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Abstract: Sperm-zona pellucida (ZP) interaction, involving the binding of sperm surface ligands
to complementary carbohydrates of ZP, is the first direct gamete contact event crucial for subse-
quent gamete fusion and successful fertilization in mammals. It is a complex process mediated
by the coordinated engagement of multiple ZP receptors forming high-molecular-weight (HMW)
protein complexes at the acrosomal region of the sperm surface. The present article aims to re-
view the current understanding of sperm-ZP binding in the four most studied mammalian models,
i.e., murine, porcine, bovine, and human, and summarizes the candidate ZP receptors with estab-
lished ZP affinity, including their origins and the mechanisms of ZP binding. Further, it compares and
contrasts the ZP structure and carbohydrate composition in the aforementioned model organisms.
The comprehensive understanding of sperm-ZP interaction mechanisms is critical for the diagnosis
of infertility and thus becomes an integral part of assisted reproductive therapies/technologies.

Keywords: spermatozoa; zona pellucida; gamete interaction; sperm-ZP receptors; ZP-ligands

1. Introduction

Mammalian fertilization is a species-specific event that involves a series of interactions
between sperm protein molecules and zona pellucida (ZP) glycoproteins of the oocyte.
The initial gamete interaction, also known as the primary binding of the spermatozoa to the
ZP of the oocytes, is facilitated by the complementary sperm and zona surface molecules.

To gain the ability to bind to the ZP of an oocyte, spermatozoa undergo a sequence of
post-testicular maturation events resulting in changes in the sperm protein composition,
especially those localized to the sperm plasma membrane. Ejaculated spermatozoa have a
fully differentiated morphology with a myriad of different protein molecules present on
their surface [1–3]. During sperm transit through the female reproductive tract, the protein
composition of the sperm plasma membrane changes dramatically, adapting spermatozoa
to survival in the uterine environment [4] with the final step of capacitation leading to
exposure of the receptors on the sperm surface responsible for ZP binding [5,6]. The sperm
surface proteins are complementary to the oligosaccharide chains that decorate the ZP of
the oocyte. Spermatozoa bind the ZP carbohydrate moieties via their membrane protein
receptors resulting in, for most, part species-specific gamete recognition (reviewed by
Clark [7]).

The differences in ZP carbohydrate moieties and sperm surface proteins are considered
the main factor in the species specificity of sperm-ZP recognition and binding. While the
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concept of strict species-specificity applies to mice [8] and humans [9], this does not hold
true for domestic animals such as pigs and cattle [10–12].

The initial interaction between the spermatozoa and oocyte takes place at the level
of ZP. Therefore, receptors on the surface of capacitated spermatozoa are key to the fer-
tilization process. The species-specificity of the sperm-ZP interaction can be ensured on
the one hand by the presence of a certain receptor and, on the other hand, by a particular
glycosylation pattern of the ZP.

This review updates current knowledge about proteins and glycans involved in sperm-
ZP interactions and proposed candidate receptors in thoroughly-investigated mammalian
species, including mice, humans, porcine, and bovine. Determinants involved in the sperm-
ZP binding regulate signal transduction resulting in subsequent acrosomal exocytosis (AE),
sperm-ZP penetration, and gamete fusion during successful fertilization.

2. Zona Pellucida Glycoproteins

Zona pellucida (ZP) plays an important role in the oocyte lifespan providing mechani-
cal protection [13] and defense against polyspermic fertilization by directly modulating
sperm function [14,15]. The mammalian ZP is composed of three to four glycoproteins most
commonly designated ZP1, ZP2, ZP3, and ZP4, with inter-species differences addressed
below (Table 1). Four mammalian ZP glycoproteins are the products of three genes: ZPA,
ZPB, and ZPC [16]. Phylogenic studies revealed that ZP2, encoded by ZPA and ZP3, coded
ZPC is common in all the mammalian species so far investigated; meanwhile, ZP1 and
ZP4 are products of the common progenitor ZPB gene, a duplication event that occurred
during the evolution of the amniotes [17,18], see Table 1. Some authors differentiate ZPB
paralogues into (ZP1/ZPB1) coding ZP1 and (ZPB/ZPB2) coding ZP4 [19]. In newer
literature, genes encoding four ZP glycoproteins are termed ZP1-4 to avoid nomenclature
confusion [20], which is in accordance with HUGO nomenclature. From here on, we will
use the HUGO nomenclature of ZP glycoproteins. Depending on species, either ZP1 or
ZP4, or both are present. Synthesis of ZP glycoproteins was attributed to the growing
oocyte in mice [13] whereas, in humans and other species (e.g., domestic pig, cattle, rabbit,
and dog), granulosa/cumulus oophorus cells contribute to the synthesis and deposition
of ZP as well [20]. ZP glycoproteins are conserved throughout the mammalian species
sharing a high amino acid sequence identity between individual ZP1-4 homologs.
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Table 1. Summary of zona pellucida (ZP) glycoproteins in different mammalian species. ZP protein AA sequences were taken from the UniProtKB database, uniport.org and the sequence alignment
was performed using BLAST® software blast.ncbi.nlm.nih.gov/BlastAlign.cgi.

Mammalian
Species ZP Gene ZP Protein

Molecular Weight
(kDa)

Homology with
References

Mouse Human Porcine Bovine

Mouse

ZP1 (ZPB1) ZP1 200 (dimer) - 68% - -

[21–25]
ZP2 (ZPA) ZP2 120 - 58% 55% 57%
ZP3 (ZPC) ZP3 83 - 68% 66% 64%

ZP4 (ZPB/ZPB2) not expressed - - - - -

Human

ZP1 (ZPB1) ZP1 65 68% - - -

[26–29]
ZP2 (ZPA) ZP2 120 58% - 64% 67%
ZP3 (ZPC) ZP3 58 68% - 74% 72%

ZP4 (ZPB/ZPB2) ZP4 65 - - 68% 69%

Porcine

ZP1 (ZPB1) not expressed - - - - -

[30–38]
ZP2 (ZPA) ZP2/PZPL 90 55% 64% - 78%
ZP3 (ZPC) ZP3/ZP3-β 55 66% 74% - 84%

ZP4 (ZPB/ZPB2) ZP4/ZP-α 55 - 68% - 76%

Bovine

ZP1 (ZPB1) not expressed - - - -

[39–41]
ZP2 (ZPA) ZP2 76 57% 67% 78% -
ZP3 (ZPC) ZP3 47 64% 72% 84% -

ZP4 (ZPB/ZPB2) ZP4 68 - 69% 76% -

blast.ncbi.nlm.nih.gov/BlastAlign.cgi
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2.1. ZP Glycoproteins in the Mouse Model

In the best-studied animal model, a mouse, ZP is composed of three glycoproteins:
mZP1 (200 kDa, dimer), mZP2 (120 kDa, monomer), and mZP3 (83 kDa, monomer) [23].
mZP1 shares the domain architecture with ZP4 that is expressed in other mammals such as
human, pig, bovine, and dog (see relevant references in Fahrenkamp et al. [15]), and their
genes are considered paralogous [22,24]. ZP4 (ZPB/ZPB1) is a pseudogene in mice and
therefore not expressed. The basic structural elements of murine ZP are repeating fibers
formed by a pair of glycoproteins mZP2 and mZP3 (heterodimers) linked together by
a dimer of mZP1 glycoprotein [23,25]. The estimated molar ratio of ZP1/ZP2/ZP3 is
1:4:4 [41]. Functional ZP glycoproteins consist of domains, including the signal peptide,
ZP “domain” modules responsible for ZP polymerization, the consensus protease cleav-
age site, and a GPI-anchor [21]. ZP1 and ZP4, on top of the aforementioned domains,
also contain the trefoil domain.

2.2. ZP Glycoproteins in the Humans

Contrary to the mouse, humans express all four ZP genes resulting in four ZP glyco-
proteins termed hZP1, hZP2, hZP3, and hZP4 [28]. hZP1 and hZP4 are paralogs, and their
amino acids sequences share 47% identity. Human hZP1, hZP2, hZP3 amino acid sequences
show 68%, 58%, and 68% homology with mouse mZP1, mZP2, and mZP3 glycoproteins,
respectively (https://blast.ncbi.nlm.nih.gov/). Comparing the amino acid sequences be-
tween human ZP2, ZP3, and ZP4 and porcine glycoprotein homologs, there is 64%, 74%,
and 68% sequence identity [27]. SDS-PAGE analysis revealed hZP2 as a 120 kDa band,
hZP3 as a 58 kDa band, and the 65 kDa band contained both hZP4 and hZP1 [26]. The as-
sembly of ZP glycoproteins into a matrix has been studied in a mouse model and was
discussed above. It was reported recently that a frameshift mutation in the human ZP1
gene caused primary female infertility as a result of the absence of the ZP2-ZP3 filament
crosslinking and the inability to form a stable ZP matrix [29].

