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Abstract

Simplified prediction of the interactions of plant tissue culture media components is of critical

importance to efficient development and optimization of new media. We applied two algo-

rithms, gene expression programming (GEP) and M5’ model tree, to predict the effects of

media components on in vitro proliferation rate (PR), shoot length (SL), shoot tip necrosis

(STN), vitrification (Vitri) and quality index (QI) in pear rootstocks (Pyrodwarf and OHF 69). In

order to optimize the selected prediction models, as well as achieving a precise multi-optimi-

zation method, multi-objective evolutionary optimization algorithms using genetic algorithm

(GA) and particle swarm optimization (PSO) techniques were compared to the mono-objec-

tive GA optimization technique. A Gamma test (GT) was used to find the most important

determinant input for optimizing each output factor. GEP had a higher prediction accuracy

than M5’ model tree. GT results showed that BA (Γ = 4.0178), Mesos (Γ = 0.5482), Mesos (Γ
= 184.0100), Micros (Γ = 136.6100) and Mesos (Γ = 1.1146), for PR, SL, STN, Vitri and QI

respectively, were the most important factors in culturing OHF 69, while for Pyrodwarf cul-

ture, BA (Γ = 10.2920), Micros (Γ = 0.7874), NH4NO3 (Γ = 166.410), KNO3 (Γ = 168.4400),

and Mesos (Γ = 1.4860) were the most important influences on PR, SL, STN, Vitri and QI

respectively. The PSO optimized GEP models produced the best outputs for both rootstocks.

Introduction

Plant tissue culture technology has been extensively used for large-scale rapid crops multiplica-

tion. Besides the use of this technique as a tool of research, plant tissue culture has in recent

decades, become of prime industrial significance in the area of propagating crops, eliminating

disease, ameliorating house hold nutritional security, crop improvement and production of

secondary plant metabolites [1]. Rootstocks play an important role in determining the final

efficiency in orchard systems. The effect of rootstocks on precocity, crop yield, tree size control

and fruit quality has been well demonstrated [2].
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Pyrodwarf (‘Old Home’ × ‘Gute Luise’) and OHF 69 (‘Old Home’ × ‘Farmingdale’) are two

well-known pear rootstocks with tolerance to winter cold, calcareous soils and fire blight.

These rootstocks are compatible with all pear cultivars and are recommended for high-density

planting systems [3–5].

Implementation of plant tissue culture for propagation of fruit trees has increased consider-

ably since the early 1970s and allows breeders to rapidly propagate large numbers of new root-

stocks [6]. The response of Pyrus species to in vitro culture varies significantly. Shoot tip necrosis

[7–9], hyperhydricity [10–13], fasciation [14] and hooked leaves [15] are physiological disorders

detected in some cases but successful tissue culture of this genus has also been reported [16].

Mineral and hormone composition of a plant micropropagation medium are essential

factors in explant growth [17, 18]. Plant species differ in nutrient and hormone requirements,

leading to development of numerous media formulations. However, optimizing or modifying

media for a particular plant is a problematic and time consuming process which is usually

done based on the history of current or previously used culture media for similar species and

tissue culture systems [19, 20]. Choosing a medium based on prior usage may not give the

same result response in other plant species [21, 22]. Improper mineral or hormone concentra-

tions can cause growth inhibition or various physiological disorders including leaf chlorosis,

shoot tip necrosis, hyperhydricity, and leaf spots [10, 17, 18]. Understanding the effects of

minerals, hormones, and their interaction with other media ingredients and cultured tissues,

is essential for successful in vitro plant propagation [17, 18].

Due to the complexity of interactions between media components, determining an opti-

mized culture medium for a particular plant species or genotype is very difficult. Developing

and implementing a reliable predictive modeling system could significantly improve the effi-

ciency of this process [10, 18]. Due to their non-linear nature and complexities, modeling of

biological systems is poorly understood [20]. Recently developed meta-modeling techniques

appear to be promising methods for modeling complicated non-linear systems. The best exam-

ples are: genetic expression programming (GEP) [23–25], Artificial Neural Networks (ANN)

[26, 27], Fuzzy Logic (FL) [28, 29] and statistical methodologies [15, 30].

Gago et al. [20] compared ANN with common statistical analysis and found ANN to be an

efficient alternative for reliable evaluation of plant processes. Neurofuzzy logic was useful for

optimizing nutrient and growth regulator concentrations in designing a new apricot micro-

propagation medium [31]. Neurofuzzy logic was also used to investigate the effects of light

and sucrose on in vitro cultivation of kiwifruit [32].

Recently we successfully used a hybrid method, combining ANN with a genetic algorithm

(GA), called ANN-GA, to model and predict an optimum culture medium composition for in

vitro proliferation of G × N15 Prunus rootstocks [11]. When compared, the ANN-GA models

were superior to traditional regression analysis [10].

Although previous studies indicated modeling methods based on Artificial Intelligence (AI)

have high predictive accuracy and are more useful than other techniques [33–36], they are

“black box” tools that do not provide a clear mathematical model based on input of indepen-

dent variables.

The GEP model is another AI-based optimization method introduced by Ferreira [37]

which includes beneficial attributes of both GA and genetic programming (GP). This new

model based on an algorithm of evolving computer programs has been applied to diverse

engineering problems and shown to accurately detect nonlinear and complex relations

between input and output [23–25, 38]. Despite the potential benefits, no study has yet

examined use of this method in the field of plant micropropagation.

Here, GEP is compared to M5’ model tree, a decision-tree-based algorithm for addressing

problems and predicting output parameters. In M5’ model tree, data is divided into groups
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according to the most important input variables, and for each groups a multivariate linear

regression equation is generated to evaluate the output variable. Advantages of the M5’ tree

include simplicity, accuracy, and wide applicability [23, 25, 39] but this approach has not been

used previously for plant micropropagation research.

Recently, in a case study [40], we compared use of Radial Basis Function Neural Network

(RBFNN) to GEP for optimizing the composition of pear rootstock tissue culture media. We

found GEP was a significantly robust and more accurate method than RBFNN for predicting

proliferation quality and quantity. Therefore, a GA procedure was used to optimize GEP mod-

els [40]. However, GA could only optimize the level of inputs needed for each individual out-

put separately and therefore could not provide a comprehensive optimum formulation for an

entire culture medium.

Accordingly, the ability of multi-objective evolutionary algorithms (MOEAs) to lead us to

an overall optimized media composition was assessed in the current research. With this

method, inputs are assessed as multi-objective optimization problems (MOPs) and the solu-

tions indicate the best possible balance between two opposite functions. This provides a solu-

tion set named the Pareto optimal set [41], and value of the corresponding objective function

values procedure the Pareto front. In recent years, numerous mathematical techniques have

been applied to solve MOPs, but the actual applications of MOPs are particularly nonlinear

and also periodically non-differentiable [42]. This has boosted interest in metaheuristic

approaches, and among these methods, MOEAs are of particular interest.

In recent decades, various MOEAs have been introduced for different population-based

meta-heuristic algorithms, such as immune clone algorithm [43], GA [44], firefly algorithm

[45] and PSO algorithm [46]. These types of algorithms generate a group of non-dominated

solutions (also identified as Pareto-optimal solutions) where any improvement in one criterion

constantly impairs other criteria. Additionally, these algorithms have a noticeable advantage;

that is, population based, resulting generation of several Pareto optimal set [41] elements in a

particular run, while the mathematical models make one element per run. The success of

MOEAs in finding the best solution for MOPs suggested using these algorithms in this study.

Here, two effective MOEAs, i.e. multi-objective GA (MOGA) and multi-objective particle

swarm optimization (MOPSO), an evolutionary computation technique [47, 48], were com-

pared for determining optimized culture media. Furthermore, we compared the results of the

preferred MOP technique to the previously used mono-objective GA (MNOGA) optimization

technique [40] to find the best method.

