- 1 Title: Differences in US Adult Dietary Patterns by Cardiovascular Health and Socioeconomic
- 2 Vulnerability
- 3 Short Title: Dietary Patterns by SNAP and CVD
- **Keywords** (5): Cardiovascular Disease, Food Assistance, Social Determinants of Health, 4
- 5 Nutrition, Policy
- 6 **Abstract Word count**: (words): 338 words
- 7 Main Text Word count(words, Tables/Figures): 2994 words
- Authors (email): Eric J. Brandt MD, MHS^{1,2} (ericjbrandtmd@gmail.com); Cindy Leung ScD, 8
- MPH³(cleung2hsph.harvard.edu); Tammy Chang MD, MPH, MS^{1,4}(tachang@med.umich.edu); 9
- John Z. Ayanian, MD, MPP^{1,5}(ayanian@med.umich.edu); Mousumi Banerjee, 10
- DrPhD^{1,6}(mousumib@umich.edu); Matthias Kirch, MS¹(kirchm@umich.edu); *Dariush 11
- Mozaffarian MD, DrPH⁷(dariush.mozaffarian@tufts.edu); *Brahmajee K. Nallamothu MD, 12
- MPH^{1,2} (bnallamo@med.umich.edu) 13
- 14 *Note: Mozaffarian and Nallamothu are co-senior authors
- 15
- Affiliations

 1 Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI 16
- ² Division of Cardiovascular Medicine, Department of Internal Medicine, University of 17
- Michigan, Ann Arbor, MI 18
- ³ Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 19
- 20 ⁴ Department of Family Medicine, University of Michigan, Ann Arbor, MI
- 21 ⁵ Division of General Medicine, Department of Internal Medicine, University of Michigan, Ann
- 22
- 23 ⁶ School of Public Health, University of Michigan, Ann Arbor, MI
- ⁷ Food is Medicine Institute, Friedman School of Nutrition Science and Policy, Tufts University, 24
- 25 Boston, MA
- 26 Author Contributions: EJB, CL, MB, TC, MK, JA, DF, BKN participated in conceptualization.
- 27 EJB, MK assisted in procuring the data and writing the first draft. EJB, MK generated the coding
- for the analyses. All authors reviewed and commented on subsequent drafts of the manuscript. 28
- 29 **Corresponding Author and Reprint Contact**
- Eric J Brandt, MD, MHS, FACC 30
- 24 Frank Lloyd Wright Dr, Lobby A, Ann Arbor, MI 48106, USA 31
- 32 Telephone: +1 586 215 4404; Fax: n/a
- Email: EricJBrandtMD@gmail.com 33
- 34 Funding: NIH NIMHD K23MD017253
- 35 Conflicts of Interest/Disclosures: EJB reports research funding from the National Institutes of
- 36 Health (K23MD017253) and the Blue Cross Blue Shield of Michigan Foundation. He has
- 37 received consulting fees from New Amsterdam Pharmaceuticals. Other authors report no
- 38 conflicts of interest.

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Background: Naturally occurring dietary patterns, a major contributor to health, are not well described among those with cardiovascular disease (CVD) – particularly in light of socioeconomic vulnerability. We sought to identify major dietary patterns in the US and their distribution by CVD, social risk factors, and Supplemental Nutrition Assistance Program (SNAP) participation. Methods: This was a cross-sectional study among 32,498 noninstitutionalized adults from the National Health and Nutrition Examination Survey (2009-2020). We used principal component analysis to identify common dietary patterns. Individuals were assigned to the pattern for which they had the highest component score. Using multinomial logit regression, we estimated the percentage whose diets aligned with each pattern in population subgroups stratified by CVD, social risk factors, and SNAP. Analyses were adjusted for age, gender, race and ethnicity, total energy intake, and year, with sampling weights to provide nationally representative estimates. Results: Four dietary patterns were identified among US adults: American (33.7%; high in solid fats, added sugars, and refined grains), Prudent (22.6%; high in vegetables, nuts/seeds, oils, seafood, and poultry), Legume (15.8%), and Fruit/Whole Grain/Dairy (27.9%), that together explained 29.2% of dietary variance. More adults with prevalent CVD (37.1%) than without (33.3%, p=0.005) aligned with the American Pattern, with no differences among other patterns. Each additional social risk factor associated with more adults aligned with American (2.5% absolute increase) and Legume (1.3%), and fewer aligned with Prudent (-1.9%) and Fruit/Whole Grain/Dairy (-1.9%) patterns (p<0.001 each). Analysis of dietary patterns across SNAP participation showed higher proportion of SNAP participants and income-eligible SNAP non-

participants compared to non-eligible adults for the American (40.2% [38.1, 42.3%], 35.1%

