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RPmirDIP: Reciprocal Perspective 
improves miRNA targeting 
prediction
Daniel G. Kyrollos1, Bradley Reid1, Kevin Dick1,2 & James R. Green1,2*

MicroRNAs (miRNAs) are short, non-coding RNAs that interact with messenger RNA (mRNA) to 
accomplish critical cellular activities such as the regulation of gene expression. Several machine 
learning methods have been developed to improve classification accuracy and reduce validation 
costs by predicting which miRNA will target which gene. Application of these predictors to large 
numbers of unique miRNA–gene pairs has resulted in datasets comprising tens of millions of scored 
interactions; the largest among these is mirDIP. We here demonstrate that miRNA target prediction 
can be significantly improved ( p < 0.001 ) through the application of the Reciprocal Perspective (RP) 
method, a cascaded, semi-supervised machine learning method originally developed for protein-
protein interaction prediction. The RP method, aptly named RPmirDIP, augments the original mirDIP 
prediction scores by leveraging local thresholds from the two complimentary views available to each 
miRNA–gene pair, rather than apply a traditional global decision threshold. Application of this novel 
RPmirDIP predictor promises to help identify new, unexpected miRNA–gene interactions. A dataset 
of RPmirDIP-scored interactions are made available to the scientific community at cu-bic.ca/RPmirDIP 
and https​://doi.org/10.5683/SP2/LD8JK​J.

MicroRNAs (miRNAs) represent a class of short (18–28 nucleotide [nt]) non-coding RNA molecules. They 
achieve post-transcriptional and translational regulation of protein expression via base-pairing with comple-
mentary sequences of messenger RNA (mRNA) molecules.

Gene regulation by miRNAs does not adhere to a simple one miRNA–one target gene mapping. Rather, the 
distribution of predicted targets reflect commensurately more complicated miRNA–mRNA combinatorics: miR-
NAs exhibit target multiplicity wherein more than one mRNA is targeted per miRNA, and mRNAs exhibit signal 
integration wherein more than one miRNA may target an mRNA. Consequently, the multi-valency of miRNAs 
enable their targeting of multiple genes, thus regulating the expression of several proteins. These miRNAs play 
key roles in gene regulation and their dysregulation is associated with several diseases1,2. Studies have revealed 
miRNAs involved in disease pathogenesis3, biological development4, stress response5, and cell cycle control6. 
The elucidation of miRNAs within genomes is, thus, critical to understanding the underlying mechanisms of 
organismal biology and cellular function.

While wet-laboratory experimentation are traditionally used to identify miRNA target interactions and gene 
regulation, these methods are resource-intensive as compared to complimentary computational approaches. 
Common examples of wet-laboratory experiments used for miRNA target interactions include low-throughput 
methods such as quantitative polymerase chain reaction (qPCR), western blotting, and reporter gene assays; 
numerous computational approaches leverage the higher throughput methods which are based on cross-
linking and immunoprecipitation (CLIP). Here, we provide a brief overview of contemporary wet-laboratory 
miRNA–mRNA interaction detection methods.

The qPCR and western blot methodologies are used to determine the change in mRNA or protein concentra-
tions and are, therefore, considered indirect methods for the detection of physical interactions7. Reporter gene 
assays, such as the luciferase reporter assay, transfect miRNAs into a cell line that stably expresses a luciferase 
reporter containing the 3‘-UTR of the target miRNA being investigated in order to quantify the degree of 
interaction based on the change in reporter gene expression8. The reporter gene methods are generally more 
informative to elucidate specific miRNA–mRNA binding and are, therefore, considered a high-confidence meas-
ure of interaction9. The high-throughput sequencing of RNA isolated by CLIP (HITS-CLIP) is also used to 
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investigate miRNA–mRNA interactions by probing for Argonaute-miRNA and Argonaute-mRNA interactions 
and overlaying the results to identify putative interactions10. Similar to the HITS-CLIP and CLIP-Seq methods 
is the photoactivatable-ribonucleoside-enhanced CLIP (PAR-CLIP) procedure which leverages a more efficient 
cross-linking to stabilize the protein-RNA complexes and identified RNA-binding proteins sites on the target 
RNAs11. Finally, the cross-linking ligation and sequencing of hybrids (CLASH) method, as its name indicates, 
is an experimental procedure to identify miRNA–mRNA interaction sites using cross-linking, ligation, and 
sequencing of hybrids12. Taken together, the low- and high-throughput wet-laboratory techniques provide an 
ensemble of methods to identify interacting miRNA–mRNA pairs amenable to developing learning algorithms 
capable of further exploring the space of possible pairs to identify putative interactions.

Current state of miRNA–target prediction.  Within humans alone, the number of known miRNA 
exceeds 2,30013 and the human mRNA population is estimated to exceed 25,00014; current wet laboratory tech-
nology is unable to feasibly test each possible miRNA–gene pair. Consequently, there is significant interest in 
using computational approaches for miRNA target prediction. These predictors are used to narrow the scope 
of potentially interesting interactions, functioning as a guide to wet-laboratory validation experiments to more 
rapidly elucidate gene regulation networks.

Many ancestral and popularized computational methods follow an ab initio approach, including miRanda15, 
TargetScan16, and PITA17. These methods compare the nucleotide sequences of the miRNA against a ∼ 20− 30 nt 
region of the mRNA in a search for matching sub-sequences. These methods also incorporate other string-match-
ing rules based on the observed deviations from Watson-Crick pairing rules, such as G:U wobble pairing18, 
originally discovered in early miRNA–mRNA experimental validations. miRanda uses a scoring matrix based on 
the complementarity of each nucleotide pair, where a set of weighted heuristic rules for each nucleotide pairing 
contribute to a summative score for a given interaction15. PITA leverages both structure- and sequenced-based 
information by computing fusing target-site accessibility (the energy required to access target binding sites within 
mRNA secondary structures) with sequence-based matching to determine an improved overall score17. TargetScan 
leverages a series of stepwise linear regression models to identify the most informative features from 74 datasets 
culminating into what the authors denote the context++ model, demonstrated to outperform preceding methods 
as of 201516.