Despite various studies attempting to predict and model plant tissue culture media using

nonlinear methods such as ANN [10, 11, 18, 49], there are still unanswered questions. The

most important is how many data points are needed to achieve sufficiently accurate predic-

tion? Which inputs are relevant or irrelevant in making a prediction model?

Recent computational technologies such as gamma test (GT), a novel algorithm from the

computing science community, can now assist in solving these problems [50] and formal

proofs of this method have been published [51–54]. This technique can help find the most

appropriate input combinations to achieve a given targeted output. GT is also designed to

solve the overtraining problem related to nonlinear modeling techniques such as ANN, by

estimating how closely any smooth model fits the test data [52]. It has been demonstrated that

GT can provide information about the relationship between input and output data sets, even

before development of a model [55, 56]. Here, GT has been applied to select the most effective

predicting input variable for each optimized output. A framework of the present study has

been shown in Fig 1.

In brief, the new contributions of this research are:
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• Evaluating the suitability of GEP and M5’ model tree nonlinear techniques for modeling

plant tissue culture media development.

• Comparing the optimal solutions of MNOGA, MOGA and MOPSO in order to acquire a

set of non-dominated solutions that are precise and efficient for the MOPs.

• Applying GT to assess the effect of minerals and hormones, in different combinations, on

parameters of pear rootstock growth in vitro and to efficiently predict the effect of input

factors.

• Exploring the role of culture media hormones, micro, and macro nutrients on in vitro per-

formance of pear rootstocks.

To our knowledge, this is the first application of GEP, M5’ model tree, MOPSO, MOGA

and GT techniques for optimizing plant tissue culture media.

Material and methods

Case studies

Pyrus rootstocks, Pyrodwarf and OHF 69 were grown on 17(MS) medium with modified min-

eral nutrients and supplemented with 30 g/l sucrose, 1 g/l myo-inositol, 8 g/l agar (DuchefaH),

and various concentrations of BA and IBA. Media were adjusted to pH 5.7, poured into 250

ml jam jars with plastic caps, and autoclaved at 1 kg cm-2 s-1 (121 ˚C) for 15 min. All cultures

were incubated in a growth chamber at 25 ± 2 ˚C under 16 h warm white fluorescent light

(80 μmol m-2s-1) for 4 weeks. Afterwards, plant parameters PR, SL, Vitri, STN and QI, were

Fig 1. Framework of modeling and optimizing of pear rootstock in vitro proliferation media.

https://doi.org/10.1371/journal.pone.0243940.g001
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recorded. For all experiments, each treatment consisted of 10 replicates (jam jars) containing

four explants each for both Pyrodwarf and OHF rootstocks.

Box–Behnken design as an invaluable tool for optimization of explant

growth parameters

Box–Behnken Design (BBD) was used to statistically develop the model and to evaluate the

main interactions and quadratic effects of six factors (KNO3, NH4NO3, mesos, micro-nutri-

ents, BA and IBA) on the PR, SL, STN, Vitri and QI. BBD is a spherical, revolving response

surface methodology (RSM) that consists of a central point and with the middle points of the

edges of the cube circumscribed on the sphere. It consists of three interlocking 22 factorial

designs with points lying on the surface of a sphere surrounding the center of the design [57].

This design is more efficient and economical than their corresponding 3k designs (k is factor

number), mainly for a large number of variables [58–60]. The experimental ranges selected for

independent variables are shown in Table 1. Each variable (Table 2) varied over a concentra-

tion range expressed in relation to MS medium (1× = MS concentration). After selection of

independent variables and their ranges, the experiments were established based on a BBD with

six factors at three levels and each independent variable was coded at three levels between +1,

0 and −1 corresponding to the low, mid and high levels (Table 3) [61]. The actual values and

observed results for the three levels of the factors studied are presented in S1 and S2 Tables.

Each mineral or hormone concentration treatment consisted of at least 10 replicates of four

explants each.

Implementation of the models

Gene expression programming (GEP). GEP, which was introduced by Ferreira [37] for

the first time, is an evolutionary algorithm that evolves computer programs and predicts math

models of experimental data. The algorithm of this method is similar to the GP method except

that in this method fixed-length character strings called chromosomes are used to provide

computer programs which are then expressed as expression trees [37, 62]. The structure of

the linear chromosomes facilitates function of important genetic operators such as mutation,

Table 1. The factor components, range of experimental runs, and concentration ranges expressed as ×MS levels.

Factors components Range

Factor 1 KNO3 0.5–2 ×
Factor 2 NH4NO3 0.5–2 ×
Factor 3 (mesos) CaCl2 0.5–2.5 ×

KH2PO4

MgSO4

Factor 4 (minors) CoCl2.6H2O 0.5–4 ×
CuSO4.5H2O

H3BO3

Kl

MnSO4.H2O

Na2MoO4.2H2O

ZnSO4.7H2O

FeNaEDTA

Factor 5 (hormone) BA 0.5–2.5 mgl-1

Factor 6 (hormone) IBA 0.05–0.2 mgl-1

https://doi.org/10.1371/journal.pone.0243940.t001
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transposition and recombination. One of the advantages of the GEP approach is that search

operators in this model produce valid structures and simplify creation of genetic diversity. The

unique and multi-genic nature of this method allows very complex programs to be evolved

[25, 62]. GEP is 100 to 60,000 times faster than the GP method [63]. There are several basic

steps for preparation of this model. In the GEP algorithm, the process begins primarily with

random production of chromosomes from a given number of individuals (the initial popula-

tion of solutions). The chromosomes are shown as tree expression; in the next step, the perfor-

mance or compatibility of each member of the population of the chromosomes should be

evaluated. This is performed using a fitness function by which the fitness level of each individ-

ual is evaluated and selected based on its performance, to be bred, and a generation with new

characteristics is formed; the generation produced is developed again to find a good and suit-

able solution. The third step comprises selection of a set of terminals and a set of functions for

creating chromosomal genes. The set of terminals in the present study, including variables

PR, SL, STN, Vitri and QI, with the selected functions for each GEP model, are presented in

Table 4. The fourth step is to determine some of the control parameters of program running.

These parameters, involving gene number, head length of each gene in chromosome, and

genetic operators such as mutation, inversion, transportation, recombination, crossover, and

one-point, two-point and gene recombination, are summarized in Table 4 [62]. The fifth step

is to select the linking function. For algebraic sub-trees, the addition or multiplication linking

function must be selected [37]. Generally, selection of the linking function depends on the

nature of the problem and there is no basic rule for determining which of these functions is

more appropriate [64]. Fig 2 shows the general structure of the GEP modeling method. In the

present study, an additional linking function was used to create a link between sub-trees. Here,

different GEP models were evaluated using GeneXpro package software [62].

The GEP model is generally recommended and appropriate under the following conditions:

• Understanding the relationship among related variables is weak.

• Finding the final answer is difficult.

• Normal mathematical methods are not capable of analyzing the problem.

• Approximate answers are acceptable.

• There is a large amount of information that needs to be integrated, categorized and tested.

• Any minor improvement in the final answer is measurable and valuable [65, 66].

M5’ model tree. The M5’ model tree originally developed by Quinlan [67] is a binary

decision tree with linear regression functions in the end nodes. These functions can make

Table 2. The level of variables chosen for the Box–Behnken design.

Variable Coded variable level

Low Mid High

-1 0 1

KNO3 (× MS) 0.5 1.25 2

NH4NO3 (× MS) 0.5 1.25 2

Mesos (× MS) 0.5 1.5 2.5

Minors (× MS) 0.5 2.25 4

BA (mg/l) 0.5 1.75 3

IBA (mg/l) 0.05 0.13 0.2

https://doi.org/10.1371/journal.pone.0243940.t002
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Table 3. Coded factor levels for a Box-Behnken design of a six-variable system.

