 
and the arbitrary potential is the Gaussian disorder generated by placing Gaussian functions of width σD and 
random amplitude Ai spaced by equal intervals39:

Figure 1.  (a) Comparisons between the ground-state wave functions generated by the neural network and by 
imaginary time evolution. Each wave function is normalized relative to its maximum value and we keep 512 
points in the x-space. (b) Comparisons of chemical potentials generated by the neural network and imaginary 
time evolution. The subfigure depicts the relative chemical potential error |μpredict − μ0|/μ0.
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where Ai is uniformly distributed in the interval [−20, 20], and the distance between adjacent Gaussian functions 
is 2 × 10−3 and Nd = 104.

We trained the neural network on 250000 randomly generated Gaussian disorder potentials under a fixed 
σD and the corresponding ground-state wave functions, with the interaction strength g = 1000. The neural 
network uses the disorder potentials as the inputs and the ground-state wave functions as the outputs, and 
the mean-squared error between the generated wave functions and raw wave functions is used as the train-
ing loss function. Smaller σD leads to a more intensely disordered potential and therefore larger variation in 
the ground-state wave function. Without strong repulsive interactions, the ground state tends to distribute 
locally even when the amplitude of the disorder potential is strong. Due to the strong repulsive interaction, the 
ground-state wave function tends to distribute in the entire range of x. Therefore, the ground-state wave function 
is very different from the wave function for the potential without large repulsive interactions. We first trained the 
neural network on the Gaussian disorder that has σD = 0.39. After training, we benchmark the neural network by 
inputting the potentials that are not in the training dataset.

The results of the generated ground-state wave functions under several potentials are presented in Fig. 2(a–c). 
The neural network is trained on the Gaussian disorders with σD = 0.39. Figure 2(a) shows the ground-state wave 
function when the amplitude of the disorder potential is zero, and because of the repulsive interaction, the ground 
state tends to distribute equally in the entire x space, and the relative μ error is 1.4 × 10−3. Figure 2(b) shows the 
ground-state wave function when the input potential is a quasiperiodic optical lattice potential, that is formed by 
combining two incommensurate optical lattices40, this potential is useful for generating Anderson localizations41. 
The relative μ error is 3.8 × 10−3. Figure 2(c) shows the ground-state wave function when the input is a Gaussian 
disorder within σD = 0.39 that is not in the training dataset, and the relative μ error is 1.4 × 10−4. Figure 2(d) 
shows the relative chemical potential (μ) error with respect to various correlation lengths (σD) of the Gaussian 
disorder. As it is depicted by the solid circles, for the neural network trained on Gaussian disorder potentials 
within σD = 0.39, a larger σD leads to a less intensive ground-state wave functions, thus, the relative μ error in 
σD = 1 is lower than that for σD = 0.39. However, when σD is too far from the training dataset, the relative μ error 
of the predicted wave functions increases. Meanwhile, the neural network trained on separate σD of Gaussian dis-
order potentials has better accuracy than the neural network trained on σD = 0.39 of Gaussian disorder potentials, 
and the value shown by the solid star at σD = 10 is 3 × 10−4.

Figure 2.  (a–c) Comparisons between the ground-state wave functions generated by the neural network and 
by imaginary time evolution under various potentials, where the trapping potential is given by the infinite walls 
at x = ±10. The neural network is trained on the Gaussian disorder that has the correlation length σD = 0.39. 
The ground-state wave functions with (a) zero-amplitude disorder input, (b) quasiperiodic optical lattice 
potential, and (c) Gaussian disorder with σD = 0.39. (d) Relative chemical potential (μ) errors with respect to the 
correlation length (σD) in the Gaussian disorder potentials. The yellow solid circles denote the relative μ error 
calculated from the wave functions generated by the neural network trained on σD = 0.39 Gaussian disorders. 
The blue solid stars denote the relative μ error calculated from the wave functions generated by the neural 
network trained on σD = 0.39, 1, 2.5, 5, 10 Gaussian disorders.
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Next, we train the neural network to “learn” two-dimensional states. Here as well, we use the Trotter-Suzuki 
code to generate the training dataset, in which 50000 samples are prepared in the range of g ∈ [0, 500] uniformly, 
and the position space of interest is the squared area for x, y ∈ [−7.5, 7.5]. In both x- and y-direction, 256 points 
are used, and each sample is obtained after 8000 iterations with the time step of 10−3. Since the wave function is 
two-dimensional, the convolution layers in our neural network are two-dimensional, while the structure of the 
neural network remains unchanged. The distance to be minimized is then the mean-squared error calculated for 
the two dimensions. The training process is similar to the one-dimensional conditions. After the training, the 
mean-squared error for either the training set or the validation set is reduced to the magnitude between 10−4 and 
10−5. We choose the neural network that has the minimum validation error.