In the time since, increasingly accurate miRNA target prediction algorithms have emerged, many leverag-
ing machine learning as reviewed in19. Notable examples of classical machine learning include TarPMir20, 
RFMirTarget21, and MirTarget22 with recent models leveraging deep learning, including MiRTDL23, DeepMirTar24, 
and miRAW​25. MirTarget is a Support Vector Machine (SVM) trained on CLIP experimentally validated interactions 
and miRNA overexpression data. The miRNA overexpression data provides a complimentary view to understanding 
functional targets as the elucidation of target interaction does not necessarily result in gene down-regulation22. The 
miRTDL method implemented a Convolutional Neural Network (CNN) with selected features obtained from the 
convolved feature maps23. DeepMirTar used Stacked denoising Autoencoders (SdA) to learn a lower-dimensional 
representation of latent features24 while miRAW leveraged autoencoders without the denoising step25. TarPMir used 
a Random Forest (RF) classifier trained on an experimentally validated dataset20. RFMirTarget also used a Random 
Forest classifier, however it was trained on data originally pre-computed by miRanda, thus acting as a cascaded 
refinement of ab initio predictions21. While all methods reviewed here relate to miRNA target prediction, a subset 
formulate the problem for the identification of the binding site as distinctly different from scoring the likelihood 
of interaction between a given miRNA and target; this work focuses on the latter problem.

Pre-computed prediction databases facilitate access to predictions without having to execute predictive models. 
Conveniently, the predictions from multiple predictors have been aggregated in databases to generate a quantitative 
measure of confidence in a given miRNA–gene pair. The largest of such databases, both in number of integrated 
sources and total number of pairs, is the mirDIP pre-computed miRNA–target interaction database9. This dataset 
is a boon, not only to wet-laboratory experimentalists, but also to researchers seeking to develop new methods to 
further improve miRNA target prediction. Figure 1 provides a conceptual overview of how the mirDIP dataset 
was used to develop one such cascaded machine learning method.

Reciprocal Perspective cascaded learning algorithm.  The Reciprocal Perspective (RP) method was 
originally introduced as a cascaded, semi-supervised learning algorithm to improve the pair-wise predictive per-
formance of existing learning algorithms within the context of protein-protein interaction (PPI) prediction26. 
Figure 1A provides a conceptual overview of how the scores produced by an initial predictor can be used to train 
a cascaded learning algorithm to provide refined prediction. Leveraging the output scores generated by an initial 
learning algorithm as input to the RP method, those scores are cast into a new rank-order domain denoted a One-
to-All score curve (O2A; Fig. 2) which, in the case of miRNA targeting prediction, provides two complimentary 
views, an miRNA-based “perspective” and a gene-based “perspective” (Fig. 1B).

For a given query pair (X, Y), RP examines the pair’s predicted score in the context of all predicted scores for 
all pairs involving either (X, ∗) or (∗,Y) . By leveraging predictions made on pairs not definitively known to be 
positive or negative (i.e. unlabelled pairs), this method can be described as semi-supervised machine learning. 
Both labeled and unlabeled scored pairs are available for feature extraction and use as part of a cascaded learn-
ing algorithm. For example, by examining the O2A curve for a given miRNA, X, it is relatively straightforward 
to determine a suitable local decision threshold for all putative targets of that miRNA. By repeating this analysis 
for the given gene, Y, a local threshold can be determined for all miRNA that may interact with Y. In combina-
tion with the local threshold, these O2As enable the extraction of several additional context-based features from 
and between these two views for each (X, Y) to train the RP cascaded learning algorithm and refine the original 
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predictions. Applied to two state-of-the-art PPI predictions over five organisms, the RP-augmented models 
produced a statistically significant improvement over all conditions26.

Cascaded prediction refinement techniques in miRNA–target prediction is common. For example, the RFMir-
Target method21, previously discussed, improves the predictions produced by miRanda15 using an additional 
34 sequence-based features in an RF model to refine predictions. The RP method differentiates itself from other 
cascaded predictors in that it is domain-agnostic; it derives features from a domain entirely independent of the 
context of the original problem, functioning as an error-correction process. This flexibility enables it to be applied 
broadly to pair-wise prediction tasks in combination with a given initial predictor.

However, in its original implementation, the RP algorithm required an initial predictor capable of generating 
a complete-graph of prediction scores; that is, generate a score for every possible pair producing a comprehensive 
prediction matrix (CPM). This is considered computationally intractable for the majority of predictors (typically 
too slow) or for the majority of tasks (typically too large). In this work, we not only seek to improve the state-
of-the-art in miRNA prediction, but additionally demonstrate the applicability of RP to predictions tasks where 
the assumption of a complete CPM is relaxed. To the best of our knowledge, this work presents the first instance 
where the predicted outputs of miRNA–gene pairs in a (near) all-to-all context has been reported.

Methods
The following section describes the acquisition of pre-computed miRNA–target prediction data (i.e. initial 
scores); the collection of experimentally validated miRNA–target interactions to be used for training and testing 
(ground truth labels that were experimentally validated only after the generation of initial scores); the adaptations 
to the RP learning algorithm for this task; and the implementations of the RP cascaded model. Figure 1 depicts 
the conceptual overview of the prediction pipeline including data acquisition, RP feature extraction, training 
of a cascaded learning algorithm, and performance evaluation. Briefly, the prototypical prediction pipeline will 
use a data source to train and evaluate a predictor and generate a set predictions. The RP method leverages these 
predicted scores as a data source (i.e. in a cascade) to train and evaluate the RP model to generate a final set of 
predictions (Fig. 1A).