Culture medium Level of factors in a coded form

KNO3 NH4NO3 Mesos Minors BA IBA

1 0 -1 0 0 -1 1

2 1 1 0 -1 0 0

3 0 -1 1 0 -1 0

4 1 0 -1 0 0 -1

5 1 0 1 0 0 -1

6 1 0 0 -1 1 0

7 0 -1 0 0 1 -1

8 0 0 -1 1 0 -1

9 1 0 1 0 0 1

10 0 1 0 0 1 1

11 0 0 1 1 0 1

12 -1 -1 0 1 0 0

13 1 -1 0 1 0 0

14 0 1 -1 0 1 0

15 -1 0 -1 0 0 -1

16 1 -1 0 -1 0 0

17 0 -1 0 0 1 1

18 0 0 1 -1 0 1

19 0 -1 0 0 -1 -1

20 0 1 1 0 1 0

21 0 -1 -1 0 -1 0

22 1 0 -1 0 0 1

23 0 1 -1 0 -1 0

24 0 -1 -1 0 1 0

25 0 1 0 0 1 -1

26 -1 -1 0 -1 0 0

27 -1 0 0 1 -1 0

28 -1 0 1 0 0 1

29 1 0 0 1 1 0

30 0 0 -1 -1 0 1

31 -1 1 0 -1 0 0

32 0 0 1 -1 0 -1

33 -1 0 0 -1 1 0

34 0 0 1 1 0 -1

35 1 0 0 1 -1 0

36 0 0 -1 -1 0 -1

37 1 0 0 -1 -1 0

38 0 1 0 0 -1 1

39 0 1 0 0 -1 -1

40 -1 0 1 0 0 -1

41 1 1 0 1 0 0

42 0 -1 1 0 1 0

43 0 0 -1 1 0 1

44 -1 0 0 1 1 0

45 0 1 1 0 -1 0

46 -1 0 -1 0 0 1

(Continued)
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relationships between independent and dependent variables and predict continuous numerical

characteristics. Generation production in this model involves two steps. The first step uses a

separation index to create a decision tree. The separation index for the M5’ model tree algo-

rithm is based on evaluation of the standard deviation of the class values devoted to each node.

Standard deviation is used as a measure of the error in that node, which calculates the expected

reduction in this error as a result of testing each attribute in that node. The formula for stan-

dard deviation reduction (SDR) is defined as follows:

SDR ¼ sd Tð Þ �
X jTij
jTj

sd Tið Þ ð1Þ

Where T represents a set of samples assigned to each node, Ti represents a subset of samples

that has the ith output of a potential set, and sd is standard deviation [68].

Due to the process of separation and splitting, the standard deviation of the data in the

progeny nodes (lower nodes) is lower than the value in the parent node [69]. After examining

all possible separations, a separation that reduces expected standard deviation to its maximum

value is selected. However, this categorization often leads to a large tree structure that is likely

to result in over-training or weakness in the of model generalization. To solve this problem, in

the second stage, the created tree is pruned and then the modified sub-branches are replaced

by linear regression functions. This technique increases the accuracy of the tree model [67].

The M5’ model tree algorithm divides the parametric space into subspaces and generates a

regression model in each of them. Fig 3a shows the separation of input space X1×X2 (indepen-

dent variables) into six subspaces (leaves). In each of the leaves, a linear regression function

called model 1 to model 6 are created. In Fig 3b these relationships are represented as a tree

diagram, each of which is a leaf.

Gamma test-factor selection. GT is a nonlinear analysis and modeling tool that can

examine the relationship between input and output of a numerical data set. In this method,

Table 3. (Continued)

Culture medium Level of factors in a coded form

KNO3 NH4NO3 Mesos Minors BA IBA

47 -1 1 0 1 0 0

48 -1 0 0 -1 -1 0

https://doi.org/10.1371/journal.pone.0243940.t003

Table 4. Training parameters of the GEP model.

Function set +, -, ×, �
p

, ∛, sin, cos, Arctgx, x^2, x^3, ex, ln, Inverse, Tanh, Avg 2 inputs

Chromosomes 50

Head size 8

Number of genes 3

Linking functions Addition

Fitness function error type Root relative square error (RRSE)

Mutation rate 0.044

Inversion rate 0.1

One-point recombination rate 0.1

Two-point recombination rate 0.3

Gene recombination rate 0.1

Gene transportation rate 0.1

https://doi.org/10.1371/journal.pone.0243940.t004
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based on input data, that part of the output variance that cannot be justified by smooth models

is computed; although the model is unknown. The most important advantage of this tool is its

speed of processing, even in the case of large data sets [70].

Assuming that we have a set of M member of the observational data, {(xi, yi): 1� i�M},

then the relation between the input (x) and its corresponding output (y) can be expressed as

Fig 2. General structure and operation of the GEP model [66].

https://doi.org/10.1371/journal.pone.0243940.g002
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follows:

y ¼ fðx1 . . . :xMÞ þ ε ð2Þ

Where f is a smooth function for data modeling and ε is a random variable representing an

error. The GT method is based on the fact that if the two points x1 and x2 are in the vicinity

of each other in the input space, then the corresponding outputs y1 and y2 must also be in the

vicinity of each other in the output space. If these two outputs are not in the vicinity of each

other, this difference is considered as an error. Estimates of this error by the delta function for

input vectors and the gamma function for the output vector are as follows.

dM kð Þ ¼
1

M

XM

i¼1
jxL½I;K� � xij

2
ð1 � k � pÞ ð3Þ

where |.| represents the Euclidean distance, -k xL[i,k] is the closest neighbor for each vector

(1� i�M), and p is the number of close neighbors.

gM kð Þ ¼
1

2M

XM

i¼1
jyL½I;K� � yij

2
ð1 � k � pÞ ð4Þ

Where YL[i,k] denotes the corresponding values of y for -k, the nearest neighbor of the vector xi

in Eq 2. To calculate the amount of gamma statistics (Γ) by creating a linear regression based

on the method of minimum number of squares among p pairs (δM(k), γM(k)), an equation is

obtained as follows:

g ¼ Adþ G ð5Þ

The intercept of Eq 4 indicates the amount of gamma statistics (Γ). The small values of Γ
indicate that the output can easily be predicted by the inputs. While the existence of large

values of Γ indicates that there is no strong relationship between the selected inputs with the

observed output, or some of the important variables are neglected or the number of input data

used is low [51]. The slope of Eq 4 is an index of the complexity of the model. The higher the

slope, the more sophisticated the system is [55]. Therefore, using the GT, the order of the

importance of the input variables can be determined. To determine the order of the impor-

tance of the input parameters, in a step-by-step process, the GT is first performed for the com-

plete composition (all input parameters). In the second step, one of the input parameters is

Fig 3. Separation of input space X1 × X2 by M5 model tree algorithm (a). Model tree diagram with six regression equations in leaves (b).

https://doi.org/10.1371/journal.pone.0243940.g003

PLOS ONE Modeling plant tissue culture media formulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243940 December 18, 2020 10 / 29

https://doi.org/10.1371/journal.pone.0243940.g003
https://doi.org/10.1371/journal.pone.0243940


arbitrarily deduced from the original compound and the Γ statistic is recalculated. In the third

step, by returning the deleted parameter to the original compound, another variable is deleted,

and then the GT is executed for the new composition. This process is repeated for all parame-

ters. Finally, the parameter which, with its removal from the original composition, least

increases the Γ statistic, is least important, and the parameter which, with its removal from

the original composition, has the highest Γ statistic, is the most important variable affecting

the desired output.

Optimization models

Genetic algorithm. GA is a renowned global optimization method according to the Dar-

win’s principle of the ‘survival of the fittest’ and the natural process of evolution by reproduc-

tion. GA keeps a set of nominee solutions called “population” and repetitively modifies them.

At each stage, the GA chooses individuals from the present population as parents and applies

them to create the children for the next generation. Nominee solutions are typically repre-

sented as strings of fixed length, called chromosomes. A fitness or objective function is applied

to reflect the appropriateness of each population member [71]. A specified random initial pop-

ulation GA runs in cycles called generations, as follows [72]:

• Fitness function is used to assess each member of the population.