2.3. ZP Glycoproteins in the Pig Model

Porcine ZP is composed of three ZP glycoproteins, pZP2-4. ZP1 is a pseudogene in the
pig, and therefore ZP1 is not expressed. SDS-PAGE analysis revealed pZP2 (ZPA/PZPL)
as a 90 kDa band that splits under reducing conditions into two smaller bands of 65 kDa
and 25 kDa [31–33,36]. Both pZP3 (ZPC/ZP3-β) and pZP4 (ZPB/ZP3-α) migrated as
55 kDa protein bands [38]. pZP3 and pZP4 make about 80% of total porcine ZP gly-
coproteins [30,32]. The pZP2 and mouse mZP2 homologs share a 55% amino acid se-
quence identity, while pZP3 and mouse mZP3 share a 66% amino acid sequence identity
(https://blast.ncbi.nlm.nih.gov/). The pZP4 was implied to have the same function as the
mZP1 paralogue [35,37]. It was later predicted that similar to mice, pig ZP filaments are
formed by pZP3 and pZP4 heterodimers, crosslinked with pZP2 based on their estimated
molar ratio of 1:6:6 (pZP2:pZP3:pZP4) [34].

2.4. ZP Glycoproteins in the Bovine Model

Similarly, as in the pig, three glycoproteins were identified in bovine ZP, termed bZP2
(ZPA), bZP3 (ZPC), and bZP4 (ZPB) [39], and the ZP1 is a pseudogene. Furthermore, SDS-
PAGE analysis of deglycosylated ZP glycoproteins showed that bZP2 migrated at 76 kDa,
bZP3 at 47 kDa, and bZP4 at 68 kDa. Similar to the domestic pig, bZP2, under reducing
conditions, split into two smaller bands of 63 kDa and 21 kDa [39]. Amino acid sequences
of bovine ZP glycoproteins show high similarity to their pig counterparts, i.e., 78%, 84%,
and 76% for ZP2, ZP3, and ZP4, respectively (https://blast.ncbi.nlm.nih.gov/). bZP4 was
found to have the strongest sperm-binding activity among the components, while bZP3
had about one-sixth that of bZP4 [40]. The estimated molar ratio of bZP2/bZP3/bZP4 in
bovine is 1:2:1 [41].

https://blast.ncbi.nlm.nih.gov/
https://blast.ncbi.nlm.nih.gov/
https://blast.ncbi.nlm.nih.gov/
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3. Carbohydrate Structure and Glycosylation of ZP Glycoproteins

All ZP glycoproteins are highly heterogeneous due to post-translational modification
by glycosylation of serine/threonine (O-linked glycosylation) and asparagine (N-linked
glycosylation) residues, which are mostly sulfated and sialylated. Structures of the glycan
portion of ZP proteins have been characterized by in-depth and reviewed in-detail [7,42–44].
The carbohydrate content of ZP is estimated at 15–54% (w/w), and its heterogeneity is
reflected as sets of trailing spots on 2-DE electrophoretograms. The glycosylation sites of
individual oligosaccharides and cognate carbohydrate-binding proteins are involved in the
sperm-ZP binding in many species in a species-specific manner [45–47].

In the 1990s, the sugar structures of ZP have deducted from lectin-binding studies.
Some conserved carbohydrate structures were found in almost all species investigated,
such as mannose and N-acetylglucosamine that are common components of the core of
N-linked oligosaccharides [48–50]. On the other hand, β-galactose was found in mouse and
bovine but not in porcine ZP [51]. Terminal N-acetylgalactosamine and α-galactose residues
constitute minor components in murine and bovine ZP, whereas porcine N-glycans are
lacking these N-acetylgalactosamine and α-galactose residues [45]. Human ZP also contains
mannosyl, N-acetylglucosaminyl, and β-galactosyl residues and βGal-(1–3)GalNAc sugar
sequences that are exposed only after removing terminal sialic acid residues [49]. Sialyl-
Lewisx structures are uniquely present in human ZP [52].

The basic structure of N-linked oligosaccharides (complex-type) in mice is similar to
porcine ZP [53,54]. Also, bovine N-linked glycans show practically the same structure as
their murine and porcine homologs [55]. Species-specific differences are most obvious in
the structure of neutral N-linked carbohydrates [56]. In the pig and cattle, neutral oligosac-
charides represent about 25% of the total carbohydrate portion, whereas in the mouse
they are present at less than 5%. Variations in other species are in di-, tri-, tetra-antennary
chains, sulfation, and sialylation. The number of sulfated lactosamine repeats and degree
of sialylation in both N- and O-glycans are the causes of enormous heterogeneity of the ZP
glycoproteins in all species [45,57].

3.1. Glycosylation in the Mouse Model

Mouse ZP contains N-linked oligosaccharides with high-mannose and complex-
type structures (such as di-, tri-, and tetra-antennary branched N-glycans) as well as
O-linked oligosaccharides [58]. The mZP oligosaccharides are complexes containing fucose
residues [51] and form mainly acidic tri- and tetra-antennary chains containing lower
amounts of sulfates and sialic acids in the N-linked chains [51,58,59]. N-glycans are fucosy-
lated and elongated by non-branched N-acetyllactosamine chains. Acidic glycans contain
sialic acids at the nonreducing end or sulfates in the C-6 position of the N-acetylglucosamine
residues of the lactosamine repeats [45,55]. N-acetyl-D-lactosamine (LacNAc), sialized
LacNAc, and terminal N-acetylglucosamine (GlcNAc) were found as terminal units of
N-linked oligosaccharides. In O-linked oligosaccharides, the majority were core-2 type O-
N-acetylgalactosamine [58], with mainly sialic acid found as a terminal unit [60]. Mouse ZP
glycoproteins are composed of 16 potential N-glycosylation sites, with 15 of them being
actually occupied [61]. The mZP1 contains four, mZP2 six and mZP3 six N-glycosylation
sites. Mouse ZP has many additional potential O-glycosylation sites that are less utilized.
There are as many as 82 potential O-linkage sites in mZP1, 84 in mZP2 and 58 in mZP3 [61].
mZP1 is more O-glycosylated than N-glycosylated, whereas mZP2 is predominantly N-
glycosylated, with low or no O-glycosylation, and mZP3 is more N-glycosylated with
relatively low O-glycosylation [61].

3.2. Glycosylation in the Humans

The glycan profile of human ZP is unique compared to other mammalian species [62].
Even though the lectin studies initially indicated a high content of D-mannose in hu-
man ZP [49], ultrasensitive mass spectrometric analyses revealed the absence of the high-
mannose type chain [63]. Human N-linked ZP glycans have bi-, tri, and tetra- anten-
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nary fucosylated complex-type structures, and are terminated with sialyl-Lewisx (SLEX)
and sialyl-Lewisx-Lewisx. O-linked glycans in human ZP are core-1, and -2 type O-N-
acetylgalactosamine, but only core-2 type possess terminal SLEX [63]. Sialyl-Lewisx se-
quences on O- and N-glycans are important for sperm-oocyte binding. Human sperm-egg
binding depends primarily on the recognition of terminal SLEX that is expressed on about
85% of all N-glycans [52,63]. SLEX was found to be expressed more densely in the outer
region of ZP than in the inner layer [52]. In human hZP2, hZP3 and hZP4 glycoproteins,
the N-linked glycosylation is predominant. Although N-linked glycosylation occupies 37%,
27% and 18% of the molecular mass of hZP2, hZP3, and hZP4, respectively, the percentages
of O-linked glycosylation are only 8% for hZP2, 9% for hZP3 and hZP4 seems to be without
O-linked glycosylation [26].