Acquisition of the miRNA–target prediction data.  The miRNA–target prediction data was acquired 
from the mirDIP database. This database contains 41 million unique miRNA–gene interactions, involving 2,585 
and 27,591 unique miRNA and genes, respectively. Each interaction is assigned an integrative score, which is 
statistically inferred using predictions obtained from 30 independent resources9. The mirDIP database contains 

Figure 1.   Conceptual overview of the Reciprocal Perspective algorithm applied to miRNA Target Prediction. 
Panel (A) depicts a high-level overview of cascading the Reciprocal Perspective learning algorithm based on 
an initial set of predictions from an initial learning algorithm. Panel (B) depicts an in-depth illustration of the 
combination of numerous individual miRNA targeting predictors to produce an ensembled mirDIP score. These 
scores are used to generate One-to-All score curves from which the Reciprocal Perspective features are extracted 
to train the cascaded learning algorithm and produce the final predictions for evaluation.
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predicted scores for approximately 60% of all possible interactions for this set of miRNA and genes. Notably, the 
size of the predicted interaction set for a given miRNA varies within the range [44, 17596] with an average of 
15,055 and median of 15,118. The size of the gene set varies within the range [5, 2375] with an average of 2,207 
and median of 2,375 unique miRNAs targeting a typical gene.

Experimentally validated miRNA–target interactions.  Two sets of experimentally validated 
miRNA–gene interactions were obtained from DIANA-TarBase v87 and mirTarBase v.8.0. The number of vali-
dated interactions between these databases is 684,107, consisting of 2,585 miRNAs and 17,629 genes. We elimi-
nated any genes lacking at least one validated interaction; the O2A, by definition, requires at least one validated 
data point to extract the context-based features.

These validated interactions were then split into a training set for the cascaded classifier and a hold-out 
test set for independent performance evaluation. In order to mitigate potential bias by using test data that may 
have also been used to train mirDIP or its sources, the test set was curated by selecting only recently validated 
interactions. Recency was enforced by collecting a test set comprised only of interactions new to TarBase v8, 
which was published after the acceptance of the mirDIP 4.1 publication9. The resulting test set comprised 31,131 
positively validated interactions; the remaining 652,976 positive samples were used for training the RP model.

To train and test the RP model, a set of negative pairs is also required. This poses a challenge, as there is a lack 
of validated non-interactions. Among published non-interactions, the reliability of these findings is considered 
by some to be questionable9. Furthermore, Helwak and Tollervey emphasized that pair non-interactivity may be 
due to properties of the specific detection method used rather than a property of the pair interactivity itself12. To 
overcome this, we conservatively assumed that pairings that are not validated are non-interactions. A uniform, 
random sample of these pairs was obtained to match the number of validated interactions in order to create a 
balanced training and testing set. Since the vast majority of miRNA–gene pairs are not expected to interact, select-
ing our negative set in this way was reasonable and follows the methodology used in several previous studies9,27.

Adapting the baseline estimation for variable and sparse one‑to‑all curves.  The O2A curve 
plots the rank-order distribution of scores involving a given miRNA or a given gene. That is, if a given miRNA 
has a predicted score for 200 distinct genes, its O2A is a monotonically decreasing curve with 200 points; the 
highest scoring gene is plotted with rank 1, the second highest as rank 2, and so on. In its original formulation, 
the RP method would require that every miRNA be scored against all possible genes, and conversely, all genes 
be scored against all possible miRNAs26.

A consequence to relaxing the complete-graph constraint is a variable number of data points within the rank-
order O2A for a given miRNA or gene. For example, a given gene that has only been predicted to interact with 

Figure 2.   Example one-to-all score curves. In both perspectives, each point represents the mirDIP predicted 
score for one gene-miRNA pair. In the miRNA perspective (left), each curve represents all miRNA–gene pairs 
involving a specific miRNA (distinguished by shade), sorted by prediction score. The complimentary perspective 
(right) contains the rank order distribution of pairs involving individual genes (again distinguished by shade), 
where each data point is a specific miRNA. For each curve, the point identified as the knee is highlighted with 
a horizontal dashed line. The pair involving the hsa-miR-548ar-3p miRNA and ZNF674 gene is highlighted 
in each perspective with a larger marker and the corresponding colour. Since it falls above the knee in both 
perspectives, it will likely be scored highly by RPmirDIP.
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ten miRNAs will have a sparse O2A as compared to an miRNA that has been predicted to target hundreds of 
genes. The original baseline estimation method used within RP leveraged LOESS to first fit a smooth curve to the 
O2A data. This approach assumed a sufficiently large number of data points to reliably identify the knee of the 
curve. Therefore, for curves with a sufficient number of points (i.e. n > 100 ), the Kneedle algorithm28 was used 
to locate the knee of the curve. To accommodate those curves with sparse number of points (i.e. 1 ≤ n ≤ 100 ), 
which only represented less than 1% of the curves, we leveraged the median of the distribution of scores in the 
O2A to define the baseline.

Adaptation of RP feature calculation.  For each miRNA–gene interaction, a set of features adapted from 
the original RP implementation were computed based on the identified baseline. These features leverage the dis-
tribution of non-validated pairs to extract “context”-based information available from all the scored interactions 
involving a specific miRNA and gene.

Modifications to the original RP implementation enabled its application to the miRNA–gene task. To accom-
modate a variable number of data points in the O2A, we substituted the absolute rank order of a scored pair 
in favour of its percentile rank. This ensured that rank-type features could be compared across different sized 
miRNA and gene perspectives. The binary RP metric “Above-Global-Threshold” was excluded as it was deter-
mined that RP models could learn the optimal global threshold using the raw mirDIP score. Similarly, the binary 
features for indicating if a score is above a local threshold were excluded as the Fold-Difference metrics provide 
similar information to the model. The resulting features used for training the cascaded learning algorithm are 
shown in Table 1.

Training the cascaded machine learning model.  Two learning algorithms were independently con-
sidered for the training and evaluation of the RP cascaded model. From its reported successes as part of the 
cascaded RFMirTarget method, we considered a Random Forest model. The model, denoted RPmirDIP*, was 
trained on the RP features derived from the training set (Table 1). Ten-fold cross validation was performed for 
hyperparameter tuning. This produced a model where the maximum size of the feature subset considered at each 
split was four, the forest comprised 100 trees, each with a maximum tree depth of 19. For its widespread applica-
tion in various machine learning tasks and reported success within Kaggle competitions, the eXtreme Gradient 
Boosting (XGBoost) model was also considered. The model, denoted RPmirDIP, was trained on the RP features 
derived from the training set (Table 1). The learning task used logistic regression as the objective function and 
ROC AUC as the evaluation metric. The default parameters for the tree booster were used: the learning rate was 
set to 0.3, the γ parameter was set to 0, and the max depth was set to 6. The model was trained over 200 iterations 
with an early stopping of five rounds.