- 63 17.8% [16.1, 19.5%]), 15.4% [14.6,16.1%], respectively) and less for Prudent (17.0% [15.5,
- 64 18.6%], 20.2% [18.2, 22.3%], 24.2% [23.3, 25.1%], respectively) and Fruit/Whole Grain/Dairy
- 65 Patterns (25.6% [23.8%, 27.3%], 26.9% [27.6%, 29.5%], 28.6% [27.6%, 29.5%], respectively).
- 66 Conclusions: Empirical dietary patterns vary by CVD and socioeconomic vulnerability.
- 67 Initiatives to improve nutrition in at-risk individuals should consider these naturally occurring
- dietary patterns and their variation in key subgroups.

Introduction

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

Poor diet is among the greatest contributing factors to premature death and morbidity in the US. most commonly from cardiovascular disease (CVD). 1,2 Socioeconomically vulnerable populations with food insecurity or other social risk factors also have higher burdens of chronic diseases such as CVD, at least partly related to differences in diet.³⁻⁶ These sociodemographic disparities in nutrition quality and CVD have also failed to improve over time, despite increased scientific understanding of diets and health and investments in government nutrition programs such as the Supplemental Nutrition Assistance Program (SNAP), a federal program with an annual budget of \$100 billion.⁷⁻¹¹ A better understanding of how dietary patterns vary by cardiovascular health and socioeconomic vulnerability may inform more effective clinical and public health interventions. The nutritional value of diets can be evaluated by individual food groups, nutrients, or prespecified institutionally-derived dietary pattern scores (i.e. metrics derived to quantify adherence to a particular dietary pattern such as the Healthy Eating Index (HEI) that measures adherence to the US dietary guidelines, Mediterranean diet score, and DASH diet score). 10,12–17 These institutionally-derived dietary scores were developed for generally healthy populations, rather than for individuals with prevalent disease or socioeconomic challenges. They also focus on idealized food consumption, rather than naturally observed patterns of food consumption. The assessment of empirically derived dietary patterns (combinations of foods that comprise an individual's diet) provides a complementary paradigm to inform clinical and public health efforts, especially to improve health equity across groups at risk for adverse outcomes. 18-21 However, few studies have assessed how prevalent disease or socioeconomic vulnerability are

associated with observed empirical dietary patterns. This is an important gap because, due to

structural barriers and cultural preferences, individuals with CVD or socioeconomic vulnerability may have dietary habits that are overlooked by applying institutionally-derived dietary patterns.

To address these important knowledge gaps, we characterized empirical dietary patterns among US adults using updated nationally representative data from the National Health and Nutrition Examination Survey (NHANES). We hypothesized that adherence to these dietary patterns would vary by CVD status, social risk factors, and SNAP participation.

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

Design, Setting, and Population

NHANES is a continuous program released in two-year cycles that assesses the health and nutrition of US adults and children. NHANES data are sampled using a four-stage cluster design to represent the non-institutionalized civilian population. We pooled data from 2009-2020 NHANES cycles to provide a large, contemporary sample (overall response rate = 61.3%). All participants provided informed written consent, completed personal and household questionnaires, and received a health examination in a Mobile Examination Center. The participants provided up to two days of interviewer-administered 24-hour dietary recall using the multiple-pass method. The first recall was obtained during the mobile exam and the second by telephone three to ten days later. Full details of sample design have been published. 22-25 This current study using deidentified data was deemed exempt by the University of Michigan Institutional Review Board. This study followed the Strengthening the Reporting of Observational Studies in Epidemiology-Nutritional Epidemiology reporting guideline.²⁶ We included all participants age >20 years (n=32,498). Individuals <20 years were excluded due to differences in determinants of dietary habits and the low prevalence of CVD compared with adults.

