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Abstract: The quantum effect on the Wigner time-delay and distribution for the polarization scattering
in a semiclassical dense plasma is explored. The partial wave analysis is applied for a partially
ionized dense plasma to derive the phase shift for the polarization interaction. The Wigner time-delay
and the Wigner distribution are derived for the electron–atom polarization interaction including the
effects of quantum-mechanical characteristic and plasma screening. In this work, we show that the
Wigner time-delay and the Wigner distribution for the polarization interaction can be suppressed
by the quantum effect. The Wigner time-delay and the Wigner distribution are also significantly
suppressed by the increase of plasma shielding. The variation of the Wigner time-delay and the
Wigner distribution function due to quantum screening is discussed.
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1. Introduction

In atomic collisions, it has been shown that a particle scattering with the combination of the
time-evolution operator and the energy dependence can provide the physical significance of the
collision system in a potential field [1,2]. It is also shown that the distance shift in the reflected atomic
wave packet generates the phase shift after passing the interaction region. Therefore, it is expected that
the deflection of the length in the reflected wave packet will correspond to the Wigner time-delay due
to the energy-time uncertainty relation since the partial wave scattering phase shift is generated by the
localized potential field [3,4]. The shape of the Wigner time-delay for the resonance process takes the
form of the Lorentzian function [3]. Recently, the extensive investigation has been carried out for the
time-delay in photoionization processes [5–7]. In addition, the time-delay for the photo detachment
was investigated for Yukawa potential bound electrons. In weakly coupled classical plasmas, it is
well known that the Yukawa-type Debye-Hückel model is very reliable for the investigation of
collision and radiation processes [8–11]. However, it is shown that the quantum-mechanical effect in a
strongly coupled plasma plays an important role on the screened inter-particle interaction because
of the quantum diffraction effect and the collective behavior [12–15]. It is also well-known that the
polarization effect is important for the scattering of low-energy electrons by neutral atoms [16,17].
However, the quantum-mechanical effect on the Wigner time-delay for the polarization scattering
in dense semiclassical plasmas has not been reported so far. Hence, we are motivated to study the
influence of quantum screening on the Wigner time-delay for the polarization scattering since the it
can provide the physical significance of the collective polarization interaction in a dense semiclassical
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plasma. In this work, the partial wave phase-shift analysis [18] is employed in order to obtain the
analytic expressions of the scattering phase shift, the Wigner time-delay, and the Wigner time-delay
distribution function in a partially ionized semiclassical dense plasma. The variation of the Wigner
time-delay and distribution function due to the quantum and plasma shielding effects is also discussed.

2. Theory and Calculations

In a weakly coupled plasma, the effective attractive polarization interaction VB(r, rD) between the
projectile electron and the neutral atom is obtained as the Buckingham-type form [17].

VB(r, rD) = −
e2α

2r4

(
1 +

r
rD

)2
exp

(
−

2r
rD

)
, (1)

where α is the dipole polarizability of the neutral atom and rD[= (kBTe/4πnee2)
1/2

] is the
standard Debye length with kB, Te, and ne being Boltzmann’s constant, the electron temperature,
and the electron density, respectively. The effective pseudopotential VRDO(r,λ, rD) for the
polarization electron-atom interaction encompassing the quantum-mechanical effect was derived by
Ramazanov-Dzhumagulova-Omarbakiyeva (RDO) [13] in a strongly-coupled semiclassical plasma.

VRDO(r,λ, rD) = −
e2α

2r4(1−4λ2/r2
D)

1/2

{
[rB(λ, rD) + 1]e−rB(λ,rD)

− [rA(λ, rD) + 1]e−rA(λ,rD)
}2 (2)

where λ[= }(πmekBT)−1/2] is the electron de Broglie wavelength, } is the Planck constant
divided by 2π, and me is the electron mass. In Equation (2), the quantum screening (B, A)

parameters [13] are represented as follows: B(λ, rD) ≡ [1− (1− 4λ2/r2
D)

1/2
]
1/2

/(2λ2)
1/2 and

A(λ, rD) ≡ [1 + (1− 4λ2/r2
D)

1/2
]
1/2

/(2λ2)
1/2. Then, the constraint of the range of the electron de

Broglie wavelength 2λ < rD can be obtain by the quantum screening parameters B(λ, rD)(2λ2)
1/2

=

[1− (1− 4λ2/r2
D)

1/2
]
1/2

and A(λ, rD)(2λ2)
1/2

= [1 + (1− 4λ2/r2
D)