Evaluating RP performance improvement using independent miRNA targeting predic-
tors.  To comprehensively evaluate the utility of RP for improving the predictive performance for independ-
ent miRNA targeting predictors, we compared the performance of the predictor alone with the RP-augmented 
predictions of that predictor, mirDIP, and RPmirDIP. Twenty-six independent methods were augmenting using 
the RP cascaded model. For each method and its dataset of pre-computed predictions, RP features were calcu-
lated (Table 1). Since each individual dataset did not contain predictions for the entirety of the training and test-
ing set, only the overlapping subset was used (Supplementary Figure 2). We note that the training datasets used 
to produce the predicted scores for each individual method in the mirDIP database are unknown which risks 
the possible inclusion of training samples among these datasets. This may result in the possible overstatement 
of results, however, this bias would be consistent across the four compared models which makes for a fair com-
parison. For each method, the XGBoost algorithm, using the same hyperparameters as RPmirDIP, was trained 

Table 1.   Extracted RP features for use in the cascaded model.

Feature name

Feature details

Short name Type Description

Percentile-XY rxy Rank Rank order of gene Y among all the predictions for miRNA X

Percentile-YX ryx Rank Rank order of miRNA X among all the predictions for gene Y

Adjusted reciprocal rank order ARRO Rank Reciprocal product of rxy and ryx

Percentile-local-cutoff-X rxt Rank Percentile rank of the gene nearest to the local cutoff value of miRNA X

Score-Local-Cutoff-X sxt Score Score at the local cutoff value of miRNA X

Percentile-local-cutoff-Y ryt Rank Percentile rank of the miRNA nearest to the local cutoff value of gene Y

Score-Local-Cutoff-Y syt Score Score at the local cutoff value of gene Y

Percentile-difference-from-local-X pdx Fold Difference between rxy and rxt

Percentile-difference-from-local-Y pdy Fold Difference between ryx and ryt

Fold-difference-from-local-X fdx Fold As defined in26

Fold-difference-from-local-Y fdy Fold As defined in26

SD-distance-from-mean-X Stdx Stats The number of standard deviations from the mean score in miRNA X

SD-distance-from-mean-Y Stdy Stats The number of standard deviations from the mean score in gene Y
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using the corresponding training set and features. To evaluate performance, the testing set was used to calculate 
the ROC AUC and PR AUC.

Results and Discussion
Of the two learning algorithms independently trained on the RP features, Random Forest and XGBoost, the most 
performant was selected as the official RPmirDIP model (XGBoost) while the less performant was denoted the 
RPmirDIP* model (Random Forest). Here, we report and discuss the results of the RPmirDIP model and leave 
the RPmirDIP* results to the Supplementary Materials. Similarly, the experiments applying RP to 26 individual 
miRNA targeting predicitors are sumarized with supportive material in the Suppmentary Materials.

The evaluation of the performance difference between the original mirDIP method and the RP-augmented 
scores was achieved using bootstrap testing ( n = 1, 000 ) on the test set choosing both the area under the resulting 
precision-recall and receiver operating characteristic curves (PR AUC and ROC AUC, respectively). Consider-
ing the null hypothesis, ( H0 : no significant difference in AUC between Original mirDIP and RP-augmented 
mirDIP), p values were computed using Welch’s unequal variances t-test and the observed differences in AUC 
were significant at the p < 0.001 level (Table 2; Fig. 3A,B). Interestingly, the RPmirDIP model benefited consider-
ably from an increasingly large training set, with sharp improvements in AUC observed as the training set size 
approached 100K samples with relatively diminishing, though marked, improvement thereafter (Fig. 3C). The 
distributions of mirDIP, RPmirDIP, and RPmirDIP* scores are depicted in Fig. 4. 

A further analysis of the relative feature importance from the resultant RPmirDIP model revealed a heavy 
reliance upon the raw mirDIP score, which is intuitive given that RPmirDIP needed to compensate for the 
removal of the binary “Above-Global-Threshold” feature which originally captured global-level information 
(Fig. 5). Notably, the RP-derived features, particularly those from the miRNA persepctive (sxt, rxt, pdx, fdx), each 
contributed complimentary information to the model, exemplified both by their low correlation with the mirDIP 
score and relatively large information gain. Furthermore, while the RPmirDIP model does not place considerable 

Table 2.   Performance following 1,000 bootstrap iterations. Bold identifies the highest score achieved by a 
model for a given metric.

Predictor

Performance metric ( µ± σ)

ROC AUC​ PR AUC​

mirDIP 0.8666± 0.0015 0.8769± 0.0017

RPmirDIP* 0.9210± 0.0011 0.9198± 0.0013

RPmirDIP 0.9311± 0.0009 0.9262± 0.0014

A: ROC Plot B: Precision-Recall Plot

False Positive Rate

Tr
ue

P
os

iti
ve

 R
at

e

P
re

ci
si

on

Recall

C: AUC as a Function of Training Set Size

Training Set Size
200K 400K 600K 800K 1.0M 1.2M

A
re

a 
U

nd
er

 th
e 

C
ur

ve

ROC AUC

PRC AUC

Difference in Score (RPmirDIP - mirDIP)

D
en

si
ty

D: KDE Plot of RP Score Augmentation

Figure 3.   Results comparing the predictive performance of RPmirDIP and RPmirDIP* models against the 
original mirDIP predictions. (A) and (B) depict the ROC and PR curves, respectively. (C) illustrates the change 
in predictive performance as a function of the size of the training set. (D) is a kernel density estimation plot of 
the pair-wise difference in scores between RPmirDIP and mirDIP.
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Figure 4.   Comparison of the distribution of scores between mirDIP (A), RPmirDIP (B), and RPmirDIP* (C).
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emphasis on the ARRO feature which has the lowest correlation with the mirDIP score, the RPmirDIP* model 
considers it as the third highest feature by importance (Supplementary Fig. 1A). This strongly suggests that the 
ARRO feature, which encodes the reciprocal, context-based information provided from both perspectives, is 
independent of the predicted score and provides complimentary information useful to distinguishing interact-
ing pairs from non-interacting pairs.