Dietary Patterns

Relevant food categories (n=29) were identified from USDA Food Pattern categories and converted to standardized servings using the Food Patterns Equivalents Database, including cup equivalents (fruit, vegetables, dairy), ounce equivalents (grains, protein foods), teaspoon equivalents (added sugars), gram equivalents (solid fats and oils), and number of drinks

(alcohol).²⁷ To derive observed dietary patterns, we analyzed food categories using principal components analysis (PCA), a dimensionality reduction method that identifies patterns of variation across multiple variables (**Table 1**).²⁸ Eigenvalues were calculated and plotted (**Supplementary Figure 1**), which flattened after the fourth dietary pattern. We focused on these four patterns. For each participant we calculated the HEI-2020 score (range 0-100), with higher scores reflecting more compliance with the Dietary Guidelines for Americans.²⁹

Cardiovascular Disease and Socioeconomic Vulnerability

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

Prevalent CVD was defined as self-reported prior diagnosis of coronary artery disease, stroke, or heart failure from a health professional. Similar to a prior study, 30 a social risk factor score (hereafter, social determinants of health (SDOH) score) was calculated based on having education less than high school graduation, being unmarried or not living with a partner, having Medicaid, other non-Medicare government health insurance, or being uninsured, experiencing food insecurity (low/very low food security), being unemployed (excluding retired individuals or students), or not having a routine location for healthcare. Unlike the prior study, we excluded income because SNAP participation is a similar marker. Housing was excluded due to systemic missingness from 2017-2020. One point was given for each factor and summed to calculate an overall score, with a higher score representing greater socioeconomic vulnerability. SNAP participation was defined as self-report of anyone in the household participating within the last 12 months. Income-eligible SNAP non-participants were defined by annual family income below 130% of the federal poverty level (FPL) (income-to-poverty ratio <1.3) without household SNAP participation within 12 months. SNAP non-eligible adults were those with annual family income >130% of FPL and no household SNAP participation within 12 months.

Covariates

Demographic covariates included age, self-reported gender evaluated as a biologic variable, total energy intake (kcal/day), and race and ethnicity (Hispanic, non-Hispanic Asian (hereafter Asian, available from 2011 forward), non-Hispanic Black (hereafter Black), non-Hispanic White (hereafter White), and other). Race and ethnicity are sociocultural constructs that reflect a history of structural racism and cultural differences that were self-reported based on NHANES-defined categories. ^{22–25}

Statistical Design and Analysis

Population characteristics overall and by CVD, SNAP status, and SDOH score were reported as percent (95% CI) for categorical variables and mean (SD) for continuous variables. Each individual was assigned to the dietary pattern for which they scored the highest. A single multinomial logit model examined the associations of four dietary patterns as the outcome with CVD status, SDOH scores, and SNAP status each evaluated as categorical variables. Marginal outputs from this model estimated the proportion of individuals aligned with each dietary pattern in each subgroup. All models were adjusted for age, gender, race and ethnicity, total energy intake, and NHANES survey cycle. Missing variables in NHANES (Supplementary Table 1) were multiply imputed, with results and analyses pooled from 20 imputed data sets.

We evaluated results overall and stratified by race and ethnicity. Statistical significance of interactions by race and ethnicity were tested by adding multiplicative interaction terms by CVD status, SDOH score, and SNAP status. A sensitivity analysis was conducted excluding food categories with Kaiser-Meyer-Olkin measure of sampling adequacy <0.5. All analyses utilized

NHANES Mobile Examination Center weights to account for the complex survey design to produce nationally representative estimates. Adjustments for multiple comparisons were not performed because we were testing multiple separate hypotheses (see Introduction). Statistical significance was set at two-sided alpha=0.05. Analyses were performed using Stata v16 (StataCorp, LLC, College Station, TX).