• In a number of repetitions, the population is reproduced. One or more parents are selected

randomly, however strings comprising higher fitness value have higher possibility of contrib-

uting an offspring.

• Genetic operators, like crossover and mutation are used to parents to create offspring.

• The offspring are placed in the population and the process is reiterated.

Application of GA requires determination of six basic items: chromosome representation,

the genetic operators, selection function, initialization, termination and evaluation function.

Various demonstrations of an individual or chromosome are: floating point numbers, binary

digits, real values, integers, matrices, etc. Likewise, there are numerous patterns for the selec-

tion process: scaling techniques, roulette wheel selection and its extensions, normal geometric,

tournament, elitist models and ranking methods. There are two fundamental kinds of genetic

operators; crossover and mutation. Crossover gets two individuals and creates two new indi-

viduals while mutation changes one individual to produce a distinct new solution. The follow-

ing genetic operators are usually used: uniform mutation, non-uniform mutation, multi-non-

uniform mutation, boundary mutation and simple crossover, arithmetic crossover and heuris-

tic crossover. Moreover, random initialization and specified generations are commonly

applied for the initialization and termination process [71].

Particle swarm optimization model. PSO is an evolutionary calculation method and

swarm intelligence algorithm based on population to solve the inclusive optimization problem

that was created by Eberhart and Kennedy [47]. It is a mathematical computation technique

which starts with a crowd of grain named as the swarm and generally according to social mod-

els, like bird flocking, fish schooling and the swarm theory [40]. The main factors of PSO are

the concomitant of swarm’s behavior i.e. retaining optimal distances between individual

members and their neighbors. For optimizing the location of each particle, their position is

improved as planned for the objective function inside the search region. So, the velocity of a

particle is the main factor of PSO that is optimized in each repetition by comparing to the pre-

vious one to direct the particle to its best location. In each repetition, every particle in a swarm

attains the best solution (fitness) up to now, named pbest. Additional “best” value which is a
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particle is acquired so far in the population followed by the particle swarm optimizer that is

global best and named gbest. The velocity of every particle in a swarm is calculated through

the following equation [47, 48].

Viþ1 ¼ wVi þ c1r1ðpBesti � XiÞ þ c2r2ðgBesti � XiÞ ð6Þ

Xiþ1 ¼ Xi þ Viþ1 ð7Þ

where, Vi+1 is new velocity for every particle according to previous velocity (Vi), W is inertial

coefficient (0.8–1.2), c1 and c2 is cognitive coefficient and social coefficient, respectively (0–2),

r1 and r2 is random values for every velocity update (0–1) and Xi+1 is new position for every

particle based on the previous position (Xi).
Performance evaluation of the proposed models. In order to investigate and compare

the accuracy of different models, four statistical measures; root mean square error (RMSE),

mean absolute relative error (MARE), mean bias error (MBE) and correlation coefficient (R),

were used. Their equations are as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðOi � PiÞ

2

N

s

ð8Þ

MARE ¼
1

N

XN

i¼1

Oi � Pi
Oi

�
�
�
�

�
�
�
� ð9Þ

MBE ¼
1

N

XN

i¼1
ðOi � PiÞ ð10Þ

R ¼
PN

i¼1
ðOi �

�OiÞðPi � �PiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðOi �

�OiÞ
2PN

i¼1
ðPi � �PiÞ

2

q ð11Þ

Where Oi and Pi are the observed and predicted values, respectively and �Oi and �Pi are the

mean observational and the predicted values for N number of samples. Parameters are ana-

lyzed together to attain a precise medium composition.

Results

Performances of modeling procedures

Our models of the effects of altering inputs were constructed using M5’ model tree and GEP

techniques. The GEP predictive model explained variation in most of the growth parameters,

the Equations that best estimated these parameters are in Table 5. A second set of equations

was established using M5’ model trees (Table 6).

The performance criteria values for the models are shown in Table 7. It is clear that both

models reasonable predict all plant parameters measured. In comparing the accuracy, GEP

was more precise for most parameters in both rootstocks except for shoot length. Conse-

quently, GA and PSO techniques were used for multi-objective optimization of GEP models.

Optimization of GEP models

MNOGA and MOGA optimized GEP models were compared for their ability to optimize the

composition in vitro culture media for pear rootstocks (Tables 8 and 9).
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Table 6. Rules of the M5ʾ tree model for OHF and Pyrodwarf in vitro proliferation parameters.

Pear rootstock Growth parameter Rule number If Then

OHF Proliferation rate

1 E > 1.125 X = 0.4237 × A − 0.257 × B − 1.0822 × C + 0.0318 × D − 0.0738 × E + 0.7144 × F + 7.8457

E <= 2.375

C > 1

2 E > 1.125 X = 0.3937 × A − 0.4698 × B − 1.2439 × C − 0.1651 × E + 0.1836 × F + 6.923

E > 2.375

3 E <= 1.125 X = 0.1782 × A − 0.3381 × B − 0.9584 × C + 0.6468 × E + 1.2824 × F + 2.9123

A > 0.875

4 X = 0.7912 × A − 6.2314 × C + 1.5998 × F + 9.8904

Shoot length

1 C <= 2 X = -0.3552 × A − 0.2809 × B + 0.0958 × C + 0.0602 × D − 0.1355 × E + 2.4832 × F + 3.5306

C > 1

D > 1.375

E > 2.375

B > 0.875

2 C > 1 X = -0.3463 × A − 0.0924 × B + 0.8286 × C + 0.0443 × D − 0.1156 × E + 3.1266 × F + 3.035

D > 1.375

A > 0.875

E <= 2.375

A <= 1.625

B <= 1.625

3 C > 1 X = 0.1545 × A − 0.0727 × B + 0.5525 × C − 0.1703 × D − 0.3319 × E + 1.344 × F + 2.9199

D > 1.375

A > 0.875

B > 0.875

F <= 0.163

4 C > 1 X = -0.0352 × A − 0.0992 × B + 0.2924 × C + 0.0807 × D − 0.1768 × E + 1.5625 × F + 3.2275

D > 1.375

A > 0.875

5 C > 1 X = -0.0488 × A − 0.2705 × B + 0.3694 × C + 0.1452 × D + 0.0668 × E + 1.7824 × F + 3.2257

D > 1.375

B > 0.875

6 A <= 1.625 X = -0.2058 × A − 0.3384 × B + 0.2668 × C + 0.2046 × D − 0.1517 × E + 1.8772 × F + 2.6147

C <= 1

A > 0.875

E <= 2.375

D <= 3.125

7 A <= 1.625 X = -0.1354 × A − 0.3512 × B + 0.5812 × C + 0.2623 × D − 0.106 × E + 1.7793 × F + 2.4655

E <= 2.375

C <= 2

B > 0.875

F <= 0.163

8 E <= 2.375 X = 0.2111 × A − 0.0768 × B + 0.5576 × C + 0.421 × D − 0.0584 × E + 1.2153 × F + 2.1238

A <= 1.625

C > 1

(Continued)
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Table 6. (Continued)