We further analyzed the RP contribution to increased performance by computing the score augmentation 
when applying RPmirDIP and plotting the distribution of the score difference with mirDIP for the validated 
interactions and non-interactions from the test set (Fig. 3D). Interestingly, we observe a consistently positive 
increase in score for both classes with only a rare few receiving a decreased score. Consistent with the strong 
results observed for RMmirDIP, the validated interactions generally received a larger score augmentation than 
the non-interacting samples. These findings suggest that the use of interaction-specific context-based RP fea-
tures increase overall predictive performance by augmenting the scores of true interactions for which the initial 
predictors had originally assigned a lower score that failed to exceed the globally defined threshold. This further 
suggests that the application of RP leverages previously underutilised information within pair-wise data sets to 
increase discriminability of the classes.

Reciprocal Perspective improves performance of 26 miRNA targeting predictors.  To com-
prehensively determine whether RP would consistently improve the predictive performance of independent 
miRNA targeting predictors regardless of their unique architectures and implementations, we compared the pre-
dictor’s performance with an RP-augmented model as well as the mirDIP and RPmirDIP models (Fig. 6). Prom-
isingly, in all cases the cascaded application of RP to each predictor resulted in a notable increase in ROC AUC 
(between [0.0606–0.4999]) and PR AUC (between [0.0045–0.4333]). Comparing the RPmirDIP model trained 
on the subset of data available to each method (see Supplementary Materials for details), we observed further 
increases in ROC AUC (between [0.0198–0.2321]) as well as PR AUC (between [0.0021–0.1048]). Table 3 sum-
marizes the various sizes of the datasets used for each experiment and supporting information can be found in 
the Supplementary Materials.

We note that where the initial predictor performs particularly well, there is little additional performance gain 
to be made (e.g. PR AUC of TargetRank and TargetScan). Conversely, where the initial model performs relatively 
poorly, there are substantial gains in performance observed, both in the application of RP to that model as well 
as with the use of the ensembled mirDIP score in conjunction with RP (i.e. RPmirDIP). From these experiments, 
we arrive to the following conclusions: 

1.	 The cascaded application of RP to an initial predictor results in improved predictive performance (i.e. RP + 
Predictor).

2.	 The cascaded application of RP to an ensemble-based predictor (e.g. mirDIP) may result in further improve-
ment in predictive performance (i.e. RPmirDIP).
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Figure 5.   Exploration of RPmirDIP Features. (A) is a heatmap of feature correlation. Notably, the ARRO metric 
is the least correlated with other features and, as expected, rank (rxy, ryx) are strongly correlated with percent 
difference (pdx, pdy), respectively. (B) Plots the gain of a given feature as indicative of the relative contribution of 
that feature to the model based upon the feature’s contribution to each tree in the model. Note the break in the 
y-axis due to the large relative information gain on the initial score. Formally, gain is the average reduction in 
training loss when selecting that feature for splitting.
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3.	 RP compliments miRNA targeting predictor reliant only on the scores produced by that predictor and no 
other information.

Discovering novel putative interactions.  The accurate prediction of miRNA–target interactions is crit-
ical to our understanding of dynamic biological regulation networks. In miRNA–target prediction, RPmirDIP 
represents a novel method to discover new and possibly unexpected interactions that current predictors missed. 
Analyses and experimental validation are warranted for the set of interaction which mirDIP originally assigned 
low confidence scores, in contradiction to RPmirDIP’s assignment of a substantially higher score. These putative 
interactions promise potentially unique information that may improve our overall understanding of miRNA 
targeting and gene expression networks. For the benefit of the broader scientific community, we make available 
the sorted list of these putative interactions, available at https​://doi.org/10.5683/SP2/LD8JK​J54.

We re-scored all ∼30 million pairs listed in the mirDIP database using both the RPmirDIP and RPmirDIP* 
models. We then used the RPmirDIP scores to compute the Difference of Scores (DoS) with the original mirDIP 

Predictive Performance Improvement using Reciprocal Perspective
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Figure 6.   Increase in individual predictor performance using RP and the RPmirDIP model. The 26 prediction 
methods are ordered by the size of the available training set and each is notably improved with the combined 
use of RP and the use of the ensembled mirDIP score leveraged by RPmirDIP.

Table 3.   Comparison of the predictive performance of 26 individual miRNA targeting predictors.

CUARPCUACOR

Predictor
Training
Set Size

Testing
Set Size

Num.
Interactions

Num.
miRNAs

Num.
Genes

Predictor
Only

Predicitor
+ RP

mirDIP RPmirDIP
Predictor
Only

Predictor
+ RP

mirDIP RPmirDIP

MirAncesTar29 1,178,058 55,654 36,116,591 2,568 18,532 0.7805 0.8893 0.8873 0.9263 0.7867 0.8896 0.8931 0.9267
RNAhybrid30 1,078,665 51,644 41,306,832 2,584 17,448 0.3549 0.8250 0.8654 0.9267 0.3949 0.8182 0.8740 0.9230
MirMAP31 584,887 27,923 11,392,502 2,031 18,574 0.6117 0.8157 0.8757 0.9043 0.7582 0.9027 0.9365 0.9503
MBStar32 503,082 28,372 11,925,118 2,031 18,041 0.5864 0.8653 0.8668 0.9171 0.7310 0.9244 0.9287 0.9544
BCmicrO33 454,849 32,594 10,682,301 580 18,418 0.7049 0.8359 0.8061 0.8947 0.8710 0.9286 0.9287 0.9585
DIANA34 421,199 22,018 7,112,061 1,909 18,529 0.6591 0.8295 0.8399 0.8947 0.8532 0.9348 0.9400 0.9597
miRDB35 342,436 13,640 4,739,198 2,571 16,588 0.6534 0.8429 0.9073 0.9106 0.8346 0.9369 0.9606 0.9625
Mirza-G36 316,302 14,180 4,348,927 2,564 16,790 0.6643 0.8028 0.9108 0.9143 0.8596 0.9288 0.9663 0.9688