Results

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

Population Characteristics

The study cohort included 32,498 adults representing 231 million US adults age >20 years (**Table 2**). Self-reported race and ethnicity included Asian (4.7%), Black (11.4%), Hispanic (14.9%), and White (65.0%). Prevalent CVD was present in 8.3%. Social risk factors were common: 14.8% had less than high school education, 37.5% not married or living with a partner, 34.6% publicly insured or uninsured, 15.7% with low or very low food security, 11.6% unemployed, and 15.6% lacking a routine location for healthcare. There were 17.0% SNAP participants, 10.2% income-eligible SNAP non-participants, and 72.8% non-eligible for SNAP. In unadjusted analyses, those with a CVD diagnosis were more likely to be older, male, Black or White, less educated, unmarried or not living with a partner, food insecure, unemployed, have regular healthcare access, have a higher SDOH score, and be SNAP participants or income-eligible SNAP non-participants (Supplementary Table 2), highlighting the intersections of CVD with socioeconomic vulnerability. Those with a higher vs. lower SDOH score were younger and more likely to be male, Black, or Hispanic (Supplementary Table 4). SNAP participants were younger, higher proportion female and Black individuals, and had a higher SDOH score (Supplementary Table 3), compared to non-eligible adults. Dietary Patterns Among the four dietary patterns identified (see Visual Abstract and Table 1), the "American" Pattern included higher intake of refined grains, meats, cured meats, milk, cheese,

oils, solid fats, and added sugars (variance explained: 10.2%). The "Prudent" Pattern was defined by higher vegetables, meat, poultry, seafood, eggs, and oils, and lower milk (variance explained:

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

8.0%). The "Legume" Pattern had higher vegetables and legumes (variance explained = 6.5%). The "Fruit/Whole Grain/Dairy" Pattern included higher fruits, whole grains, soy protein, nuts/seeds, milk, and vogurt, and lower potatoes and eggs (variance explained = 4.6%). About one-third (33.7%) of US adults' diets aligned most closely with the American, followed by Fruit/Whole Grain/Dairy (27.9%), Prudent (22.6%), and Legume (15.8%). Among individuals aligning with each pattern, the mean (SD) HEI score was highest for the Fruit/Whole Grain/Dairy pattern (62.0 [12.0]), followed by Prudent (58.2 [10.8]) and Legume (55.0 [12.5]) patterns, and lowest for the American pattern (42.4 [8.9]) (p<0.001). Dietary Patterns by Prevalent CVD In the fully adjusted model, the proportion of US adults consuming diets aligned with the American pattern was higher among those with CVD (37.1% [95% CI: 34.6, 39.7%]) compared to those without (33.3% [32.4, 34.2%], p=0.005) (Figure 1, Supplementary Table 5). The proportion of adults aligned with each the other dietary patterns was similar among those with or without CVD. Dietary Patterns by SDOH score The SDOH score was associated with all four dietary patterns. Those with more social risk factors were more likely to align with the American and Legume patterns, and less likely to align with the Prudent and Fruit/Whole Grain/Dairy patterns (p-trend<.001 for each, Figure 2, Supplementary Table 6). Each additional social risk factor was associated with a 2.5% absolute higher percentage of consuming the American, 1.3% higher consuming the Legume, 1.9% lower

consuming the Prudent, and 1.9% lower consuming the Fruit/Whole Grain/Dairy Pattern.

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

Dietary Patterns by SNAP Status SNAP status was associated with all four dietary patterns. The proportion of US adults aligned with the American Pattern was higher among SNAP participants (40.2% [38.1, 42.3%]) than income-eligible SNAP non-participants (35.1% [32.7, 37.5%], p<0.001), and both were higher than non-eligible adults (31.9% [31.0, 32.8%], p<0.001 and p=0.01, respectively (**Figure 3, Supplementary Table 7**). In contrast, the proportion aligned with the Prudent Pattern was lower among SNAP participants (17.0% [15.5, 18.6%]) than income-eligible SNAP nonparticipants (20.2% [18.2, 22.3%],p=0.006), with both lower than non-eligible adults (24.2%) [23.3, 25.1%], p<0.001, and p=0.001, respectively). The proportion aligned with the Legume Pattern was similar between SNAP participants (17.2% [15.6, 18.8%]) and income-eligible SNAP non-participants (17.8% [16.1, 19.5%]), and both higher than non-eligible adults (15.4%) [14.6,16.1%], p=0.03, and p=0.009, respectively). The proportion aligned with the Fruit/Whole Grain/Dairy Pattern was lower among SNAP participants (25.6% [23.8%, 27.3%]) than noneligible adults (28.6% [27.6%, 29.5%], p=0.003), and both were similar to non-eligible adults (26.9%[27.6%,29.5%]).Differences by Race and Ethnicity The associations of prevalent CVD with dietary pattern were not significantly different by race and ethnicity (p-interaction=0.42; Supplementary Table 5, Supplementary Figure 2). The associations of SDOH score with dietary pattern was significantly different by race and ethnicity (p-interaction=0.002; Supplementary Table 6, Supplementary Figure 3). A key differences from the entire sample included a lack of association between increasing SDOH