Pear rootstock Growth parameter Rule number If Then

9 E <= 2.375 X = -0.1813 × A − 0.2502 × B + 0.1778 × C − 0.0823 × E + 1.7182 × F + 2.8632

A > 1.625

C <= 1

10 F <= 0.163 X = 0.1754 × A − 0.1856 × B − 0.0808 × E + 4.0154 × F + 2.0236

E <= 2.375

B > 0.875

11 E > 2.375 X = 0.0641 × A − 0.1203 × B − 0.3621 × E + 3.2001

B <= 1.625

A <= 1.625

12 E > 2.375 X = 0.4331 × A − 0.5811 × E + 3.0243

13 A <= 1.625 X = 0.0481 × A + 3.2957

X = + 3.245

Quality index

1 C > 1 X = -0.2346 × A − 0.465 × B − 0.3995 × C − 0.373 × D − 0.1173 × E + 6.7724

D > 1.375

2 C > 1 X = -0.4178 × A − 0.038 × B + 0.0916 × C − 0.1751 × E + 3.1081

3 A <= 1.625 X = -0.0329 × A − 0.2049 × B+ 0.0499 × D- 0.0889 × E + 1.9649

D > 1.375

B > 0.875

4 X = 0.3466 × A − 1.2761 × B + 0.14 × E − 1.0282 × F + 2.2133

Shoot tip necrosis

1 C > 1 X = 2.355 × B + 5.6024 × C + 0.5965 × D − 1.7076

B > 0.875

2 C > 1 X = 2.8713 × B − 1.658 × C + 0.1911 × D + 1.0358 × E + 66.0559 × F − 1.7365

F <= 0.163

3 B > 0.875 X = 0.5473 × A + 0.862 × B − 6.8996 × C + 1.0135 × E + 9.4435 × F + 39.7179

A <= 1.625

4 C <= 1 X = 13.3659 × A − 12.7662 × C − 1.4668 × E + 13.6242 × F + 24.3603

Vitrification

1 D > 1.375 X = 4.1865 × A + 0.9834 × B − 0.6441 × C + 5.5661 × D + 2.1536 × E − 18.0036

2 X = 4.544 × A + 2.8493 × E + 19.091

Pyrodwarf Proliferation rate

1 E > 1.125 X = -1.8814 × A − 0.727 × B − 1.4415 × C + 0.0681 × D − 0.1405 × E + 1.6517 × F + 13.9309

E <= 2.375

A <= 1.625

C <= 2

2 E > 1.125 X = -0.6304 × A − 0.2558 × B − 0.0147 × C + 0.0438 × D − 0.2349 × E + 0.3444 × F + 10.3964

E <= 2.375

A <= 1.625

3 E > 1.125 X = -0.1087 × A − 0.2089 × B − 0.5264 × C − 0.0079 × D − 0.1992 × E + 1.6239 × F + 7.2824

E > 2.375

B > 0.875

A <= 1.625

4 E > 1.125 X = -0.9459 × A − 0.2805 × B − 0.6259 × C − 0.0565 × D − 0.4487 × E + 0.3839 × F + 10.0108

E > 2.375

5 E <= 1.125 X = -0.1673 × A − 0.3295 × B − 0.6127 × C + 0.0083 × D + 0.8668 × E + 1.3144 × F + 2.9653

B <= 0.875

(Continued)
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Table 6. (Continued)

Pear rootstock Growth parameter Rule number If Then

6 E > 1.125 X = -0.089 × A − 0.3747 × B − 0.2561 × C + 0.048 × D + 1.2633 × E + 1.1152 × F + 7.3119

B <= 1.625

C <= 2

7 E > 1.125 X = -0.152 × A − 0.7885 × B − 0.0643 × C + 0.0796 × D + 2.0641 × E + 2.6466 × F + 5.5749

8 A <= 0.875 X = -0.1996 × A − 0.2481 × C + 0.0398 × D + 2.0721

9 A <= 1.625 X = -0.1075 × A − 0.3785 × C + 0.268 × F + 1.878

C > 1

10 X = -1.3167 × A + 0.0357 × D + 3.6155

Shoot length

1 C <= 2 X = -0.3552 × A − 0.2809 × B + 0.0958 × C + 0.0602 × D − 0.1355 × E + 2.4832 × F + 3.5306

C > 1

D > 1.375

E > 2.375

B > 0.875

2 C > 1 X = -0.3463 × A − 0.0924 × B + 0.8286 × C + 0.0443 × D − 0.1156 × E + 3.1266 × F + 3.035

D > 1.375

A > 0.875

E <= 2.375

A <= 1.625

B <= 1.625

3 C > 1 X = 0.1545 × A − 0.0727 × B + 0.5525 × C − 0.1703 × D − 0.3319 × E + 1.344 × F + 2.9199

D > 1.375

A > 0.875

B > 0.875

F <= 0.163

4 C > 1 X = -0.0352 × A − 0.0992 × B + 0.2924 × C + 0.0807 × D − 0.1768 × E + 1.5625 × F + 3.2275

D > 1.375

A > 0.875

5 C > 1 X = -0.0488 × A − 0.2705 × B + 0.3694 × C + 0.1452 × D + 0.0668 × E + 1.7824 × F + 3.2257

D > 1.375

B > 0.875

6 A <= 1.625 X = -0.2058 × A − 0.3384 × B + 0.2668 × C + 0.2046 × D − 0.1517 × E + 1.8772 × F + 2.6147

C <= 1

A > 0.875

E <= 2.375

D <= 3.125

7 A <= 1.625 X = -0.1354 × A − 0.3512 × B + 0.5812 × C + 0.2623 × D − 0.106 × E + 1.7793 × F + 2.4655

E <= 2.375

C <= 2

B > 0.875

F <= 0.163

8 E <= 2.375 X = 0.2111 × A − 0.0768 × B + 0.5576 × C + 0.421 × D − 0.0584 × E + 1.2153 × F + 2.1238

A <= 1.625

C > 1

9 E <= 2.375 X = -0.1813 × A − 0.2502 × B + 0.1778 × C − 0.0823 × E + 1.7182 × F + 2.8632

A > 1.625

C <= 1

(Continued)
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For Pyrodwarf, MOGA optimized models gave a lower PR (5.45) than MNOGA optimized

models (13.00). On the contrary, SL was much lower in MNOGA (5.00) than MOGA (9.25)

optimized models. QI showed almost no difference between the two procedures (4.99 vs.5.00).

STN and Vitri were higher with MOGA optimization (0.14 and 4.79, respectively) than with

MNOGA (0.0001 and 4.00) (Tables 8 and 9).

The same comparisons for OHF showed higher PR and SL with MOGA (12.58 and 5.45)

than using MNOGA (9.42 and 4.99) but lower QI using MOGA (4.19) than MNOGA (4.84).

STN was higher with MNOGA (0.02) than MOGA (0.00) and Vitri was much higher with

MOGA (2.14) than MNOGA (0.02) (Tables 8 and 9).

MOPSO analysis on the GEP models resulted in optimal outputs of (mgl-1) 0.74 NH4NO3,

0.50 KNO3, 2.50 meso-nutrients (CaCl2, MgSO4 and KH2PO4), 2.54 micro-nutrients (CoCl2,

CuSO4, FeNaEDTA, H3BO3, KI, MnSO4, NaMoO4 and ZnSO4), 3.00 BA and 0.02 IBA for Pyr-

odwarf and 1.00 NH4NO3, 0.50 KNO3, 2.32 meso-nutrients, 2.32 micro-nutrients, 2.10 BA

and 0.20 IBA for OHF. In contrast, MOGA optimization analysis of GEP models gave medium

containing (mgl-1) 0.81 NH4NO3, 0.50 KNO3, 2.50 meso-nutrients, 2.53 micro-nutrients, 0.50

Table 6. (Continued)