BiTargeting37 243,283 9,607 5,314,760 2,582 18,517 0.4649 0.8837 0.8898 0.9250 0.5668 0.9204 0.9266 0.9487
ElMMo338 233,429 15,080 2,837,861 997 18,179 0.7136 0.8383 0.8463 0.8764 0.9406 0.9674 0.9684 0.9749
RepTar39 199,800 12,448 2,996,265 1,066 17,280 0.3585 0.8584 0.8581 0.9071 0.7421 0.9573 0.9609 0.9737

miRTar2GO40 143,324 10,452 1,164,371 366 10,890 0.4889 0.7912 0.7735 0.8527 0.9129 0.9706 0.9720 0.9808
RNA2241 100,042 4,066 3,127,672 2,584 1,927 0.4926 0.8394 0.8915 0.9193 0.4380 0.8107 0.8716 0.897

microrna.org42 94,362 10,257 684,192 241 18,424 0.5880 0.6491 0.7431 0.7599 0.9688 0.9733 0.9822 0.9835
miRcode43 93,528 8,120 997,836 124 25,656 0.6583 0.7282 0.7651 0.8226 0.9532 0.9653 0.9707 0.9777
CoMeTa44 80,960 7,254 640,586 643 10,969 0.6421 0.7724 0.7949 0.8273 0.9601 0.9775 0.9799 0.983
MirTar45 74,882 4,429 686,222 1,897 16,556 0.5656 0.7245 0.8741 0.8727 0.9091 0.953 0.9785 0.9789
mirCoX46 67,335 3,211 1,716,865 79 21,749 0.5599 0.8074 0.8454 0.8986 0.7117 0.8458 0.9159 0.9366
MirSNP47 67,024 2,838 849,897 1,909 17,180 0.5370 0.6429 0.8808 0.8751 0.7955 0.8587 0.9594 0.9556

MultiMiTar48 60,002 5,713 429,258 473 10,986 0.5602 0.7714 0.7559 0.8339 0.9569 0.9818 0.9805 0.9866
TargetRank49 58,159 5,580 342,703 525 14,241 0.4930 0.7555 0.7449 0.7753 0.9573 0.9837 0.9837 0.9858
TargetScan50 54,024 4,912 210,146 369 11,952 0.5431 0.6189 0.7175 0.7106 0.9781 0.9833 0.9886 0.9884

Cupid51 52,167 4,363 298,163 1,181 8,411 0.5601 0.7218 0.8077 0.8078 0.9624 0.9805 0.9869 0.9861
PACCMIT52 48,410 2,914 363,717 1,905 11,735 0.4881 0.825 0.9029 0.9037 0.9084 0.9765 0.9865 0.9879
mirbase53 36,160 2,451 498,128 684 17,913 0.5166 0.7663 0.8360 0.8542 0.8656 0.9420 0.9637 0.9662
PITA17 33,003 1,761 685,848 295 18,141 0.5355 0.7809 0.8680 0.8906 0.7380 0.8839 0.9437 0.9480
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prediction, defined as the RPmirDIP score minus the mirDIP score. With a noticeable peak in non-interactors 
around a DoS of 0.5 in Fig. 3D, we posit that these pertain to putative false negatives. Of the ∼30 million pre-
dictions, we extracted those with a DoS ≥ 0.5 and then sorted this set in two ways, one by DoS and another by 
RPmirDIP score; the top-10 interactions for each set are tabulated in Table 4. An analogous table of the top-10 
interactions stored by mirDIP score is available in the Supplementary Materials. Following the mirDIP dataset 
convention, each of these sets were split into top-1%, top-5%, top-10%, top-33%, and bottom-66% sets and were 
released to the scientific community. The data are available at cu-bic.ca/RPmirDIP and https​://doi.org/10.5683/
SP2/LD8JK​J,54.

The two sorting methods are meant to capture differing and complimentary rankings of interactions. The 
results sorted by RPmirDIP score are analogous to the results presented in the mirDIP database; they correspond 
to those interactions for which the trained model places the greatest confidence in being a true interaction. 
Sorted in this way, the ranking doesn’t account for the magnitude of the DoS; pairs high-scoring in mirDIP can 
be expected to be generally high-scoring in RPmirDIP.

The results sorted by DoS present pairs that are of a possibly more serendipitous nature. That is, these results 
are those for which mirDIP assigned very little confidence (possibly considered to be non-interacting) yet 
RPmirDIP assigned great confidence. Per the KDE plot in Fig. 3D, these are the pairs with the greatest likelihood 
of being novel discoveries to elucidate new gene regulatory dynamics. By definition, the predicted pairs with the 
highest DoS also tend to have very high RPmirDIP scores. While not included within this work, there also exists 
the possibility to generate a new ranking of pairs by combining scores. For example, generating a ranking for 
which both mirDIP and RPmirDIP are most confident, the mirDIP score, mi , of a given pair i can be multiplied 
by the RPmirDIP score, ri . Applied to all pairs, the resulting set of scores, s , can be sorted into rank order (and 
optionally min-max normalized to reside in [0,1]):

This assumes an equal weight (i.e. 0.5) is given to both the mirDIP and RPmirDIP scores. A generalization of this 
transformation would incorporate a weighting factor, � ∈ [0, 1] , for the RPmirDIP score such that the mirDIP 
score is weighted by a factor 1− �:

For example, more heavily weighting the RPmirDIP score using � = 0.9 yields the set:

Moreover, this form of exploratory re-ranking can be applied between any of the three available values, RPmirDIP 
score, mirDIP score, and the DoS. However, the multiplication of either RPmirDIP and DoS or mirDIP and DoS 
with a � = 0.5 will produce the identical ranking as the ranking by DoS, by definition. The investigation of such 
rankings is left to the users of the RPmirDIP datasets and future work.

(1)si = miri

(2)s�i = (1− �)mi × �ri

(3)s
0.9

← s0.9i = 0.1mi × 0.9ri , ∀ i

Table 4.   Top-10 predictions when sorted by difference of score (top) and by RPmirDIP Score (bottom). Bold 
emphasizes the column that is sorted.