3.3. Glycosylation in the Pig Model

As in the other species previously discussed, porcine ZP glycoproteins are highly heteroge-
neous due to varied amounts of sialylated and/or sulfated poly-N-acetyllactosamine [64].
N-linked chains are composed of neutral and acidic chains at a molar ratio of about 1:3
that constitute di-, tri- and tetra-antennary N-glycans complex with α-fucosyl residue in
the innermost N-acetylglucosamine [65]. The main neutral N-glycans of porcine ZP glyco-
proteins belong to the di-antennary fucosylated glycans containing N-acetyllactosamine
chains [45] and are implicated in sperm-oocyte recognition [34]. Highly sulfated acidic
N-glycans consist of poly-N-acetyllactosamine sequences of different lengths, sulfated at
the C-6 position of GlcNAc [54]. In contrast to the N-glycans of ZP in cyclic sows, a lower
degree of glycan sulfation in the prepuberal zona pellucida has been reported [66]. N-linked
glycans contain fucose residues but no high mannose chains [51]. The largest ZP glycopro-
tein in the pig, pZP2 has six, pZP3 three, and pZP4 five potential N-glycosylation sites.
In addition, pZP4 contains three and pZP3 six potential O-glycosylation sites [37]. Sugar-
mapping of pZP4 glycopeptides has revealed that all three potential N-glycosylation sites
Asn203, Asn220, and Asn333 of the mature pZP4 carry neutral bi-antennary N-glycans,
whereas only Asn220 is also glycosylated with neutral tri- and tetra-antennary chains.
At least one disulfide bond between the neighboring cysteine residues Cys224 and Cys243
has been localized in the N-terminal part of pZP4 [45,57]. O-linked glycans comprise
9 neutral and 26 acidic unbranched chains of core-1 O-N-acetylgalactosamine type [67].
Similar to N-linked glycans, the O-linked glycans are sulfated at the C-6 position of GlcNAc
and/or sialylated. The N-glycosylation of porcine ZP glycoproteins, which occurs during
meiotic maturation is crucial in sperm-ZP interactions, including sperm binding to ZP and
induction of AE in ZP-bound sperm [68]. Nevertheless, the binding and induction of AE in
boar spermatozoa do not require the participation of terminal Galα1-3Gal sequences [69].

3.4. Glycosylation in the Bovine Model

Thus far, only N-linked glycans have been reported in bovine ZP [51]. Bovine ZP
glycoproteins are contained with 23% of neutral carbohydrate chains, of which the main
constituent is high-mannose-type oligosaccharide structure, and 77% of acidic chains with
a high content of sialic acid as opposed to the high content of sulfation that is typical for the
pig [59]. Bovine ZP glycans are therefore more similar to those of the mouse than the pig
and human. The acidic N-linked glycans of bovine ZP contain di-, tri- and tetra-antennary
sialylated complex-type structures with a fucose residue at their reducing ends [51]. Molec-
ular cloning of bovine ZP revealed five potential N-glycosylation sites in bZP4 (ZPB), three
potential glycosylation sites in bZP3 (ZPC), and four potential N-glycosylation sites in bZP2
(ZPA) [40,70]. Further studies confirmed bZP2 being N-glycosylated at Asn83, Asn191,
and Asn527 [71], and bZP2 being N-glycosylated at Asn124, and Asn146 [70].

4. Sperm-Zona Pellucida Interaction Ligands

It has been generally accepted that the interaction between the spermatozoa and
the oocyte ZP during fertilization is a multi-step process, including the initial sperm
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attachment to the ZP surface glycoproteins, also known as the primary sperm-ZP binding,
resulting in the induction of AE, reinforced binding to ZP also known as the secondary
sperm-ZP binding, sperm penetration through the ZP, and the adhesion and fusion of
the sperm plasma membrane with the oolemma [72–75]. The primary sperm-ZP binding
event is mediated by complementary protein molecules (receptors) on the sperm surface,
which interact with lectin-like proteins and/or carbohydrates/glycoconjugates of ZP [7].
A number of the candidate sperm receptors that are discussed in the following section,
possess a lectin-type affinity for specific sugar residues of ZP. The sperm interactions with
the ZP glycoproteins are species-specific, mainly due to the differences in ZP glycosylation
(see the previous section). As will be discussed in the following section, sperm molecules
involved in the primary sperm-ZP binding originate from both spermatogenic cells and
from seminal plasma produced by accessory sex glands; they localize to the apical region
of the anterior part of the sperm head acrosome. On the contrary, molecules involved in the
secondary binding originate predominantly from spermatogenic cells and localize mainly
to the inner acrosomal membrane which is exposed by acrosomal exocytosis after primary
sperm-ZP binding [76].

The last two decades, however, showed that this simplistic model might not reflect the
complexity of this fertilization step in its entirety. In the late 1980s’, Fraser at el. [77] noted
a higher incidence of acrosomal loss in the capacitation promoting media, which was later
elaborated by Kim and Gerton [78] to conclude that AE is a continuously variable process
initiated under capacitating conditions, and once spermatozoa encounter the ZP, the rate
of AE is accelerated. Therefore, the idea arose that ZP might not be the only physiological
inducer of AE, and rather than ZP triggering AE, it accelerates the progress of AE. On the
side of spermatozoa, the concept got even more perplexing when it was reported that some
acrosomal matrix proteins with ZP-binding affinity such as ZAN, ACR, ACRBP, ZPBP1,
and ZP3R traffic to the sperm head surface during sperm capacitation and thus might
participate in the initial (primary) sperm-ZP binding as well [79–81]. It is thus plausible
that sperm capacitation primes spermatozoa for AE, and sperm-ZP adhesion induces it.

4.1. ZP Ligands for Sperm Binding in the Mouse Model

The mouse has been the most extensively studied animal model for sperm-ZP interac-
tions since the 80s. It was shown early that epididymal, acrosome intact spermatozoa were
binding mZP3 resulting in subsequent induction of AE [82–84]. At that time, it was believed
that α-Gal residues at the nonreducing end of the O-linked chains within the C-terminus
of mZP3 were being recognized by acrosome intact spermatozoa [13,85,86], pinpointed
to the region Ser329 to Ser334 of mZP3 [87]. This model was, however, not supported by
the results of Thall et al. [88], where galactosyltransferase-KO female mice lacking α-Gal
residues remained fertile. Instead, β1-4 linked Gal residues of LacNAc sequence, with or
without α1–3 Gal cap, were thought to be responsible for approximately 80% of murine
sperm-ZP binding [89–91]. On the other hand, AE spermatozoa were preferentially binding
mZP2 [92], which was later confirmed, and a sequence of about 100 amino acids near the
N-terminus was shown to be involved in this interaction [93]. The idea that spermatozoa
are intact when they encounter ZP arose from the studies of Saling et al. and Saling and
Storey [94,95] and had become a widely accepted, long-lasting paradigm of mZP3 serving
as the primary ZP-sperm ligand for acrosome intact spermatozoa that can induce AE while
mZP2 served as the secondary sperm ligand. This was mainly because epididymal, as op-
posed to ejaculated spermatozoa, are still widely used in the mouse model, which does not
completely reflect the situation in vivo because of the lack of epididymal sperm exposure
to seminal plasma. This concept was often challenged, and as previously noted, Kim and
Gerton [78] proposed that by the time capacitated spermatozoa reached ZP, they were
already committed to AE. Baibakov et al. [96] reported that the mere binding of acrosome
intact spermatozoa to ZP is not sufficient for the induction of AE and proposed a different
model of AE. Other authors reported that AE starts as soon as spermatozoa reach cumulus
cells [97], and this concept was finally refuted with the study of Inoue et al. [98], where the
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authors reported that spermatozoon extracted from perivitelline space could fertilize an-
other zona-enclosed oocyte. Due to these new findings, the place of AE induction, inducers
of AE, as well as the mechanism by which the acrosome mediates sperm-oocyte interaction,
still remains to be resolved [99–101]. As noted previously, the nature of initial sperm-ZP
interactions relies primarily on the recognition of carbohydrate moieties present on the ZP
by lectin-like binding receptors on the sperm head (carbohydrate-dependent model) [7].
Alternative molecular models for murine sperm-ZP binding were proposed including,
protein-protein interactions (carbohydrate-independent) model and the redundant, per-
haps synergistic carbohydrate-protein and protein-protein interactions (domain-specific)
model [102,103].

4.2. ZP Ligands for Sperm Binding in the Human

Human gametes have recently become a predominant study subject for the investiga-
tion of sperm-ZP interactions. The role of human ZP glycoproteins in sperm binding and
induction of AE was exhaustively reviewed in Gupta [20]. Studies using either native or
E. coli or baculovirus-expressed recombinant hZP glycoproteins showed that more than
one ZP glycoprotein is responsible for the binding of spermatozoa to the oocyte with the
ability to induce AE. In fact, hZP1, hZP3 and hZP4 were all found to bind capacitated
spermatozoa and to induce AE. hPZ3 and hZP4 seem to have distinct binding sites on
capacitated spermatozoa [104]. N-linked glycans of hZP1, hZP3, and hZP4 were not found
to be necessary for sperm-ZP binding; however, they are indispensable for the induction
of AE [20]. As much as 79% of human sperm-ZP binding may rely on lectin-like inter-
actions [105], predominantly mediated by the terminal carbohydrate sequence termed
sialyl-Lewisx (NeuAcα2-3Galβ1-4(Fucα1-3)GlcNAc) that is expressed on about 85% of all
N-glycans [63]. Similar to the mouse model, hZP2 binds only to post-AE spermatozoa and
is thought to serve as the secondary binding ligand [26,104,106]. Human ZP is believed to
be the primary physiological inducer of AE in the oocyte-bound spermatozoa; however,
this does not mean that it is the sole AE inducer [101].