1/2
]
1/2

. Hence, we retain this
condition 2λ < rD throughout in this work. When there is no quantum-mechanical effect in a plasma,
the pseudopotential VRDO(r,λ, rD) becomes the Buckingham potential VB(r, rD) (Equation (2)), i.e.,
VRDO(r,λ→ 0, rD)→ VB(r, rD) = −(e2α/2r4)(1 + r/rD)

2 exp(−2r/rD), since the quantum screening
(B, A) parameters are B(λ→ 0, rD)→ 1/rD and A(λ→ 0, rD)→∞ . It is well-known that the
Buckingham potential has been widely used for the description of the electron-atom collisions
by the polarization interaction [16]. The analytic expression of the effective pseudopotential obtained
by Ramazanov, Dzhumagulova, and Omarbakiyeva [13] has the Buckingham-type form including
the quantum-mechanical effect. Hence, it would be expected that the investigation using the
Ramazanov-Dzhumagulova-Omarbakiyeva (RDO) potential VRDO(r,λ, rD) (Equation (2)) can provide
the precise expression of the influence of quantum screening on the atomic collision cross section
and the excitation rate in a semiclassical dense plasma since the difference between the standard
Buckingham potential and Ramazanov-Dzhumagulova-Omarbakiyeva potential generates the pure
quantum effects in a semiclassical dense plasma. The radial Schrödinger equation for a given potential
V(r) is given by the equation below.[

1
r2

d
dr

(
r2 d

dr

)
−
`(`+ 1)

r2 −
2µ
}2 V(r) + k2

]
R`(k; r) = 0, (3)
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where ` is the angular-momentum quantum number, k[= (2meE/}2)
1/2

] is the wave number with
E(=mev2/2), v(=}k/me) being the scattering energy and the group velocity of the wave packet,
respectively. In this case, the solution R`(k, r) is found to be the following [19,20].

Rl(k, r) = jl(kr) + 2mek
}2

[∫
∞

r dr′r′2Rl(k, r′)nl(kr′)V(r′) jl(kr)
+

∫ r
0 dr′r′2Rl(k, r′) jl(kr′)V(r′)nl(kr)

]
,

(4)

where jl(kr) and nl(kr) are the spherical Bessel and the Neumann functions. Hence, the asymptotic
expression [19] of the radial solution can be written as Rl(k, r) ∝ (kr)−1 sin[kr+ δl(k)− lπ/2], where δl(k)
is the partial phase-shift. Based on the phase-shift analysis, the lth-order partial wave scattering
phase shift [20,21] δl(k) for the low-energy scattering in a potential field V(r) can be written by the
equation below.

δ`(k) ≈ −
πme

}2

∫ rU

rL

dr rJ2
`+1/2(kr)V(r), (5)

where rU and rL are, respectively, the upper-cutoff for the interaction domain and the lower-cutoff for
the distance of the closest encounter and Jq(kr) is the first type of Bessel function. From Equations (2)
and (5), the zeroth-order phase shift δRDO for the Ramazanov-Dzhumagulova-Omarbakiyeva (RDO)
screened polarization electron-atom interaction is obtained by the equation below.

δRDO(k,λ, rD) � −
α

3a0

{
πk2
− 2B2(λ, rD)

[
k2/B2(λ, rD) − 1

]1/2

−2k2 tan−1
[
k2/B2(λ, rD) − 1

]−1/2
− 4B2(λ, rD) sec−1(k/B(λ, rD))

}
,

(6)

where a0(= }2/mee2) is the first Bohr radius since rU = (2B)−1, rL = (2k)−1,
VRDO(r,λ→ 0, rD)→ VB(r, rD) , and B(λ, rD) << A(λ, rD) for 2λ < rD. Since the upper-cutoff rU

for the interaction domain and the lower-cutoff rL for the distance of the closest are, respectively,

given by rU = (2λ2)
1/2/2[1− (1− 4λ2/r2

D)
1/2

]
1/2

and rL = 1/2k, the upper-cutoff for the interaction
range is very sensitive to the influence of quantum screening.

In a weakly coupled classical plasma described by the standard Yukawa-exponential term
exp(−r/rD), the infarction range has been usually defined as r = rD. Hence, the main
Ramazanov-Dzhumagulova-Omarbakiyeva-exponential term in Equation (2) is exp[−rB(λ, rD)] since
B(λ, rD) << A(λ, rD). Hence, the choice of the upper-cutoff in Equation (5), rU(λ, rD) = 1/B(λ, rD) =