Top-k rank miRNA Gene Difference in score RPmirDIP score mirDIP score

1 hsa-miR-522-5p AGO2 0.9798 0.9868 0.0070

2 hsa-miR-522-5p ANXA4 0.9773 0.9809 0.0036

3 hsa-miR-522-5p TSC22D2 0.9764 0.9813 0.0048

4 hsa-miR-522-5p FBXO33 0.9743 0.9785 0.0042

5 hsa-miR-522-5p NCKAP1 0.9735 0.9776 0.0041

6 hsa-miR-522-5p EIF4A2 0.9728 0.9772 0.0043

7 hsa-miR-522-5p CASTOR2 0.9695 0.9732 0.0036

8 hsa-miR-34a-5p SLC10A6 0.9690 0.9764 0.0074

9 hsa-miR-522-5p MARCKS 0.9688 0.9724 0.0036

10 hsa-miR-522-5p MAPK6 0.9679 0.9718 0.0039

1 hsa-miR-34a-5p PKNOX1 0.5053 0.9949 0.4895

2 hsa-miR-34a-5p WDR37 0.5394 0.9926 0.4532

3 hsa-miR-34a-5p TUBB2A 0.8758 0.9925 0.1167

4 hsa-miR-34a-5p GRSF1 0.5112 0.9924 0.4812

5 hsa-miR-34a-5p OTUD3 0.5125 0.9919 0.4793

6 hsa-miR-34a-5p CALM3 0.6151 0.9918 0.3768

7 hsa-miR-675-5p LRIG2 0.5201 0.9916 0.4716

8 hsa-miR-16-5p ALYREF 0.7314 0.9916 0.2602

9 hsa-miR-34a-5p SNX30 0.5229 0.9915 0.4685

10 hsa-miR-34a-5p PALM2 0.5333 0.9913 0.4580

https://doi.org/10.5683/SP2/LD8JKJ
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Review of corroborating literature.  Considering the twenty interactions resulting from the top-10 pairs 
sorted by RPmirDIP score and DoS, we reviewed the existing literature for corroborating evidence. We sum-
marized relevant details of the four miRNAs appearing within this set in Table 5 along with selected references. 
Interestingly, each of the four appear to have critical oncogenic roles, typically in the suppression of factors lead-
ing to cell proliferation and metastasis; three of the four miRNAs are involved in the suppression of non-small 
cell lung cancer proliferation and metastasis. Specifics to each miRNA and their predicted mRNA partners are 
discussed in the following sections. The corresponding Table 4 results produced from the RPmirDIP* model are 
available in Supplementary Table 1.

hsa‑miR‑522‑5p.  Among the set of top-10 predicted pairs sorted by DoS, hsa-miR-522-5p is involved in nine. 
While the mirDIP dataset assigns a nearly negligible score to each of these pairs, the RPmirDIP score approaches 
the maximal value producing the highest possible DoSs. Interestingly the mirDIP dataset lists 18,537 scores 
involving hsa-miR-522-5p however only four genes are ranked within the “Very High” confidence class: 

1.	 Gene: NRCAM, Accession: Q92823, mirDIP: 0.4338
2.	 Gene: CBX4, Accession: O00257, mirDIP: 0.4047
3.	 Gene: CBX8, Accession: Q9HC52, mirDIP: 0.3941
4.	 Gene: GIPC3, Accession: Q8TF64, mirDIP: 0.3863

Each of the nine genes fell within the bottom 66% or “Low” confidence class. Furthermore, the RNACentral 
entry for this miRNA lists 2,964 interacting target genes and their proteins, however, none of which are the nine 
among these top-10, suggestive that these nine interactions may present novel interactions. RNACentral does 
list targeted genes related to those predicted by RPmirDIP: the Annexin protein ANXA5 is targeted, but not the 
predicted ANXA4; the F-Box proteins FBXO9, FBXO25, FBXO32, and FBXO45 are each targeted, but not the 
predicted FBXO33; the Eukaryotic transition initiation factor 4 (EIF4) proteins EIF4G1, EIF4G2, EIF4B, EIF-
4EBP2, and EIF4EBP3 are each targeted, but not the predicted EIF4A2; finally, the Mitogen-Activated Protein 
Kinase (MAPK) proteins MAPK1IP1L, MAPKAPK3, MAPK14, MAPKAPK2, and MAPK9 proteins are each 
targeted, but not the predicted MAPK6. No proteins related to any of AGO2, TSC22D2, NCKAP1, CASTOR2, 
or MARCKS were listed in RNACentral.

Of the nine candidate interactors, AGO2 is an effector of small RNA mediated gene silencing and, therefore, 
a promising candidate interactor with critical roles in oncogene progression64. FBXO33 is a prognostic marker in 
both renal and lung cancers, while CASTOR2 is disease-associated with spinal cord glioma, spinal cancer, and its 
RNA is overexpressed in testis cancer. The miRBase dataset lists 16 open access papers that mention hsa-mir-522, 
many relating to the proliferation of tumor cells. The miRNA, when downregulated, suppresses tumorigenesis 
by directly regulating the DENN Domain Containing 2D (DENND2D) tumor suppression gene for non-small 
cell lung cancer cells55. Additionally, hsa-miR-522-5p regulates cell proliferation, detachment, migration, and 
the epithelial-mesenchymal transition56. This curated evidence, while preliminary and circumstantial, suggests 
that hsa-miR-522-5p may have a more extensive role in cancer dynamics, warranting further investigation.

hsa‑miR‑34a‑5p.  The hsa-miR-34a miRNA is a regulator of tumor suppression and its use as part of an miRNA-
based oncosuppressor replacement therapy is an effective strategy against tumor heterogeneity59. Among the set 
of top-10 predicted pairs sorted by RPmirDIP score, hsa-miR-34a-5p is involved in eight, with a ninth among 
the top-10 by DoS. The mirDIP database lists 19,748 pairs involving hsa-miR-34a-5p of which 1,330 are within 
the “Very High” confidence class, containing six of the nine genes (excluding TUBB2A, CALM3, and SLC10A6). 
Therefore, these predictions may may simply reiterate previous findings from an miRNA having been previously 
extensively investigated, reinforcing previous findings. To that point, the miRBase database lists 927 open access 
papers that mention hsa-mir-34a. Numerous studies demonstrate hsa-mir-34a’s involvement in the initiation 
and progression of cancers. It has been demonstrated to inhibit the proliferation and metastasis of osteosarcoma 
cells both in vitro and in vivo57. The under-expression of hsa-mir-34a led to the development and progression of 
human malignancy via Notch158. Moreover, in combination with p53, hsa-miR-34a-5p has been demonstrated 
to suppress colorectal cancer metastasis by inhibiting cell proliferation, migration, and invasion65.