242

243

244

245

246

247

248

249

250

In this nationally representative study of US adults, we identified four predominant dietary patterns and differences in the distribution of these dietary patterns according to prevalent CVD and socioeconomic vulnerability. The least healthy American dietary pattern (HEI-2020 score 42.4) was most common overall and more common among those with prevalent CVD, higher SDOH score, or SNAP participating/income-eligible. Higher SDOH score and SNAP participating/income-eligible, but not prevalent CVD, was also associated with the other three empirically derived diet patterns. Adults having more SDOH or SNAP participating/income-eligible were less likely to follow the healthier Prudent dietary pattern (HEI-2020 score 58.2). The healthier Fruit/Whole Grain/Dairy pattern (highest HEI-2020 score 62.0) was also less prevalent among those with higher SDOH score and SNAP participants. Interestingly, the Legume pattern (HEI-2020 score 55.0) was least common overall but *more* common among those with higher SDOH scores, SNAP participating, or SNAP income-eligible.

These new findings provide further support for the role of unhealthy diet as a contributor to higher risk for recurrent or incident cardiometabolic events in the setting of established CVD or socioeconomic vulnerability. From a health equity lens, this emphasizes that the most vulnerable individuals, from either a health or socioeconomic standpoint, may require more concentrated nutritional supports to prevent diet-related adverse outcomes. In contrast, socioeconomically vulnerable adults, in particular from Hispanic backgrounds, were more likely to align to a healthier dietary pattern marked by higher legume intake. Legumes have lower cost per serving than other protein foods, are rich in fiber and phytonutrients, and are associated with lower risk of CVD. This suggests that, in some cases, there may be healthier dietary patterns that are accessible among socioeconomically vulnerable individuals, which may be further

shaped by social and cultural influences. These findings support the need for further investigation of the role of the Legume Pattern, especially for socioeconomically vulnerable individuals.

Our findings are also relevant for the burgeoning implementation of "Food is Medicine" approaches to integrate food-based nutritional therapies into healthcare. 34–36 Understanding naturally occurring patterns of dietary intake by CVD and socioeconomic vulnerability can inform clinical interventions and practices to improve nutrition quality, health outcomes, and health equity for all Americans. This is especially important for groups at higher risk related to food insecurity, such as SNAP participants. 12,37–40 Randomized trials have shown that healthier dietary patterns can reduce CVD events by 30-40%. 41–43 Understanding how to introduce healthier food items within existent dietary patterns may facilitate sociocultural relevance of Food is Medicine programs, such as medically tailored groceries or meals; and better ways to incentivize healthier food selection and nutrition education within SNAP. Further, people with diet-sensitive chronic conditions may benefit from dedicated dietary counseling. This is proposed in the federal Medical Nutrition Therapy Act of 2023, which would expand Medicare coverage for dietary counseling to those with CVD and cardiovascular risk factors. 44–48 This is sorely needed because dietary counseling is underutilized in the setting of CVD. 49

Our investigation considered race and ethnicity as a sociocultural construct,⁵⁰ whereby individuals may be more likely to follow dietary patterns due to cultural and regional influences and family heritages. Most of the findings in our study were similar across race and ethnicity. Our findings are consistent with prior studies suggesting that a meaningful proportion of the relationships between socioeconomic factors, race and ethnicity, and life expectancy are mediated by behavioral and metabolic risk factors, including diet.⁵¹ Additional research into how

dietary patterns are achieved and impacted in the context of socioeconomic vulnerability are needed to help us understand our few observed differences across race and ethnicity.