Pear rootstock Growth parameter Rule number If Then

10 F <= 0.163 X = 0.1754 × A − 0.1856 × B − 0.0808 × E + 4.0154 × F + 2.0236

E <= 2.375

B > 0.875

11 E > 2.375 X = 0.0641 × A − 0.1203 × B − 0.3621 × E + 3.2001

B <= 1.625

A <= 1.625

12 E > 2.375 X = 0.4331 × A − 0.5811 × E + 3.0243

13 A <= 1.625 X = 0.0481 × A + 3.2957

14 X = + 3.245

Quality index

1 C > 1 X = -0.2346 × A − 0.465 × B − 0.3995 × C − 0.373 × D − 0.1173 × E + 6.7724

D > 1.375

2 C > 1 X = -0.4178 × A − 0.038 × B + 0.0916 × C − 0.1751 × E + 3.1081

3 A <= 1.625 X = -0.0329 × A − 0.2049 × B + 0.0499 × D − 0.0889 × E + 1.9649

D > 1.375

B > 0.875

4 X = 0.3466 × A − 1.2761 × B + 0.14 × E − 1.0282 × F + 2.2133

Shoot tip necrosis C > 1 X = 2.355 × B + 5.6024 × C + 0.5965 × D − 1.7076

B > 0.875

1 C > 1 X = 2.8713 × B − 1.658 × C + 0.1911 × D + 1.0358 × E + 66.0559 × F − 1.7365

F <= 0.163

2 B > 0.875 X = 0.5473 × A + 0.862 × B − 6.8996 × C + 1.0135 × E + 9.4435 × F + 39.7179

A <= 1.625

3 C <= 1 X = 13.3659 × A − 12.7662 × C − 1.4668 × E + 13.6242 × F + 24.3603

Vitrification

1 D > 1.375 X = 4.1865 × A + 0.9834 × B − 0.6441 × C + 5.5661 × D + 2.1536 × E − 18.0036

2 X = 4.544 × A + 2.8493 × E + 19.091

Inputs are A: KNO3, B: NH4NO3, C: Mesos, D: Micros, E: BA, F: IBA.

https://doi.org/10.1371/journal.pone.0243940.t006
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BA and 0.02 IBA for Pyrodwarf and 1.01 NH4NO3, 0.50 KNO3, 2.35 meso-nutrients, 2.32

micro-nutrients, 2.10 BA and 0.20 IBA for OHF.

For Pyrodwarf, multi-objective optimizing of GEP models using PSO resulted in greater PR

(12.84) than use of GA (5.45) but SL and QI were better optimized using GA than PSO (Tables

8 and 9). For OHF few differences in PR, Vitri, or STN were found between MOGA and

MOPSO. The OHF, SL and QI were better optimized by MOPSO than MOGA, the opposite

of the Pyrodwarf results (Tables 8 and 9).

The media constituents proposed by MOGA and MOPSO optimized GEP predictive mod-

els showed nearly the same input quantities for each component except BA hormone which

was much greater in the MOPSO (3.00) than the MOGA (0.50) optimized model for Pyrod-

warf rootstock.

Important inputs selection using GT

For building GEP and M5’ models to predict culture media composition for pear rootstocks,

key input factors were selected using the GT. Conventionally, a modeler needs to use trial and

error to build mathematical models, such as ANN, to evaluate input combinations. This is very

Table 7. Statistical summary of the implemented models.

Rootstock Model Output RMSE MARE MBE R2

OHF Proliferation

M5 0.2756 0.0573 0.0442 0.9916

GEP 0.2538 0.0599 0.0256 0.9933

Pyrodwarf

M5 0.3312 0.0512 -0.0782 0.9948

GEP 0.3933 0.0708 0.0466 0.9932

OHF Shoot length

M5 0.1665 0.0419 0.0024 0.9854

GEP 0.2196 0.0587 0.0341 0.9741

Pyrodwarf

M5 0.1709 0.0921 -0.0795 0.9924

GEP 0.2458 0.1258 0.0129 0.9783

OHF Vitrification

M5 3.6278 0.1407 -0.0359 0.9497

GEP 3.0738 0.1093 0.2496 0.9692

Pyrodwarf

M5 5.3214 0.1684 0.645 0.9135

GEP 4.3844 0.1115 -0.8040 0.9364

OHF Shoot tip necrosis

M5 4.1123 0.1735 0.453 0.9529

GEP 4.0425 0.1319 -0.7604 0.9616

Pyrodwarf

M5 4.5173 0.1387 -0.4049 0.9327

GEP 3.6175 0.1495 -0.2423 0.9544

OHF Quality index

M5 0.3948 0.1191 -0.0098 0.934

GEP 0.4067 0.1271 0.0717 0.9437

Pyrodwarf

M5 0.407 0.1428 -0.0109 0.933

GEP 0.3782 0.1300 -0.0497 0.9440

https://doi.org/10.1371/journal.pone.0243940.t007
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time consuming since the modeler needs to calibrate and test models using all the likely input

combinations. In addition, there is no clear rule determining the number of data points to be

used in the calibration process. Using the GT, the workload for model development can be

reduced greatly and guidance can be provided regarding the number of input data used in the

developed model. Basically, the GT helps reach the best possible mean square error that can be

achieved using any nonlinear smooth model. In this study, various combinations of minerals

and hormones were explored to assess their effect on explant growth of two pear rootstocks.

To determine the most important variables, the gamma value must first be calculated for a

combination of all variables (6 input variables). In the next stage, one of the variables is omit-

ted and the gamma value is calculated for a combination of the remaining variables (5 vari-

ables). Then, the omitted variable from the previous stage is returned and another variable is

omitted from the original combination (6 variables) and a gamma value is then calculated for

the new combination. This process is continued for all variables one by one and in each step

Table 8. Results of mono-objective optimization of a GEP model using GA to achieve maximum PR, SL and QI and minimum STN and Vitri during OHF and Pyr-

odwarf pear rootstock proliferation in vitro.

Pyrus rootstock NH4NO3 KNO3 Mesos Minor BA IBA

Pyrodwarf PR

13.00432 1.5637 1.188 1.7548 3.2834 2.0792 0.1311

SL

4.9999 1.8265 0.5115 1.7393 2.6042 0.5947 0.1599

QI

4.9886 0.8855 0.5 2.5 3.9999 0.5001 0.05

STN

0.0001 0.9254 0.5034 2.2966 0.6374 0.5129 0.0662

Vitri

3.9989 0.5 0.5 2.4999 2.7638 0.5 0.05

OHF

PR

9.4209 1.9996 1.1895 0.6188 2.1306 1.5938 0.1721

SL

4.9923 0.8990 1.3538 2.0435 3.4533 1.8080 0.0976

QI

4.8365 0.9914 0.533 1.8578 2.1212 2.5860 0.1800

STN

0.0185 1.0829 0.5144 1.5816 2.3630 1.9298 0.1504

Vitri

0.0187 0.5 1.274 1.4925 1.5196 1.3158 0.1443

https://doi.org/10.1371/journal.pone.0243940.t008

Table 9. Multi-objective optimization of GEP models using GA and PSO techniques to achieve the highest quality and quantity during pear rootstock in vitro

proliferation.

Rootstock Optimization technique Medium composition PR SL QI STN Vitri

NH4NO3 KNO3 Mesos Micro BA IBA

Pyrodwarf PSO 0.74 0.50 2.50 2.54 3.00 0.02 12.84 4.79 4.92 1.07 5.66

GA 0.81 0.50 2.50 2.53 0.50 0.02 5.45 9.25 5.00 0.14 4.79

OHF PSO 1.00 0.50 2.32 2.32 2.10 0.20 12.41 5.61 4.27 0.00 2.13

GA 1.01 0.50 2.35 2.32 2.10 0.20 12.58 5.45 4.19 0.00 2.14

https://doi.org/10.1371/journal.pone.0243940.t009
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the gamma value is computed. Thus, the inputs can be ranked based on the importance of

their effect on the outputs using their gamma values.

For the OHF rootstock, BA, with the highest GT value (Γ = 4.0178), was identified as the

most important input variable affecting the PR. Others in descending order were NH4NO3,

Mesos, IBA, KNO3 and Micros (Table 10). Mesos (Γ = 0.5482) were the most significant factor

affecting SL, followed by KNO3, IBA, BA, NH4NO3 and Micros. The relative importance of

inputs affecting STN was Mesos (Γ = 184.0100) > IBA (Γ = 130.9600)> KNO3 (Γ = 127.3200)

> NH4NO3 (Γ = 116.5100)> BA (Γ = 106.2700) >Micro (Γ = 44.7600). Micro (Γ =

136.6100), was the key variable influencing Vitri, while BA (Γ = -1.9649) and Mesos

Table 10. Gamma test results for the OHF rootstock.