While not directly implicated in the development or progression of human cancers, we here briefly introduce 
the major functions associated to the predicted pairs. To appreciate the diversity of genes and functions highly 
predicted with this miRNA, the analyses should be expanded beyond the top-10. The Solute Carrier Family 
10 Member 7 (SLC10A7) protein was targeted in the RNACentral entry of hsa-miR-34a-5p, but the predicted 
SLC10A6 was not. This family of proteins is responsible for the sodium-dependent transport of sulfoconjugated 

Table 5.   Details of the miRNAs identified among the Top-10 RPmirDIP predictions.

miRNA Accession Sequence Selected sources

hsa-miR-522-5p MIMAT0005451 16-cucuagagggaagcgcuuucug-37 55,56

hsa-miR-34a-5p MIMAT0000255 22-uggcagugucuuagcugguugu-43 57–59

hsa-miR-675-5p MIMAT0004284 10-uggugcggagagggcccacagug-32 60,61

hsa-miR-16-5p MIMAT0000069 14-uagcagcacguaaauauuggcg-35 62,63



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:11770  | https://doi.org/10.1038/s41598-020-68251-4

www.nature.com/scientificreports/

steroid hormones, taurolithocholic acid-3-sulfates, sulfoconjugated pyrenes66. The PKNOX1 is a homeobox gene 
that is disease-associated with Down Syndrome67. Members of the WD repeat protein family are involved in a 
variety of cellular processes such as apoptosis, cell cycle progression, gene regulation, and signal transduction68. 
The G-rich sequence factor 1 (GRSF1) protein regulates post-transcriptional mitochondrial gene expression and 
is necessary to recruit mRNAs to mitochondial ribosomes. The OTU domain-containing protein 3 (OTUD3) 
hydrolyzes Lys-6- and Lys-11-linked polyubiquitin. The Calmodulin-3 (CALM3) protein mediates the activity 
of a diverse array of proteins via calcium-binding. The Sorting nexin-33 (SNX30) protein is required to eficiently 
progress through mitosis and cytokinesis (e.g. necessary for normal formation of the cleavage furrow at the end 
of mitosis). Finally, the Paralemmin-2 (PALM2) protein is disease-associated with Hypertrichosis Universalis 
Congenita, Ambras Type and Kallmann Syndrome.

hsa‑miR‑675‑5p.  The hsa-miR-675-5p miRNA is another that has been extensively studied for its role in sup-
pressing cancers, it has been found overexpressed in many cancers. The downregulation of miR-675-5p has 
previously been demonstrated to suppress lung cancer progression and metastasis through the regulation of the 
G protein-coupled receptor 55 (GPR55)60. Another study evidences its oncogenic role in esophageal squamous 
cell carcinoma (ESCC) by inhibiting RALBP1 Associated Eps Domain Containing 2 (RESP2) via the RalBP1/
RAC1/CDC42 signaling pathway; among ESCC patients, hsa-miR-675-5p is a valuable prognostic biomarker 
and therapeutic target61. The miRBase database lists 106 open access papers that mention hsa-mir-675.

One pair involving this miRNA appeared among the top-10, involving the Leucine-Rich Repeats and Immu-
noglobulin-Like Domains 2 (LRIG2) gene. The mirDIP database lists LRIG2 as the 5th gene among the top-28 
“Very High” confidence interactions within the mirDIP database. The encoded LRIG2 protein is known to 
promote epidermal growth factor signalling leading to increased cell proliferation. Promisingly, this function 
suggests that miR-676-5p regulation of the LRIG2 gene would suppress proliferation, as seen in the miRNA’s 
related activity. Our findings suggest that wet laboratory investigations into hsa-miR-675-5p and LRIG2 interac-
tions are warranted.

hsa‑miR‑16‑5p.  The hsa-miR-16-5p miRNA is the last among the top-10 predicted pairs. It is another tumor 
suppressor and recently identified as a promising biomarker or therapeutic target for cholangiocarcinoma 
through its direct targeting of the yes-associated protein 1 (YAP1) transcriptional regulator62. Within breast 
cancer tumors, it is a stably-expressed housekeeping miRNA, found to be the most consistently expressed among 
other housekeeper candidate subtypes63. The miRBase database lists 730 open access papers that mention hsa-
mir-16-1, which comprises hsa-miR-16-5p and hsa-miR-16-1-3p.

One pair involving this miRNA appeared among the top-10 predicted pairs, involving the Aly/REF export 
factor gene (ALYREF) that encodes the THO complex subunit 4 (THOC4) protein. RNACentral lists 4,821 target 
proteins although the THOC4 protein is not listed among them. The mirDIP classifies this pair among the “High” 
confidence class. Considering THOC4’s role as a prognostic marker in liver cancer and its detected expression 
in several cancers, this predicted pair is a likely candidate to play a more extensive role in oncogenic regulatory 
dynamics and warrants further wet laboratory investigation.

Conclusion
This work demonstrates the successful application of the RP method to miRNA–gene prediction resulting in 
significantly improved predictive performance over mirDIP ( p < 0.001 ). We present a pragmatic implementa-
tion of RP which relaxes the constraint for a complete CPM by leveraging pre-computed scores. Future work will 
investigate the impact of CPM (in)completeness as a function of improved predictive performance and score 
augmentation. We anticipate that the RPmirDIP method might be applied widely to miRNA–gene prediction 
and yield promising putative interactions which may form the basis of testable hypotheses. We made publicly 
available the set of the most likely candidates, available at https​://doi.org/10.5683/SP2/LD8JK​J,54.
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