4.3. ZP Ligands for Sperm Binding in the Pig Model

In the porcine model, pZP4 at its N-terminal region (Asp137 to Lys247) has been
identified as the sperm-binding active fragment [65], and the pZP3/pZP4 heterocomplex is
essential for the sperm-binding activity of glycoproteins [107]. The N-linked glycosylation
at Asn203 and Asn230 of pZP4 was found to be vital for sperm-ZP binding [108], and the
nonreducing LacNAc (Galβ1-4GlcNAc) residues of the tri- and tetra- antennary complex-
type N-linked chains mediate the binding [12,64,109]. Interestingly, the sperm binding
specificity changed to α-Man after AE [12]. The O-linked glycans on pZP3/pZP4 were also
suggested to participate in sperm-ZP binding [37]. Since the β1-4 linked Gal residues of
LacNAc sequence were found to be responsible for murine sperm-ZP binding as well, it is
not surprising that murine spermatozoa can bind porcine ZP [69]. Of interest, porcine ZP
appears to share certain surface glycans with rabbit erythrocytes, which may explain the
ability of rabbit erythrocytes to bind both murine and porcine spermatozoa in a hybrid cell
culture system, although unlike porcine spermatozoa, the mouse ones do not initiate AE
upon such interaction [110]. The pZP3/pZP4 glycans are vital for the induction of AE [111],
but since porcine spermatozoa may already initiate AE at contact with cumulus oophorus,
ZP might not be the sole physiological AE inducer in this species [112].

4.4. ZP Ligands for Sperm Binding in the Bovine model

Similar to domestic pigs, the bZP3/bZP4 heterodimer mediates interactions with
spermatozoa in bovine species [70,113], and native bZP4 has the highest sperm-binding
activity among all of bZPs [40]. Nonreducing terminal α-mannosyl residues of the N-linked
high-mannose-type chains play a vital role in bovine sperm-ZP binding [108,114], and the
sperm-binding specificity does not change after AE, unlike in the pig [12]. N-glycosylation
on Asn146 of bZP3 was found to be essential for bovine sperm-ZP binding [70]. The in-
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volvement of sialic acid in the sequence Neu5Ac(α2-3)Gal(β1-4)GlcNAc has also been
implicated in bovine sperm-ZP binding [115]. Even though bZP was found to induce
sperm AE in vitro [116], in vivo studies indirectly suggest that bZP might not be the only
physiological inducer of AE [117,118].

5. Sperm Surface Receptors with ZP-Binding Affinity

Sperm surface molecules with ZP-binding affinity have been studied for four decades.
Additionally, many surface molecules have been proposed to serve as receptors for the
primary sperm-ZP binding. The insertion of ZP-binding proteins into sperm plasma
membrane occurs during spermatogenesis, followed by their translocation to the sperm
surface during the epididymal maturation and addition of seminal plasma proteins at
ejaculation (see Figure 1; relevant sperm proteins are detailed in the following sections
and in Table 2). As mentioned previously, several known intra-acrosomal proteins with
ZP-binding affinity translocate to the sperm surface during sperm capacitation, after which
they can participate in the primary ZP binding. Sperm receptors involved in this binding
are localized on the plasma membrane of the apical region of the capacitated sperm head.
Similar to ZP glycoproteins, many of these sperm surface proteins are species-specific
(see below). The known molecules with ZP-binding affinity reported in the mouse, humans,
the pig, and the bovine, including their origin, localization, and binding specificity are
summarized in Table 2.
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Table 2. A summary of proteins with ZP-binding affinity.

Protein with ZP-Binding
Affinity Species Origin Localization Binding Activity References

β1,4-Galactosyltransferase
(B4GALT1/GalTase)

Mouse/rat Male germ cells Plasma membrane overlying the
acrosome region

Binding to N-acetylglucosamine (GlcNAc)
residues of ZP3, an inducer of AE via

G-proteins, binds to terminal GlcNAc residues
on O-linked oligosaccharides of ZP3

[119–124]

Human Unknown Binding to ZP is assumed [125]

Boar
Anterior part of the sperm head, PM of

the acrosome region, periacrosomal
region of the sperm head

Binding to N-acetylglucosamine (GlcNAc)
residues of ZP3 and/or ZP4; not necessary for

sperm to bind ZP
[126,127]

Bull Anterior part of the sperm head,
periacrosomal region of the sperm head [126,128]

Proacrosin/acrosin (ACR)

Mouse/rat Pachytene spermatocytes Sperm acrosomal part

Binding non-enzymatically to ZP glycoproteins,
mediating the secondary or tight binding of

spermatozoa to the zona pellucida following the
acrosome reaction

[129–133]

Human Acrosome, sperm surface in acrosomal
cap

Binding to the solubilized ZP, interaction with
mannose residues in ZP [134–141]

Boar Spermatids
Inner acrosomal membrane and

acrosome, sperm surface in acrosomal
cap

High-affinity binding activity to sulfated
oligosaccharide chains in ZP, secondary binding

molecule; mediating or primary binding
molecule, ZP-binding activity

[142–149]

Bull Spermatids Acrosomal region [150–152]

Zonadhesin (ZAN)

Mouse Male germ cells

Outer acrosomal membrane and
acrosomal matrix, a portion of ZAN

translocates to the apical head region
during sperm capacitation

Binding to the extracellular matrix of the oocyte,
stimulation of tyrosine kinase activity leading to

acrosomal exocytosis
[80,153,154]

Human Male germ cells Membrane protein, apical head region,
acrosome matrix Binding to ZP3 [155,156]

Boar Germ cells—haploid
spermatids

Transmembrane protein, apical head
region in acrosome matrix Binding to sulfated carbohydrates in ZP [153,157,158]

Bull Male germ cells Outer acrosomal membrane and
acrosomal matrix

Binding to the extracellular matrix of the oocyte
(assumed based on the other species) [159]
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Table 2. Cont.

Protein with ZP-Binding
Affinity Species Origin Localization Binding Activity References

Arylsulfatase A
(ARSA/AS-A/SLIP1)

Mouse/rat Male germ cells,
epididymal fluid

Acrosomal matrix, sperm surface
overlying acrosome Binding ability to ZP sulfated glycans [160–163]

Human Acrosomal matrix, sperm surface
overlying acrosome ZP binding [164,165]

Boar Sperm head surface and acrosome, the
head anterior region

Binding to sulfated sugar residues of the acidic
ZP glycans present in ZP3α [166]

Bull Convex ridge of the plasma membrane
in the acrosomal part ZP binding, assumed [167]

α1–3-Fucosyltransefrase (FUT5)
Mouse Male germ cells Sperm head plasma membrane Binding sites or receptor for ZP, sperm–oocyte

recognition [168,169]

Human Integral membrane protein in the
acrosomal region

Interaction with solubilized human zona
pellucida [170]

α-D-Mannosidase (MAN2)

Mouse Male germ cells Plasma membrane overlying the
acrosome Binding molecule or receptor for ZP [171]

Human Sperm plasma membrane
Role as a ligand for sperm-ZP recognition and

binding, sperm surface α-D-mannosidase binds
high mannose oligosaccharide units of ZP

[172,173]

Cysteine-rich secretory protein
(CRISP1)

Mouse/rat Epididymis Dorsal region of the acrosome ZP-binding activity [174–177]

Human Epididymis Sperm head plasma membrane? Binding to ZP-intact human eggs, specific
interaction with ZP3 [178,179]

Zona receptor kinase (ZRK)
Mouse Sperm head plasma membrane Binding to the extracellular matrix of the oocyte [180]

Human Male germ cells Sperm surface in the acrosomal region Receptor for ZP3 [181]

Fertilization antigen-1 (FA-1)
Mouse Testis Sperm surface glycoprotein [182–188]

Human Sperm surface glycoprotein Recognition and binding to ZP3 [182,184–
186,188]
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Table 2. Cont.