(2λ2)
1/2/2[1− (1− 4λ2/r2

D)
1/2

]
1/2

, is very reliable since the upper-cutoff becomes rU(λ→ 0, rD) = rD

in λ→ 0 , which is identical to the case of a weakly coupled classical plasma. When there is no
influence of quantum diffraction and plasma screening such as λ→ 0 and rD →∞ , the zeroth-order
phase shift [22] δ0(k) is then given by δ0(k) = −παk2/3a0, which is the case of the free polarization
interaction Vpol(r) = −e2α/2r4. The Wigner time-delay [3,4,23], tWigner can be represented by the
energy (E) derivative of the phase shift such as:

tWigner = } dδ
dE

=
me

}k
dδ
dk

, (7)

since E = }2k2/2me and t↔ i}∂/∂E is due to the energy-time uncertainty relation. From Equations (6)
and (7), the scaled Wigner time-delay tWigner(= tWigner/t0) in units of t0(≡ −πα/3a0) for the polarization
electron-atom interaction in partially ionized dense semiclassical plasmas is then found to be:
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tWigner(E,λ, rD) = 1−
[
2E/B

2
(λ, rD)

]−1[
E/B

2
(λ, rD) − 1

]−1/2

−
2
π tan−1

[
E/B

2
(λ, rD) − 1

]−1/2

= 1−

2Eλ
2
[1− (1− 4λ

2
/r2

D)
1/2

]
−1−1

×

2Eλ
2
[1− (1− 4λ

2
/r2

D)
1/2

]
−1

− 1

−1/2

−
2
π tan−1

2Eλ
2
[1− (1− 4λ

2
/r2

D)
1/2

]
−1

− 1

−1/2

,

(8)

where E(≡ E/Ry) = k
2

is the scattering energy scaled by the Rydberg constant
Ry(= mee4/2}2

≈ 13.6 eV), k(≡ k/a0) is the scaled wave number, λ(≡ λ/a0) is the scaled electron
de Broglie wavelength, rD(≡ rD/a0) is the scaled Debye radius, and B(λ, rD)[≡ B(λ, rD)/a0] =

[1− (1− 4λ
2
/r2

D)
1/2

]
1/2

/(2λ
2
)

1/2
. It is shown that the time delay representation for the Brownian type

motion allows the exponential function of the distribution [24,25]. Hence, the Wigner distribution for
the time-delay P(tWigner) is represented as follows:

P(k, tWigner) =
rD

2kt
2
Wigner

exp

− rD

2kt
2
Wigner

, (9)

since the localized screening domain can be substituted by the Debye length of the plasma system.
Without quantum and plasma screening effects, i.e., λ→ 0 and rD →∞ , the Wigner time-delay
distribution P0 ≡ P(k,λ→ 0, rD →∞) would be P(k,λ→ 0, rD →∞) = (rD/2k) exp(−rD/2k) .
Hence, the scaled Wigner time-delay distribution PWigner(E,λ, rD) ≡ P(tWigner)/P0 in units of P0

for the polarization electron-atom scattering in partially ionized dense semiclassical plasmas becomes
the following.

PWigner(E,λ, rD) =
1

t
2
Wigner(E,λ,rD)

exp
[
−

rD

2E
1/2

(
1

t
2
Wigner(E,λ,rD)

− 1
)]

=

1−

2Eλ
2
[1− (1− 4λ

2
/r2

D)
1/2

]
−1−1

×

2Eλ
2
[1− (1− 4λ

2
/r2

D)
1/2

]
−1

− 1

−1/2

−
2
π tan−1

2Eλ
2
[1− (1− 4λ

2
/r2

D)
1/2

]
−1

− 1

−1/2
−2

× exp

− rD

2E
1/2


1−

2Eλ
2
[1− (1− 4λ

2
/r2

D)
1/2

]
−1−1

×

2Eλ
2
[1− (1− 4λ

2
/r2

D)
1/2

]
−1

− 1

−1/2

−
2
π tan−1

2Eλ
2
[1− (1− 4λ

2
/r2

D)
1/2

]
−1

− 1

−1/2
−2

− 1


.

(10)

As seen in Equation (10), the deviation from the unity ∆[≡ 1/t
2
Wigner(E,λ, rD) − 1] in the

exponent represents the influence of a quantum shielding effect on the Wigner time-delay
distribution tail. The analytic expressions for the Wigner time-delay [Equation (8)] and the Wigner
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time-delay distribution (Equation (10)) are our main results since the influence of quantum
shielding on the Wigner time-delay and the Wigner time-delay distribution can be readily obtained
by tWigner(E,λ, rD)/ tWigner(E,λ→ 0, rD) and PWigner(E,λ, rD)/ PWigner(E,λ→ 0, rD) , respectively.
Then, it would be clear that our analytic results for the Wigner time-delay (Equation (8)) and
the Wigner time-delay distribution (Equation (10)) are more convenient than the numerical results
since our analytic results can be directly used in the collisional-radiative plasma spectroscopic
codes in dense plasmas. Hence, we retain the analytic investigation throughout this work.
Recently, the degenerate quantum plasma has been extensively studied including the effects of
Bohm pressure, electron exchange-correlation, and quantum recoil [26–31]. Therefore, those effects
on the Wigner time-delay for the scattering process in a degenerate quantum plasma will be
investigated elsewhere.