Output variables Input combinations Mask Gamma (Γ) Gradiant (A) SE

Proliferation All inputs 111111 0.5620 0.8669 1.5763

All inputs—KNO3 011111 2.0077 0.4477 1.6985

All inputs—NH4NO3 101111 2.6150 0.4354 0.8301

All inputs—Mesos 110111 2.2833 0.5257 1.3597

All inputs—Micro 111011 0.5965 1.2064 1.2197

All inputs—BA 111101 4.0178 0.1644 1.4234

All inputs—IBA 111110 2.0514 0.4577 1.1611

Shoot Length All inputs 111111 0.2203 0.0957 0.0753

All inputs—KNO3 011111 0.3648 0.0636 0.1170

All inputs—NH4NO3 101111 0.3268 0.0765 0.1515

All inputs—Mesos 110111 0.5482 0.0405 0.1048

All inputs—Micro 111011 0.2010 0.1650 0.0535

All inputs—BA 111101 0.3317 0.0952 0.1365

All inputs—IBA 111110 0.3560 0.0707 0.1341

STN All inputs 111111 48.9980 31.4820 42.7530

All inputs—KNO3 011111 127.3200 127.3200 54.0010

All inputs—NH4NO3 101111 116.5100 13.7040 42.9240

All inputs—Mesos 110111 184.0100 4.6396 51.9130

All inputs—Micro 111011 44.7660 46.7960 41.7740

All inputs—BA 111101 106.2700 19.9260 58.8890

All inputs—IBA 111110 130.9600 12.3230 51.3970

Vitrification All inputs 111111 -17.7400 28.1300 25.9310

All inputs—KNO3 011111 20.9180 19.3910 27.7170

All inputs—NH4NO3 101111 29.4660 16.7610 45.3380

All inputs—Mesos 110111 -0.0819 27.7110 31.5320

All inputs—Micro 111011 136.6100 -1.2718 35.4910

All inputs—BA 111101 -1.9649 28.8680 31.3780

All inputs—IBA 111110 21.9860 16.8340 54.7800

Quality All inputs 111111 0.0728 0.2768 0.2233

All inputs—KNO3 011111 0.5746 0.1471 0.2216

All inputs—NH4NO3 101111 0.6161 0.1341 0.1803

All inputs—Mesos 110111 1.1146 0.0408 0.3014

All inputs—Micro 111011 0.5159 0.2432 0.2885

All inputs—BA 111101 0.4175 0.2268 0.2853

All inputs—IBA 111110 0.8418 0.0829 0.3527

Note: Different combinations compared to study the input effects (inclusion and exclusion indicated by 1 or 0 in the mask).

https://doi.org/10.1371/journal.pone.0243940.t010
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(Γ = -0.0819) had little effect. Mesos (Γ = 1.1146) were the greatest influence on QI. In general,

many of the parameters for OHF were significantly influenced by Mesos (Table 10).

GT data for Pyrodwarf rootstock are presented in Table 11. BA (Γ = 10.2920), micros (Γ =

0.7874), NH4NO3 (Γ = 166.410), KNO3 (Γ = 168.4400), and mesos (Γ = 1.4860) had the highest

gamma values for PR, SL, STN, Vitri and QI. For this rootstock, each measured parameter was

affected differently by the input factors.

Discussion

In vitro culture medium composition directly influences explant growth. Recently, artificial

intelligence has become a strong tool for analysis of plant tissue culture data and can accurately

Table 11. Gamma test results for Pyrodwarf rootstock.

Output Variable Input combinations Mask Gamma (Γ) Gradiant (A) SE

Proliferation All inputs 111111 2.1129 1.7403 4.0116

All inputs—KNO3 011111 4.7818 0.9393 4.2339

All inputs—NH4NO3 101111 6.8771 0.7586 1.6950

All inputs—Mesos 110111 4.6236 1.2593 3.5021

All inputs—Micro 111011 2.0421 2.5185 3.3655

All inputs—BA 111101 10.2920 0.0106 3.6452

All inputs—IBA 111110 5.2341 0.8714 2.9160

Shoot Length All inputs 111111 -0.3573 0.3796 0.3801

All inputs—KNO3 011111 0.4399 0.1785 0.3984

All inputs—NH4NO3 101111 0.5431 0.1506 0.5246

All inputs—Mesos 110111 0.2888 0.2331 0.4847

All inputs—Micro 111011 0.7874 0.2007 0.2793

All inputs—BA 111101 0.0427 0.3332 0.3510

All inputs—IBA 111110 0.4607 0.1428 0.6549

STN All inputs 111111 128.000 7.1974 52.0610

All inputs—KNO3 011111 144.460 2.3894 31.0210

All inputs—NH4NO3 101111 166.410 -3.3839 48.6330

All inputs—Mesos 110111 141.900 3.5943 61.0130

All inputs—Micro 111011 91.671 22.0500 42.6210

All inputs—BA 111101 139.000 3.9727 57.7520

All inputs—IBA 111110 150.2200 1.7223 49.7580

Vitrification All inputs 111111 152.1200 1.1255 62.0530

All inputs—KNO3 011111 168.4400 -0.0008 79.8210

All inputs—NH4NO3 101111 147.4000 1.7224 19.3820

All inputs—Mesos 110111 160.7700 0.7812 64.4780

All inputs—Micro 111011 63.6200 38.3510 47.553

All inputs—BA 111101 104.8200 18.6670 58.6660

All inputs—IBA 111110 164.0400 1.0555 74.8700

Quality All inputs 111111 1.3022 0.0347 0.4882

All inputs—KNO3 011111 1.4856 0.0058 0.5191

All inputs—NH4NO3 101111 1.3936 0.0003 0.1725

All inputs—Mesos 110111 1.4860 -0.0074 0.5018

All inputs—Micro 111011 0.6692 0.2912 0.2363

All inputs—BA 111101 1.0645 0.1255 0.4323

All inputs—IBA 111110 1.4855 0.0049 0.5013

https://doi.org/10.1371/journal.pone.0243940.t011
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predict optimal media composition [10, 11, 18, 49]. Predictive models to examine the effect of

macronutrients and hormonal content on the G × N15 Prunus explant growth and rooting

were constructed successfully previously using an ANN modeling procedure [11, 18, 49]. In

our earlier work on pear rootstocks (OHF 69 and Pyrodwarf), we used ANN-GA to forecast

the optimum macronutrient concentrations for an in vitro medium and compared this

method with stepwise regression modeling [10]. ANN-GA appeared promising for this pur-

pose [10]. While ANN provides a good substitute for statistical regression, it does not identify

any mathematical relationships between the input and output variables. Furthermore, the

ANN technique requires a time consuming trial and error process in order to find network

parameters such as hidden layers and number of neurons. Using other approaches, such as GP

or decision tree algorithms, can potentially overcome some of the weaknesses of the ANN

method. Use of GP as a GA has the advantage of generating prediction equations without pre-

suming the previous form of the current relationships. While the decision tree methods are

also characterized as tree structures, they generally explore a data space rather than a program

space, as genetic algorithms do. GP methods can produce highly nonlinear models [73, 74] in

comparison to linear M5’ tree models [75]. To the authors’ knowledge, decision tree algo-

rithms have never been used to study the performance of in vitro plantlets. In this study, the

M5’ algorithm [76] for developing the model tree, was used to model the effect of plant tissue

culture media components on explant growth parameters. The M5’ model is a powerful soft

computing technique which provides comprehensive mathematical equations that give users

more insight into the parameters affecting the modeling process outcome [77, 78].

Previously we compared two algorithms, i.e. RBFNN and GEP, to test improved modeling

techniques for predicting impacts of plant tissue culture media components on parameters of

explant growth [40]. GEP was the more powerful and precise predicting method in addition to

being practical.