Protein with ZP-Binding
Affinity Species Origin Localization Binding Activity References

MFGE8/SED1/P47/lactadherin

Mouse/rat Male germ cells,
Caput epididymis

Sperm plasma membrane overlying the
acrosome

Recognition and binding to carbohydrate
residues of mZP2 and mZP3 [189,190]

Human Sperm plasma membrane overlying the
acrosome ZP-binding activity, assumed [191]

Boar Testis
Peripherally associated, the apical ridge

of the sperm head or entire acrosome
region

ZP-binding activity [80,149,192,
193]

Angiotensin-converting
enzyme 1 (ACE1)

Mouse Spermatids Sperm plasma membrane overlying the
acrosome ZP-binding activity [194,195]

Human Spermatids,
Seminal plasma

Sperm plasma membrane overlying the
acrosome, connecting piece, midpiece ZP-binding activity, assumed [196–199]

Boar Spermatids, epididymal fluid
Seminal plasma

Sperm plasma membrane overlying the
acrosome, connecting piece, midpiece ZP-binding activity [200–203]

Bull Spermatids, epididymal fluid
Seminal plasma

Sperm plasma membrane overlying the
acrosome, connecting piece, principal

piece
ZP-binding activity, assumed [201–206]

ZP3R/sp56/AM67 Mouse/rat/
guinea pig Male germ cells

Overlying the sperm acrosome, the head
of acrosome intact sperm, plasma

membrane protein

Binding to terminal galactose residue present on
ZP3 O-linked oligosaccharides [78,207–210]

P26h/P34H/P25b/carbonyl
reductase (DCXR)

Mouse/
hamster

Epididymis—
epididymosomes

Plasma membrane overlying the
acrosome [211–214]

Human Epididymis—
epididymosomes

Plasma membrane overlying the
acrosome Involved in the primary ZP binding [215,216]

Boar Apical plasma membrane [217]

Bull Epididymis—
epididymosomes

Plasma membrane overlying the
acrosome [218–220]

Spermadhesins AWN, AQN1,
AQN3 Boar Seminal plasma Sperm plasma membrane surface

Binding to Galβ(1–3)-GalNAc and
Ga1β(1–4)-GlcNAc carbohydrate structures,

ZP-binding activity

[217,221–
229]
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Table 2. Cont.

Protein with ZP-Binding
Affinity Species Origin Localization Binding Activity References

Binder of sperm protein
DQH/BSP1/pB1

Boar Seminal vesicles
Sperm plasma membrane surface, entire

sperm head, in the acrosome region

Interaction with sialylated ZP glycoproteins [230–232]

Bull Seminal vesicles Nonreducing terminal α-mannosyl residues of
the N-linked high-mannose-type chains [108,114,233]

ZPBP1/sp38/IAM38

Mouse Spermatids Outer and inner acrosomal membrane Secondary ZP binding [234,235]

Human Spermatids Acrosomal matrix Secondary ZP binding [236,237]

Boar Spermatids
Acrosomal matrix, inner acrosomal

membrane, sperm surface in capacitated
spermatozoa

Secondary ZP binding may be involved in
primary ZP binding due to its localization in

capacitated spermatozoa
[238–240]

Bull Spermatids
Acrosomal matrix, inner acrosomal

membrane, sperm surface in capacitated
spermatozoa

Secondary ZP binding may be involved in
primary ZP binding due to its localization in

capacitated spermatozoa
[2,240]

SPACA2/SP-10/ACV1

Mouse Spermatids Acrosomal matrix Sperm attachment to ZP and ZP penetration
was inhibited by anti-SP-10 antibodies [241]

Human Spermatids Acrosomal matrix
SP-10 does not seem to be involved in ZP

binding; however, ZP penetration was inhibited
by anti-SP-10 antibodies

[241–243]

Boar Spermatids Acrosomal matrix, sperm surface in
capacitated spermatozoa

Surface localization implies the role in primary
ZP binding, sperm attachment to ZP and ZP

penetration was inhibited by anti-SP-10
antibodies

[80,241]

Bull Spermatids Acrosomal matrix Anti-SP-10 antibodies reduced secondary
sperm-ZP binding [244]

alpha-L-fucosidase (FUCA1)

Mouse/Rat Spermatids
Seminal plasma

Plasma membrane overlying the
acrosome, equatorial segment Anti-FUCA1 antibodies inhibited ZP binging [245–247]

Human Spermatids
Seminal plasma

Plasma membrane overlying the
acrosome, equatorial segment ZP binding assumed [248,249]

Bull Spermatids
Seminal plasma Unknown ZP binding assumed [250]
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Table 2. Cont.

Protein with ZP-Binding
Affinity Species Origin Localization Binding Activity References

Adhesion protein z (APz) Boar Epididymis Integral plasma membrane protein Adhesion of capacitated sperm to the oocyte
prior to the acrosomal reaction [251,252]

26S proteasome
Human Plasma membrane overlying the

acrosome
Component of high-molecular-weight

ZP-binding complexes [253]

Boar Spermatids Plasma membrane overlying the
acrosome

Component of high-molecular-weight
ZP-binding complexes [254]
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5.1. Evolutionarily Conserved Mammalian Sperm-ZP Receptors and Other ZP-Binding Proteins

First, we will discuss the ZP-binding molecules that are shared in the species reviewed.

5.1.1. Galactosyltransferase (B4GALT1/GalTase)

One of the first investigated and reported sperm-ZP binding receptors is a β1,4-
Galactosyltransferase (B4GALT1/GalTase) has been implicated in sperm-ZP binding pro-
tein localized in the acrosomal cap in the mouse [119,255–257], pig [126,127], and also
in bull [126,128,258]. B4GALT1 belongs to the glycosyltransferase enzyme family that
catalyzes the transfer of glycosyl residue to the terminal sugar of a saccharide chain.
Sperm B4GALT1 is a transmembrane protein that is incorporated into the plasma mem-
brane during sperm development in the testis. Mouse sperm B4GALT1 binds galactose
and N-acetylgalactosamine residues on terminal N-acetylglucosamine oligosaccharides
of ZP3 glycoprotein [119]. By aggregation of B4GALT1, ZP3 induces subsequent acroso-
mal exocytosis of mouse and boar spermatozoa [93,119,126]. However, the presence of
B4GALT1 is not essential for successful fertilization in the mouse, as demonstrated by the
gene KO experiment in which the B4GALT1-null males were fertile. However, spermato-
zoa from B4GALT1-null males have a reduced ability to initiate AE as a response to ZP3
binding, but still retain the capability to bind to the coat of oocyte and fertilize it [259,260].
Although Tulsiani et al. [172] initially did not detect any B4GALT1 activity in the human
sperm plasma membrane, a later study by Huszar et al. [125] found the B4GALT1 activity
on the surface of human spermatozoa. Nevertheless, the precise localization of B4GALT1
on human spermatozoa has not yet been described.

5.1.2. Proacrosin/Acrosin (ACR)

Another conserved ZP-binding sperm protein is proacrosin/acrosin (ACR). A fucose-
binding protein has first been detected in the porcine spermatozoa by employing a specifi-
cally developed modified enzyme-linked-lectin-assay [261], and the N-terminal sequence
of this fucose-binding protein identified it as ACR [262]. ACR is synthesized in its zymogen
form, proacrosin, and is converted to its active form during capacitation via several interme-
diate forms [145,146]. ACR shows a high affinity to sulfate groups within the lactosamine
repeats of N- and O- glycans of the ZP [45,262]. Although ACR has been described as a
secondary binding receptor to ZP, abundant in the acrosomal matrix, its presence on the
surface of human and boar sperm acrosomes [137,149,254] suggests that acrosin could also
participate in primary sperm-ZP binding. Tanphaichitr et al. [80] showed that a portion of
ACR is indeed transported to the sperm surface during capacitation. Proacrosin/acrosin
has been reported in the acrosome of mouse spermatozoa as well [129,132]. Studies of
ACR knock-out mice and rats showed that these animals were fertile despite a delay in
the dispersion of the cumulus cells by ACR-null spermatozoa in both species [263,264] and
delayed fertilization in the mouse [265]. The contribution of ACR to fertilization, however,
may be more profound in other species. Dudkiewicz [266] reported that the fertilization
rate was decreased in rabbits inseminated with spermatozoa pre-treated with anti-acrosin
antibodies. In humans, the inhibition of acrosin by soybean trypsin inhibitor prevented
spermatozoa from penetration of ZP in vitro [267]. Most importantly, contrary to rat and
mouse ACR-KO ablation models, ACR gene ablation rendered male hamsters completely
infertile due to a failure of sperm-zona penetration [268]. It appears that the mouse is
rather an exception as the sperm acrosin activity is weaker when compared to other mam-
malian (rodent) species [269], suggesting it may not rely solely on acrosin. Furthermore,
murine ZP of ~6.2 µm [270] is thinner when compared to other species, e.g., ~18 µm in
the rabbit: [271,272], ~20 µm in the golden hamster [273], ~18 µm in pigs [11], ~16 µm
in cattle [274] and ~16 µm in humans [275]. Limited information is available about the
proacrosin/acrosin system in bull spermatozoa. Nevertheless, its presence in the acrosomal
region of bull spermatozoa has been associated with sperm penetration through ZP [152].
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5.1.3. Zonadhesin (ZAN)

Another sperm surface protein with ZP-binding ability, zonadhesin (ZAN), is a multiple-
domain protein [157,276,277] originally isolated from boar spermatozoa [157–159,278],
and later reported in mouse [153], bull [159] as well as in human spermatozoa [155,156].
The ZAN is a transmembrane protein that is expressed during spermatogenesis in early
spermatids [153,158] and is very quickly post-translationally modified by proteolytic en-
zymes [153,277]. The structure of ZAN shows significant amino acid sequence variations
among mammalian species [277]. ZAN displays a multifunctional mosaic structure with
domains such as an extracellular MAM domain, a mucin-like domain present in pathogens,
a von Willebrand D-domain common in extracellular glycoproteins, and a domain ho-
mologous to epidermal growth factor (EGF). These domains are involved in multiple
protein-protein cell interactions, including sperm-ZP binding [279]. ZAN also facilitates
cell interactions in the male reproductive tract, for example, during spermatogenesis
(between germline, Sertoli, and epithelial cells) or may act as a barrier to prevent nonspe-
cific interactions between spermatozoa and other cells in the female reproductive tract,
for instance, sperm adhesion in the oviduct [153].