3. Discussions

Figure 1 indicates the scaled Wigner time-delay tWigner for the polarization interaction in a dense
semiclassical plasma as a function of the scaled scattering energy E for various values of the scaled
de Broglie wavelength λ. As we can see, tWigner increases with an increase of E. It is also shown that
tWigner decreases with an increase of λ. Thus, we found that the Wigner time-delay for the polarization
interaction in a strongly coupled plasma is suppressed by the quantum-mechanical effect. In Figure 2,
tWigner is plotted as a function of E for various values of the scaled Debye length rD, which shows
that it is strongly reduced by the plasma shielding effect. It is also shown that the plasma screening
effect on tWigner decreases with an increase of E Figure 3 shows the three-dimensional plot of tWigner

as a function of λ and E. As shown in this figure, the dependence of the quantum-mechanical effect
on the scaled Wigner time-delay is more significant for small collision energies. It is also shown
that the energy dependence on the scaled Wigner time-delay tWigner is more sensitive in the large de
Broglie wavelength domains. Figure 4 represents the three-dimensional plot of the scaled Wigner
time-delay tWigner as a function of the scaled Debye length rD and the scaled collision energy E. As seen,
the dependence of the plasma shielding effect on the scaled Wigner time-delay tWigner is found to
be more significant for small collision energies. It is also shown that the energy dependence on the
scaled Wigner time-delay is more sensitive in the small Debye length domains. Figure 5 depicts the
three-dimensional plot of the scaled Wigner distribution function PWigner as a function of λ and E.
As we can see in this figure, PWigner decreases with an increase of λ, which indicates that the Wigner
distribution is reduced by the quantum-mechanical effect. It is also shown that PWigner increases with
an increase of E. Figure 6 represents the three-dimensional plot of PWigner as a function of rD and E.
As shown in this figure, the value of the Wigner distribution function increases with a growth of the
Debye length. This implies that the Wigner distribution can be suppressed by the plasma screening
effect. It is shown that the characteristic properties of dense plasma [13] would be represented by
the density parameter rs(= a/a0), degeneracy parameter θ(= kBT/EF), and electron plasma coupling
parameter Γ(= e2/akBT), where a is the average distance between plasma particles, and EF is the Fermi
energy. Hence, the plasma coupling parameter is proportional to the square of the electron de Broglie
wavelength. Therefore, it would be expected that the scaled Wigner time-delay tWigner decreases with
an increase of the plasma coupling parameter Γ. Moreover, it would be also expected that PWigner

decreases with an increase of the plasma coupling parameter Γ.
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4. Summary

In this research, we investigated the effects of quantum screening on the Wigner time-delay for
the polarization scattering in a dense semiclassical plasma. We employed the partial wave analysis to
derive the phase shift for the polarization interaction in a partially ionized dense semiclassical plasma.
In addition, we obtained the analytic expressions of the Wigner time-delay and the Wigner time-delay
distribution for the electron–atom polarization interaction including the effects of quantum-mechanical
character and plasma screening. We discovered that the quantum-mechanical character suppresses
the Wigner time-delay as well as the Wigner distribution function for the polarization interaction in a
dense semiclassical plasma. Moreover, we showed that the enhancement of plasma shielding strongly
suppresses the Wigner time-delay and the Wigner distribution function. The quantum-mechanical
character and the plasma screening would play significant roles in the study of the Wigner time-delay
and the Wigner time-delay distribution. It has been shown that the wave packet dynamics is related to
phase measurements of coherent optical signals [32]. In addition, it is also shown that the wave packet
interferometry (WPI) [32,33] can detect the temporal envelopes of the pulses. In future experiments,
it can be detected by the temporal development of the wave-packet related to the Wigner time-delay
tWigner since the Wigner time-delay is related to the gradient of the phase shift by using the wave
packet interferometry. Moreover, Wigner time-delay distribution can also be detected since the
Wigner time-delay distribution P(tWigner) is related to the Wigner time-delay. Therefore, in the future,
we may detect and resolve the temporal development of the wave-packet in a dense plasma using the
wave packet interferometry. These results would provide useful information on the time-evolution
and the energy dependence of the scattering system in a dense semiclassical plasma containing the
quantum-mechanical character.
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