Our results for the two-dimensional BECs are shown in Fig. 3. As depicted in Fig. 3(a), the distributions of 
the neural network predicted states and the states obtained by imaginary time evolution are similar. The relative 
chemical potential error is depicted in Fig. 3(b). When g is close to zero, the spread of the wave function is small 
compared to our area of interest on the x – y plane. This makes the training data biased to smaller values, and 
therefore, the predicted values are smaller than the original value. Estimating the chemical potential using a 
smaller valued wave function leads to a higher chemical potential, due to the normalization process. Therefore 
for two-dimensional states, higher coupling strength leads to wider spread of the states, making the predictions 
of the neural network more accurate.

Results for Two-Component BEC.  We continue to investigate whether a neural network can predict the 
two-component BEC states. The ground states of two-component BECs are determined by the coupling strengths 
of each component (g11 and g22), the coupling strength between two components (g12) and the Rabi coupling coef-
ficient (Ω). The dimensionless GPE of a two-component BEC given by
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where T1(2) is the kinetic energy and V1(2) is the potential. To demonstrate the capability of the neural network, we 
investigate the ground states in the range of Ω ∈ [−20, 0], while g11, g12, g22 = 100(1.03, 1, 0.97). Since there are two 
components, our neural network must output two distributions for each input of Ω.

First, we train the neural network using one-dimensional states. The potential is V(x) = 0.5x2 + 24cos2x and 
our area of interest is x ∈ [−8, 8] with 512 points. Since the range of Ω ∈ [−20, 0] is small, we prepare 13000 
samples using the Trotter-Suzuki code, with each sample generated after 105 iterations with a time step of 10−4. 
Since the wave function changes faster as Ω approaches zero, in addition to sampling 10000 points uniformly 
in the range of Ω ∈ [−20, 0], we sample 3000 points in the range of Ω ∈ [−2, 0]. Moreover, 1300 samples are 
randomly picked as the validation set. After training the neural network, the mean-squared error for both the 
training set and the validation set has the magnitude of 10−6. In Fig. 4, it is shown that for Ω = −1, the predicted 
wave functions are identical to the real wave functions. To quantify the quality of the predicted wave function, we 

Figure 3.  (a) Normalized ground-state density distributions generated by the neural network (left column) 
and by using imaginary time evolution (right column). We keep 256 points for both x- and y-directions. (b) 
Comparisons of chemical potentials (μ) calculated from the wave functions generated by the neural network 
and by imaginary time evolution. When g is close to zero the predicted energy is far from the original energy. 
The subfigure depicts the μ error |μpredict − μ0|/μ0 where the relative error is in the order of 10−2.
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compare the chemical potentials calculated by these wave functions. The chemical potential of the components 
is calculated as
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As depicted in Fig. 4, the relative chemical potential error is on the order of 10−4. In the marginal area where 
Ω is close to −20, the relative error increases due to the lack of samples. Because of the additional 3000 samples, 
the energy error remains low for Ω close to zero.

Figure 5 depicts the two-dimensional conditions. The neural network is also trained using 13000 samples with 
1300 samples used for validation, and each sample is generated by 8000 iterations with a time step of 10−3. The 
potential is V(x, y) = 0.5(x2 + 5y2) + cos2x. Since the confinement in the y-direction is stronger than that in the 
x-direction, our area of interest is x ∈ [−7, 7] with 256 points and y ∈ [−3.5, 3.5] with 128 points. As depicted in 
the figure, for Ω = −3.12, the predicted states are nearly identical to the real states. The relative chemical potential 
error in the range of Ω ∈ [−20, 0] is on the order of 10−4.

Why are the chemical potential errors lower than that of the single-component BEC? This is because 
we use 11700 samples in the small range of Ω ∈ [−20, 0], the dataset is more dense than that used for the 
single-component BEC.

Methods
The dynamics of a 2-dimensional BEC are governed by the following GPE,
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2 2 . We take the normalization ∫ |Ψ| =dxdy 12  in this paper. The training dataset is generated 
by the imaginary evolution governed by GPE. Since the ground state of GPE is a real function, the weights of the 
neural network are real numbers. Meanwhile the outputs of the neural network are real distributions.