5.1.4. Arylsulphatase A (ARSA/AS-A)

Arylsulphatase A (ARSA/AS-A), also known as sulfolipid immobilizing protein
(SLIP1) or p68, was reported in mouse, human, boar and bull spermatozoa [166,167,280–283];
however, the ZP-binding affinity in bovine is assumed based on other models. In the
male reproductive system, ARSA is reported in three forms: (i) the intra-acrosomal form
emerging at high levels during the formation of this organelle in spermatids, therefore
of testicular origin, (ii) the surface-associated form that is expressed in the epididymal
tissue and incorporated to the sperm surface during the epididymal passage, and iii) a
free, secreted form in the epididymal fluid [160–163,166,283]. ARSA is an enzyme desulfat-
ing sulfoglycolipids, specifically targeting sperm sulfogalactosylglycerolipid (SGG) [284]
during and after ejaculation [285]. The ARSA found on the sperm surface overlying the
acrosome contains positively charged amino acids that promote binding to SGG, which is
present in the mammalian testes and spermatozoa and implicated in sperm-ZP bind-
ing [281]. ARSA and SGG may co-interact with ZP3 via binding to sulfated sugar residues
present on the oocyte ZP glycans [162,166,283]. Furthermore, the role of ARSA in sperm-ZP
binding was shown by anti-ARSA IgG, which decreased mouse sperm-ZP binding in a
dose-dependent manner [162,286].

5.1.5. MFGE8/SED1/p47/Lactadherin

Mouse MFGE8/SED1 (a homolog to boar p47/lactadherin) is localized to the Golgi
complex of spermatids, from which it is probably secreted. However, the predominant
source of MFGE8 appears to be the initial segment of the caput epididymis where it is se-
creted by epithelial cells and coats the sperm head overlying the acrosome via intercalation
of its discoidin/C domains into the sperm plasma membrane [189,190]. Mouse MFGE8
is a peripheral membrane protein homologous to a group of secreted proteins contain-
ing N-terminal Notch-like type II EGF (epidermal growth factor) repeats and C-terminal
discoidin/F5/8 type C domains. These domains are responsible for MFGE8 attachment
to the sperm membrane and the interaction with ZP [189,190]. The homolog of murine
MFGE8 has also been reported in the pig, and, similarly, as in mouse, it behaves as a
peripheral membrane protein [192]. Porcine MFGE8, previously referred to as p47 or lac-
tadherin, was isolated from boar spermatozoa by affinity chromatography on immobilized
ZP glycoproteins and homology to the short isoform of MFGE8 was determined [192,193].
Porcine MFGE8 was detected in the acrosomal region of testicular, epididymal, and in vitro
capacitated spermatozoa [149,192]. The localization and expression of porcine MFGE8
change during post-testicular sperm maturation and capacitation [80,193]. The expression
of porcine MFGE8 increases during the sperm transit from caput to cauda epididymis.
MFGE8 was also reported as a minor constituent of adult boar seminal plasma [287],
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and therefore more MFGE8 may bind to the sperm surface during ejaculation. This step-
wise MFGE8 acquisition is probably caused by the progressive accumulation of MFGE8
on the sperm surface [193]. Interestingly, porcine MFGE8 is also implicated in the binding
to oviductal glycans that promote a sperm reservoir formation via their interaction with
sulfated Lewis-X structures [288]. During capacitation, porcine MFGE8 appears to be
unmasked by the release of coating proteins, possibly with a portion of MFGE8, resulting in
the spreading from the apical ridge over the entire acrosomal region during sperm capacita-
tion [193,289]. Of interest, MFGE8 was found to copurify with 26S proteasome [290], one of
the proposed zona lysins [291], and a component of high-molecular -weight zona-binding
complexes that will be discussed below. Furthermore, the capacitation related release of the
sperm coating proteins as well as the relocation of MFGE8 from the apical ridge to the entire
acrosome is modulated by 26S proteasome [289,292]. As mentioned earlier, porcine MFGE8
also has a mosaic structure organized into two N-terminal EGF-like domains followed by
two tandem repeats with similarity to C1 and C2 domains found in blood clotting factors
V and VIII, known to be involved in lipid binding. The second, the EGF-like domain,
contains an integrin-binding sequence for cell adhesion [192]. MFGE8 was also found to be
expressed on the acrosomal surface of intact human spermatozoa [191].

5.1.6. ZP3R (Syn. sp56/AM67)

ZP3 binding protein ZP3R (syn. sp56/AM67) was first identified in mouse sperma-
tozoa and initially localized to the acrosomal surface [207,208]; for reviews, see [79,293].
Intra-acrosomal localization of ZP3R was reported later [209,294]. Further study of ZP3R
discovered that, during sperm capacitation, this protein translocated from the acrosomal
matrix to the sperm plasma membrane [78,295]. ZP3R is expressed in testis during early
spermiogenesis, and its N-linked carbohydrate side chains are trimmed during the differ-
entiation to spermatids [209]. Even though unfertilized oocytes treated with recombinant
ZP3R showed diminished binding of spermatozoa to the ZP [296], the ZP3R−/− mice were
reported to be fertile [210].

5.1.7. ZPB1/sp38/IAM38

ZPB1/sp38/IAM38 originated in spermatids and has been reported in mouse, human,
and pig as well as bull spermatozoa. This protein is localized in the outer and inner
acrosomal membrane or in the acrosomal matrix and is known as the secondary sperm-
ZP binding receptor [234–238]. Nevertheless, ZPB1 was also detected on the surface of
capacitated spermatozoa in boar as well as in bull and, due to its localization, may be
implicated in the primary sperm contact with ZP [2,239].

5.1.8. SPACA2/SP-10/ACV1

SPACA2/SP-10/ACV1 is another protein proposed as a sperm-ZP binding receptor
that has been identified in the acrosomal matrix in all species mentioned above [80,241–244].
Nevertheless, the SPACA2 occurrence on the surface of capacitated boar spermatozoa
implies a possible role in the primary attachment to ZP [80,241].

5.2. Mouse and Human Sperm-ZP Binding Receptors

This subsection is focused on molecules with ZP-binding affinity that are shared
between human and mouse spermatozoa. These include α-1-3-fucosyltransferase, α-D-
mannosidase, cysteine-rich secretory protein 1, zona receptor kinase, and fertilization
antigen-1, all reviewed below.

5.2.1. α-1-3-Fucosyltransferase (FUT5)

The α-1-3-fucosyltransferase (FUT5) was detected on the plasma membrane of both
ejaculated and capacitated mouse spermatozoa [168,169]. Mouse FUT5 plays an important
role in a variety of cell surface glycosylation events, mostly during sperm maturation.
During spermatogenesis, FUT5 modulates germ cell-Sertoli cell interactions within the
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seminiferous epithelium; it may be involved in the adhesion of germ cells to the surround-
ing Sertoli cell and their release in the seminiferous tubule lumen during spermiation [168].
However, the presence of FUT5 activity on the surface of capacitated spermatozoa implies
the involvement in ZP binding [169]. FUT5 was identified in the human spermatozoa,
where it is an integral membrane protein localized to the acrosomal region, which is
consistent with the proposed ZP-binding ability [170].

5.2.2. α-D-Mannosidase (MAN2)

Another conserved enzyme with ZP-binding affinity is α-D-mannosidase [171–173].
It is an integral sperm plasma membrane protein that probably facilitates ZP binding by
adhering to mannose content present on ZP oligosaccharide chains [171–173]. The par-
ticipation of α-D-mannosidase in ZP binding was shown by Cornwall et al. [171] in the
experiment where α-mannosidase inhibitor treatment led to the reduction in the number
of bound spermatozoa to ZP.