In this study, we applied the M5’ tree model algorithm, one of the algorithms of the model

tree (MT) technique, to predict optimized concentrations of plant tissue culture media compo-

nents. The performance of the developed models was then compared with the performance of

the GEP constructed models on the same data (Table 7). As mentioned above, MTs have been

found previously to be more precise predicting methods than regression-based approaches

and more clear than ANN methods [77]. The MT method has several advantages over other

soft computing approaches such as ANN. Most importantly, MT does not need considerable

trial and error inputs to attain the best model. However, the MT method has the key limitation

that it produces only linear relationships. In addition, for more complex states, the transforma-

tion of input data may not be that simple and may not necessarily result in a several simple lin-

ear formulations [77]. According to the results, the optimized GEP approach provides better-

fit calculation than M5’ tree model algorithm. In addition, it has been shown that the most

effective optimization approach for optimizing GEP models was MOPSO.

One of the most important benefits of the GEP method, compared to other techniques, is

the lack of need to assume the preceding form of the relationship in order to produce predic-

tion equations. GP and its derivations have been used previously to determine complicated

relationships fitting various experimental data [39, 79, 80]. For this method, better individuals

are selected from among a population by using genetic variations and fitness functions. The

genetic variations are introduced by genetic operators. GEP is a learning machine which is sup-

posed to learn the relationship between variables in data groups. The difference between GEP

and its precursors, GP and GA, is in their individual programming, which is as fixed length lin-

ear strings (chromosomes), shown eventually by expression trees in GEP. Whereas, in GP and

GA, the expression of individuals is as fixed length linear strings (chromosomes) and nonlinear

entities of different shapes (parse trees) and sizes, respectively. One of the strengths of GEP
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over GP and GA is that its genetic operators work at the chromosome level, which makes the

formation of genetic diversity very simple. Another important point, that allows more complex

programs with several sub-programs to be evolved, is the unique, multi-genic nature of GEP.

GEP combines the benefits of both GP and GA while also overcoming some of their limitations

[62]. During the past years, GEP has been used widely due to its high effectiveness and effi-

ciency and the applications of GEP are very extensive and are rapidly increasing [81]. GEP

algorithm, as one of the most efficient function mining algorithms, has been extensively used

in classification, prediction, pattern recognition, and other research areas. GEP can mine an

optimal function to deal with subsequent complicated tasks [82]. GEP is selected over ANNs

model, since ANN is a black-box model, while GEP can explain the developed prediction mod-

els with mathematical statements. The developed GEP models have been used to predict spring

streamflow up to 5 months in advance with high accuracy [83]. GEP has been applied to specify

the water quality and stress on rivers or lakes due to the pollutants found in the wastewater

[84]. Because of the measurement conditions, data may have some missing values. Such prob-

lem can easily be solved by using GEP [84]. Results according to real data set show that the

multiple gene expression programming and fuzzy expert system technique outperforms

advanced acute hypotensive episode (a common serious postoperative complication in ICU,

which may raise multiple system failure especially of cardiac and respiratory kinds, and even

cause death) detection methods by obtaining high prediction accuracy [81].

Here, Explant growth in reaction to macronutrient concentration differed, based on pear

rootstock genotype, as also occurred in our preceding study using ANN-based modeling

which found the critical nutrients for optimal growth were NO3
− and NH4

+ [10]. We there-

fore proposed use of ANN-based modeling to identify concentrations of macronutrients

that would maximize PR and SL while minimizing STN and Vitri [10].

Detecting the optimum levels of minerals and hormones for a particular plant genotype is

problematic due to their complicated interactions [85]. Moreover, the occurrence of physio-

logical disorders such as hyperhydricity and necrosis during the proliferation stage of Pyrus
genotypes has led researchers to use a variety of media for optimal growth. Developing an opti-

mized culture medium likely will require use of a reliable mathematical modeling and optimi-

zation method [10, 11, 18, 49]. Various statistical procedures have been used previously to

develop effective plant tissue culture media [10, 11, 18, 20, 49, 86].

The response surface method (RSM) and Multiple Linear Regression (MLR) have been

used previously to develop optimal in vitromedia for pear genotypes [10, 87]. Significantly

higher accuracy of prediction was reported for ANN-GA models than for RSM and MLR [10,

88]. RBFNN-based models, along with optimization algorithms have also been effective.

The MNOGA optimized models obtained in this work indicate the importance of each

nutrient or hormone for explant growth (Table 8). Previous studies on G × N15 Prunus root-

stock using ANN-GA modeling identified the greater importance of NH4
+, NO3

-, PO4
2-, Ca2+,

and K+, relative to SO4
2-, Mg2+, and Cl−, for in vitro proliferation [11]. MNOGA optimization

of GEP models showed that high proliferation rate may result in reduced plantlet quality

(Table 8). Performing multi-objective optimization techniques using GA and PSO on GEP

models of Pyrodwarf showed that reducing BA and increasing NH4NO3, will increase QI and

SL while decreasing the STN, Vitri, and PR (Table 9).

The role of the ratio of NO3
- to NH4

+ in Pyrus rootstock micropropagation has been exten-

sively discussed in the literature [89–92]. These results are in accordance with many preceding

studies on various plant species [89, 90, 93, 94]. Macronutrient content of culture media is a

major determining factor for explant growth of many plants, as was also found previously for

pear rootstocks [10]. In this work we found a very small increase in NH4NO3 increased PR

and Vitri of OHF explants while decreasing SL and QI (Table 9).
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For Pyrodwarf, higher predicted PR obtained using MNOGA towards MOGA optimization

method is a good point for selecting MNOGA as more appropriate model optimization

method as STN and Vitri occurrences probability are also almost the same. Oppositely in

OHF, higher predicted PR and also SL were found by using MOGA. Considering the lower QI

and higher Vitri using MOGA may lead us to select MNOGA as more appropriate method for

OHF, as well.

We used MOPSO as another multi-objective and efficient optimization method to achieve

a more precise multi-objective optimization method for optimizing our models. Comparing

the MOPSO results with MNOGA in Pyrodwarf revealed nearly the same PR, SL and QI using

MNOGA and MOPSO, but STN and Vitri showed higher results using MOPSO (Tables 8 and

9). So, there is more probability of STN and Vitri occurrence using MOPSO optimized models

in Pyrodwarf. The same comparison in OHF showed higher PR, SL and QI using MOPSO

than MNOGA and lower STN was found using MOPSO towards MNOGA, but higher Vitri

found using MOPSO to MNOGA (Tables 8 and 9). Accordingly, achieving higher prolifera-

tion rate can cover the low probability of Vitri occurrence (2.14). Consequently, in view of

both results in Pyrodwarf and OHF, MOPSO can be considered as a more powerful GEP

model multi-objective optimization method.

Conclusion

The aim of our recent research [10, 11, 18, 49] has been to identify a more precise method for

predicting optimum components of proliferation or rooting media. To the best of our knowl-

edge, this is the first time that multi-objective optimization techniques have been used to opti-

mize culture media composition. Here, GA and PSO optimized GEP models were applied to

find optimum composition of pear rootstock media. RBFNN and GEP modeling showed that,

consistent with former studies [89, 95, 96], decreasing the nitrogen content of the medium

improves shoot growth and quality. We also found that lower nitrogen content combined with

higher BA concentration results in higher PR, STN, Vitri and lower QI. Comparison of these

results with our previous work [10, 11, 18, 49] indicates that use of multi-objective optimiza-

tion methods leads to more accurate prediction.

Comparison of the M5’ model tree and GEP modeling algorithms showed that the GEP

technique is more effective than M5’ model tree for assessing the interaction of culture

medium factors on growth parameters. MOPSO optimization of the GEP model is intro-

duced as an effective multi-objective optimization tool to achieve comprehensive results.

In general, GEP models are easy to use and provide unambiguous mathematical equations

in forecasting accurately optimized culture media.

We suggest comparison of more multi-objective evolutionary algorithms like GSA for opti-

mization of parameters to be studied in further researches.
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