The dynamics of a two-component BEC is governed by
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Figure 4.  For Ω = −1, the states predicted by neural network and the real states are depicted in the left column. 
In the x-direction we keep 512 points. In the right column, the chemical potentials and the relative chemical 
potential errors are depicted in the range of Ω ∈ [−20, 0].
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where H1 and H2 are defined in Eq. (4). We take the normalization ∫ ψ ψ τ| | + | | =d 11
2

2
2  where τ denotes the 

total position space. The training dataset is generated by the imaginary evolution governed by GPE. Under each 
coupling strength of Ω, the neural network outputs two wave-functions, each corresponds to one component.

We set up a deep convolutional neural network to learn the ground states of one-dimensional and 
two-dimensional GPEs. A convolutional neural network uses filters to scan the feature surface, and the relation-
ships between the adjacent feature sites can be efficiently “learned” by several filters scanning simultaneously. 
When the neural network contains tens to hundreds of convolution layers, the obtained deep convolutional net-
work excels at pattern recognition tasks such as image classification, speech recognition and language translation.

The neural network structure used in this paper is presented in Fig. 6. The main part of the neural network 
consists of seven convolutional layers, while each convolution layer is followed by batch normalization (BN) and 
Leaky-ReLU non-linear activation. To keep the gradients flowing properly, after each convolution block the total 
output of the block is the summation of the block input and the block output. The input and output channel in 
the convolution layer is 64 except the first and the last convolution layer. Comparing with dense connected layers, 
the last convolution layer is crucial to generate the high quality ground-state wave functions, as the convolution 
filters are grasping the regional features, larger filters are helpful to generate smoother wave functions. In our 
cases the convolution filter size is chosen to be 10. The output of the neural network is the ground-state wave 
function. The input of the neural network varies based on the kinds of problems. In the training the neural net-
work on ground-state wave functions with respect to the repulsive interaction strength g or the coupling strength 
Ω, there is only one input, namely, this one-dimensional input is transformed into a high-dimension vector by a 
dense layer, as shown in the figure. In the training of the neural network on the ground-state wave functions with 
respect to arbitrary potentials, the input itself is a high-dimensional vector and thus can be fed directly into a con-
volutional layer. The formation of the inputs and outputs depends on the problem, and since the neural network 
is built layer by layer, the structure of the neural network is very flexible. The training of the neural network is 
performed efficiently using modern graphics processing units.

Conclusion
We have shown that continuous wave functions like the ground-states of BEC can be “learned” and simulated by 
deep convolution neural networks. Besides the fact that latticed systems can be simulated by neural networks like 
RBM, since that convolution network is good at grasping relations between adjacent features, here we show the 
systems with continuous and smooth distributions can be simulated by convolution neural networks.

The convolution neural network we trained predicts ground states in high precisions when the inputting cou-
pling strength is in the range of the training set. When inputting a value which is not in the training set such as 

Figure 5.  For 2-dimensional BECs, when Ω = −3.12, both ψ1 and ψ2 are predicted by the neural network 
are nearly identical to the real wave functions. We keep 256 points for the x direction and 128 points for the y 
direction. The relative chemical potential error is on the order of 10−4 for all possible Ω.
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g = 550, the relative error of the predicted energy is still in the magnitude of 10−3 (The generated wave function 
and the intermediate outputs are depicted in Figure S1 in the supplementary information). Although the effec-
tiveness of our neural network depends on the training set, the neural network can be a fast BEC ground states 
generator. After training, the neural network predicts ground states much faster than imaginary time evolutions. 
Especially for two-dimensional cases, predicting a two-component BEC using neural network takes less than a 
millisecond while the imaginary time evolution for 8000 iterations takes about 6 seconds on the same Graphics 
Processing Unit (GPU).

Furthermore, we have benchmarked the same neural network on inputting Gaussian disorder potentials. The 
neural network trained on the Gaussian disorder within σD = 0.39 can predict the ground-state wave functions 
on other kinds of potentials. Therefore, the neural network is not simply “remembering” the mapping between 
the input potential and the output wave function. By training, the neural network finds a new method to solve 
GP equations (The intermediate outputs of the neural network is depicted in Figure S1 in the supplementary 
information).

The effectiveness of convolutional neural network for describing continuous quantum system raises some 
open questions. Since the ground states can be “learned” and generated by deep convolutional neural networks, 
can we solve GPE without training, just having the knowledge that the ground state can be represented by the 
neural networks?
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Figure 6.  Our neural network consists of stacks of convolutional blocks. Each stack consists of a convolutional 
layer, batch normalization and the Leaky-ReLU activation. The convolution layers in the first and the last blocks 
have the dilation rate of unity, and the convolution layers in the intermediate blocks have the dilation rate of 2, 4, 
8 and 16. A dilation rate greater than unity is beneficial for learning the wave functions at the larger scale. When 
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