5.2.3. Cysteine-Rich Secretory Protein (CRISP1)

Cysteine-rich secretory protein, CRISP1, was identified in the mouse, rat, and human
spermatozoa [174,175,178]. It is an epididymal protein that binds to the sperm head surface
during epididymal transit [178]. CRISP1 is a multifunctional protein reported to participate
in primary sperm-ZP binding [176] as well as in gamete fusion [177]. Studies performed
by Da Ros et al. [297] showed that CRISP1 knockout spermatozoa exhibited an impaired
ability to penetrate both ZP-intact and ZP-free oocytes that support the proposed roles of
CRISP1 during gamete interaction.

5.2.4. Zona Receptor Kinase (ZRK)

Zona receptor kinase (ZRK) is a 95 kDa protein localized in the acrosomal region of
the sperm head surface in mice [180] and humans [181]. Binding of ZP3 to ZRK stimulates
its kinase activity, while synthetic ZRK peptides inhibit sperm-ZP binding implying the
role of ZRK in sperm-ZP binding [181].

5.2.5. Fertilization Antigen-1 (FA-1)

Fertilization antigen-1 (FA-1) is a 23 kDa glycoprotein localized on the sperm surface,
and similar to ZRK, it possesses a tyrosine kinase activity [298]. FA-1 is synthesized by
male germ cells [299] and was suggested as the molecule mediating gamete recognition and
the primary sperm-ZP binding in humans [182,184–186,188] and mouse models [183,187].
Anti-FA-1 antibodies significantly reduced human sperm-ZP binding [185,186].

5.2.6. Angiotensin-Converting Enzyme 1 (ACE1)

Angiotensin-converting enzyme 1 (ACE1) has been proposed as a ZP-binding molecule
due to its affinity for ZP [203]. Two forms of ACE1 are encoded by the same gene, namely
the somatic ACE and germinal/testicular tACE (see reviews [300,301]). ACE1−/− knock
out mice were subfertile and showed reduced ZP binding, and fertility was rescued when
the functional tACE gene was reintroduced [194,195]. tACE was also found on the human
sperm surface [198]. Of note, ACE1 homolog ACE2 is expressed in male germ cells, Sertoli
cells and Leydig cells [302,303] and was reported in boar seminal plasma as well [287];
however, its possible participation in sperm-ZP binding has not been reported to date.
During the global COVID-19 pandemic, ACE2 is getting significant attention as the cellular
receptor of the SARS-CoV-2 virus [304].

5.2.7. P34H/Carbonyl Reductase/DCXR

In human spermatozoa, another molecule with ZP-binding affinity termed P34H/carbonyl
reductase/DCXR has been reported [215,216]. The DCXR was initially reported in the ham-
ster [211,212] and later in murine [214], bovine [218,219] and porcine spermatozoa [217].
It is a GPI-anchored epididymal secretory protein within the sperm plasma membrane
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overlying the acrosome, where it is incorporated during epididymal transit via epididymo-
somes [215,216,220,305]. Anti-DCXR antibody saturated spermatozoa displayed decreased
binding to ZP in humans [215] and hamsters [213], but not mice [214].

5.2.8. Other Human Sperm-ZP Binding Proteins

Lastly, for human spermatozoa, an effort was made to identify the respective sperm-
ZP binding proteins by a combination of two approaches: (i) immunoblotting of human
sperm extracts probed with anti-sperm antibodies from infertile men, and (ii) far western
blotting of human sperm proteins overlayed with individual recombinant human (rh)
ZP2, ZP3 and ZP4 proteins expressed in Chinese hamster ovary cells [306]. Nine different
proteins were identified to bind rhZP2-4, namely PKM (PK3), ENO1, GADPH, ALDOA,
TPI1 (glycolytic enzymes), GSTM, GPX4 (detoxifying enzymes), VDAC2 (ion transport),
and ODF2 (sperm tail cytoskeleton). The acrosomal localization of some of the identified
ZP-binding sperm proteins (ALDOA, GSTM, and ALDOA) was confirmed in said study.
Furthermore, anti-ALDOA and anti-VDAC2 pre-incubated spermatozoa displayed reduced
binding to zona-intact unfertilized human oocytes compared to the controls. GADPH and
PKM (PK-S) were reported on the acrosome as well as in the flagellum in a separate study
by Feiden et al. [307]. The other identified proteins require further studies, especially ODF2,
a sperm tail protein. The authors Petit et al. [306] mention in the discussion that ODF2
localized on the sperm head by immunofluorescence; however, this still required plasma
membrane permeabilization just as the flagellar detection of ODF2 would. We recently
noticed the same pattern with another flagellar protein, CCDC39, that immunolocalized
in the flagellum as well as in the very well defined apical portion of the head of boar
spermatozoa only after methanol fixation/permeabilization (Zigo et al. unpublished).

5.3. Candidate Boar Sperm-ZP Receptors
5.3.1. Spermadhesins

The most thoroughly studied molecules with ZP-binding affinity in the pig model
are the seminal plasma-derived spermadhesins, the abundant sperm surface proteins
that constitute the bulk of boar seminal plasma proteome [287,308–311]. Spermadhesins
have multiple roles in porcine fertilization. Firstly, they stabilize the sperm plasma mem-
brane [226] and participate in the formation of the oviductal reservoir [312], and secondly,
they are decapacitating factors that prevent premature sperm capacitation after ejacula-
tion and later mediate sperm adhesion to both the oviductal epithelial cells of the sperm
reservoir and the oocyte zona [224,227,231]. Five proteins from the spermadhesin family
and their differentially glycosylated isoforms were identified: PSP-I, PSP-II, AWN, AQN1,
and AQN3. The main candidates implicated in sperm-ZP binding include AWN, AQN1
and AQN3. Their ZP-binding activity has been investigated using different approaches,
such as a binding study on the blot, ZP-affinity chromatography, blocking of the sperm-ZP
interaction with specific antibodies or a purified protein [217,222–229]. Spermadhesins
belong to the protein family with a heparin-binding affinity [227]. Spermadhesins AWN,
AQN1, and AQN3 identically bind to Galβ(1–3)-GalNAc and Ga1β(1–4)-GlcNAc carbo-
hydrate structures of ZP glycoproteins [224,226]. The AQN1 associates with the sperm
plasma membrane via an indirect lipid-binding mechanism (i.e., the binding via transmem-
brane proteins or proteins closely associated with membrane phospholipids). AWN and
AQN-3 stabilize the plasma membrane over the acrosomal vesicle and are released from
the surface during capacitation [224,226]. Spermadhesins AWN and AQN form complexes
with another seminal plasma protein—DQH/BSP1/pB1 and bind the sperm surface [231].
Their deaggregation during sperm capacitation is regulated by the ubiquitin-proteasome
system [292].

5.3.2. DQH/BSP1/pB1

The DQH/BSP1 (a boar homolog to bull BSP1; binder of sperm (BSP) protein), a sperm
surface protein [227] also known as pB1 [313], was described as a heparin-binding protein
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and localized on the surface of ejaculated boar spermatozoa [227,232]. This protein consists
of the N-terminal O-glycosylated peptide followed by two fibronectin-type II repeats [314]
and is homologous to the proteins abundantly present in bull seminal plasma [315] (for a
BSP review, we recommend Plante et al. [316]). A monoclonal antibody against DQH
reduced the binding of sperm to ZP, suggesting the role of DQH protein in the primary
sperm-ZP binding [232].

5.3.3. Other Boar Sperm-ZP Binding Proteins

Several other boar sperm proteins with ZP-binding affinity were reported. Adhesion
protein z (APz; a 55 kDa protein) has been obtained by affinity chromatography from sperm
lysate. APz has been implicated in the adhesion of capacitated spermatozoa to the oocyte
prior to the acrosomal exocytosis [251,252]. As noted previously, ZPBP1 that was origi-
nally described in the porcine sperm acrosome and inner acrosomal membrane [238–240],
was reported to translocate to the surface during capacitation where it may participate
in the primary sperm-ZP interactions [2,80,81]. Furthermore, ZPBP1−/− knock out mice
were found to be infertile due to improper compaction of acrosome during spermatogene-
sis [234]. Multiple ZP-binding proteins isolated from the apical sperm head plasma mem-
branes were reported by van Gestel et al. [217], including ACRBP/acrosin binding protein,
DCXR/carbonyl reductase, KCNC4/potassium voltage-gated channel PTPN13/protein
tyrosine phosphatase, and PRDX5/peroxiredoxin 5, and ADAM2. Other ADAM family
proteins were reported to have ZP-binding affinity and are believed to play a role in the
primary sperm-ZP interactions; these are ADAM3 [317], ADAM5, and ADAM20-like [318].
Our group also reported several sperm surface proteins with the ZP-binding affinity that
are highly likely to participate in primary sperm-ZP interactions; these include RAB2A,
PKDREJ, as well as previously reported proteins ACE, MFGE8, and ACR [149,203].

5.4. Candidate Bull Sperm-ZP Receptors

Sperm-ZP binding receptors have not been investigated in detail in the bull. One of the
proposed molecules that was reported to have ZP-binding affinity in the bull is carbonyl
reductase DCXH/P25b. This protein is homologous with human P34H and rodent P26h
and was discussed above.

Despite some abundant proteins of seminal plasma (such as PDC-109, also termed
BSP-A1/A2) being present in bull spermatozoa [319], their connection with the sperm-
ZP-binding activity has not been studied in detail. This seminal plasma protein has
been ascribed a role in the formation of the oviductal sperm reservoir [320]. Neverthe-
less, the PDC-109 protein interaction network revealed its direct association with other
proteins that regulate zona binding (SPAM1/PH-20/hyaluronidase, ACR, ZPBP1) [321].
Unlike the pig, bovine spermadhesins do not seem to participate in ZP binding [322].
A number of other proteins were identified from the bull sperm surface [2] as well as in
bull seminal plasma [323] that are conserved between mammalian species and are thought
to contribute to sperm-ZP binding. The function of these proteins in bovine fertilization is
a subject for further investigation.

6. Lipid Microdomains and Multiprotein Complexes Implicated in Sperm-ZP Interaction

Although a substantial number of sperm molecules with ZP-binding affinity have
been identified, the specific mechanism of the sperm-ZP interaction remains fairly unclear.
The mechanistic model that was accepted for decades hypothesized that there was only
one essential receptor for ZP on the sperm acrosomal surface, responsible for triggering
the downstream signal transduction cascade. This simplistic “lock and key” theory was
gradually disproved as various transgenic strains of KO mice lacking individual genes
encoding presumptive ZP-binding proteins became available. An explanation to the ques-
tion of why there are so many ZP-binding proteins was offered by Tanphaichitr et al. [80],
as they reasoned that the circumstances under which these molecules were identified
simply do not reflect in vivo situation. Rather than sperm-ZP binding being mediated by
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a single receptor-ligand interaction, multiple concomitants, perhaps synergistic binding
events involved numerous sperm receptor species organized in distinct plasma membrane
domains (reviewed in Redgrove et al. [324]).

Sperm capacitation is a process encompassing many dynamic changes in the protein
composition of spermatozoa that ultimately leads to acquiring the full potential to bind to
ZP and undergo acrosomal exocytosis. This protein reorganization during capacitation is
initiated by cholesterol efflux that increases the plasma membrane fluidity and rearranges
sperm surface proteins into lipid rafts that relocate and aggregate in the apical plasma
membrane over the acrosome [81,325–327]. These aggregated sperm surface receptor do-
mains serve as ZP-binding sites. As such, the multitude of sperm-ZP binding molecules is
consistent with the presence of lipid rafts. Lipid rafts, also known as detergent-resistant
membranes (DRMs) that are present in the outer leaflet of the plasma membrane bilayer,
are enriched in cholesterol and sphingolipids [328]. Generally, DRMs are defined as small,
heterogeneous, highly dynamic domains containing specific types of proteins and glycopro-
teins that serve to compartmentalize cellular processes such as signal transduction [81,329].

One of the major lipid components of sperm DRMs is sulfogalactosylglycerolipid
(SGG) (reviewed in Tanphaichitr et al. [330,331]). The sperm SGG, also known as semino-
lipid, is an integral component of DRMs that is important during sperm raft formation
via its interaction with cholesterol but also involved in sperm-ZP binding [326,332,333].
It has been proposed that SGG mediates the ZP binding via electrostatic interactions be-
tween sulfated galactosyl residues of SGG and glycoside moieties of ZP glycoproteins [334].
A sperm-ZP binding via SGG is also facilitated by its interaction with a raft-associated
protein ARSA, discussed in the previous section.

Other membrane-associated components that stabilize sperm-ZP-binding molecules
and facilitate the remodeling and/or formation of sperm-ZP binding sites are molecular
chaperones. Chaperones are generally crucial for proper protein folding, preventing pro-
tein aggregation, and maintaining protein homeostasis [335,336]. Several chaperones from
the heat shock protein family, including HSP60, also termed chaperonin, Hsp70, HSP72,
HSP90α and HSP90b1, also known as endoplasmin, have been identified on the sperm
plasma membrane in mammalian species [80,254,337–342]. The surface localization of
sperm chaperones increases substantially during capacitation while they are lost during
the acrosomal exocytosis [343,344]. Furthermore, chaperones relocate to the periacrosomal
region during capacitation while ushering ZP-binding molecules into lipid microdomains
localized on the sperm surface [253,345]. These lipid microdomains may provide a fa-
vorable environment for chaperones to mediate the assembly of functional ZP-binding
receptor complexes [346]. Sperm surface chaperones were found to play an indirect role
in the sperm-ZP binding by stabilizing the functional ZP-binding receptors [253,345],
see Figure 2, which agrees with the previous observation of the absence of chaperones
leading to the reduction of sperm ability to bind the ZP [344].
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Figure 2. Illustration of primary sperm-ZP interaction. Sperm lipid rafts recognize sperm-binding molecules and transport
them to the surface. This process is connected to the activation of chaperones that transport binding molecules into lipid raft
microdomains, providing molecular machinery to assemble a receptor complex and subsequent competency of spermatozoa
to bind to the ZP.

Chaperones’ involvement in the incorporation of ZP-binding receptors into high-
molecular-weight (HMW) complexes have been reported in mice [345], humans [253],
and pigs [80,254]. Surprisingly, only a small number of sperm-ZP binding proteins
were identified in the HMW complexes such as ZAN, ACR, ACRBP, ASPX, ZP3R or
ZPBP1/ZPBP2 (all of the proteins of intra-acrosomal origin, as discussed previously),
as well as seminal plasma derived MGFE8, tACE1, AQN3 and AWN [80,254]. The nature
of the experimental approach including non-denaturing isolation as well as analysis of
native blue PAGE, separated protein complexes, reflects the situation in vivo more ac-
curately and might explain why there are so many seemingly redundant proteins with
ZP-binding affinity. Beyond that, this particular approach allowed the identification of 26S
proteasome being a part of the HMW complexes. This universal protein degrading and
recycling holoenzyme was found vital to many aspects of mammalian fertilization [347,348]
but did not possess ZP-binding ability; however, thanks to its presence in the acrosomal
HMW complexes, the 26S proteasome can participate in ZP degradation during sperm-ZP
penetration, as reported in mammals [291], birds [349], ascidians and echinoderms [350].

7. Conclusions

The primary sperm-ZP binding is an essential step in the mammalian fertilization
process. Sperm interaction with ZP glycoproteins is a multimolecular event that requires
the involvement of sperm surface receptors with complementary ZP carbohydrates. This in-
teraction is not entirely species-specific in mammals, unlike the lower taxa with external
fertilization that spawn in the water to reproduce. Primary sperm-ZP binding in vivo
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is likely mediated by the coordinated action of multiple sperm proteins, including ZP
receptors, chaperone proteins, and 26S proteasomes assembled into HMW complexes
where each of them plays a specific role during the ZP recognition and gamete interaction.
The occurrence of HMW complexes on the sperm surface and their association with molec-
ular machines such as chaperones and proteasomes within membrane lipid rafts may help
to understand the underlying molecular mechanism of sperm-ZP binding. The existence
of HMW complexes in vivo offers an explanation of the high redundancy of ZP-binding
molecules. Further efforts are necessary to fully understand the molecular mechanisms of
HMW complexes’ interactions with ZP. The research on sperm-ZP binding proteins benefits
animal reproduction and human infertility therapy primarily by identifying candidate male
fertility markers and regulatory mechanisms involved in gamete transport and fertilization.
The understanding of the molecular basis of sperm-ZP binding may find applications in
human assisted reproductive therapy, the use of which has been increasing steadily as
childbearing age increases and more options and improvements are introduced in clinics.
Similarly, animal breeding will be ameliorated by improvements in biomarker-based live-
stock semen quality control, preservation and distribution. Based on the study of binding
receptors by means of specific antibodies or sperm selection kits could be performed to be
of benefit in mammalian fertility diagnostics. Additionally, targeted blocking of sperm-ZP
binding at the level of sperm proteins could translate into novel non-hormonal contracep-
tives, with early success stories already known in the field of wildlife management and
pest control.
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