Our findings concur with prior findings in the context of CVD and socioeconomic vulnerability. In the prospectively collected Multi-Ethnic Study of Atherosclerosis cohort four empirical patterns were identified. ¹⁸ In their study, a Fats and Processed Meat pattern (analogous to the American pattern in our study) was associated with higher CVD risk (HR of quintile 5 vs 1: 1.82 (95% CI: 0.99, 3.35). However, unlike the null finding in our cross-sectional study, a Whole Grain/Fruit pattern was associated with lower risk (HR 0.54 [0.33, 0.91]). ¹⁸ In the Nurses' Health Study two dietary patterns were found, with lower risk from a Prudent (HR 0.72 (0.60-0.87)) compared to a Western/Processed food pattern. ¹⁹ Studies considering participants in SNAP have found that participants consume fewer healthy foods and nutrients and have lower scores on institutionally-derived diet patterns, at least partly related to structural barriers faced in accessing and affording a healthful diet. ^{12,37,39,40,52,53}

Few prior studies have evaluated naturally occurring dietary patterns in nationally representative US populations. Among US cancer survivors, two dietary patterns were identified, including a Prudent pattern that was associated with lower food insecurity. Two studies identified patterns in nutrient intake in relation to hypertension and bone health, but did not evaluate food groups. One study from the early 1990s identified four dietary patterns among Mexican Americans in relation to gallbladder disease, including patterns marked by highly processed food, high vegetables, and high beans. Our study builds upon and greatly extends this prior work by identifying contemporary food patterns and their relations to CVD and socioeconomic vulnerability.

Strengths

Study strengths include the large nationally representative cohort and racial and ethnic diversity, which support the reliability and generalizability of our findings. Sensitivity analyses to address shortcomings of the data did not change the results. Lastly, we used rigorous and established methods for the PCA that helps account for correlation between food categories.⁵⁸

Limitations

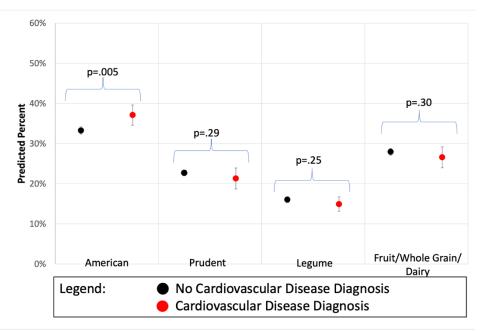
Potential limitations include the cross-sectional nature of the data source, which limits causal inference. Also, NHANES relies on individual self-reports of CVD, SNAP, and social risk factors, which may increase misclassification of these exposures. Dietary habits were assessed using the average of two 24-hour recalls, and longer dietary intake monitoring may increase the accuracy of observations.

Conclusion

Empirical dietary patterns vary by both cardiovascular health and especially socioeconomic vulnerability. Initiatives to improve nutrition in at-risk individuals should consider these naturally occurring dietary patterns and their variation in key subgroups.

Interventions in health policy and clinical practice should be evaluated to promote healthier dietary patterns among people with or at risk for CVD.

References


- 1. Committee on Population; Division of Behavioral and Social Sciences and Education; Board on
- Health Care Services; National Research Council; Institute of Medicine,. The National Academies
- Collection: Reports funded by National Institutes of Health. In: *Measuring the Risks and Causes of*
- 343 Premature Death: Summary of Workshops. National Academies Press (US); 2015.
- 2. The US Burden of Disease Collaborators,. The State of US Health, 1990-2016: Burden of Diseases,
- Injuries, and Risk Factors Among US States. *JAMA*. 2018;319(14):1444-1472.
- 346 3. Brandt EJ, Chang T, Leung C, Ayanian JZ, Nallamothu BK. Food Insecurity Among Individuals
- With Cardiovascular Disease and Cardiometabolic Risk Factors Across Race and Ethnicity in 1999-
- 348 2018. JAMA Cardiol. Published online September 28, 2022. doi:10.1001/jamacardio.2022.3729
- 349 4. Mahajan S, Grandhi GR, Valero-Elizondo J, et al. Scope and Social Determinants of Food Insecurity
- 350 Among Adults With Atherosclerotic Cardiovascular Disease in the United States. *J Am Heart Assoc*.
- 351 2021;10(16):e020028.
- 352 5. Berkowitz SA, Berkowitz TSZ, Meigs JB, Wexler DJ. Trends in food insecurity for adults with
- cardiometabolic disease in the United States: 2005-2012. PLoS One. 2017;12(6):e0179172.
- 354 6. Braveman PA, Cubbin C, Egerter S, Williams DR, Pamuk E. Socioeconomic Disparities in Health in
- 355 the United States: What the Patterns Tell Us. Am J Public Health. 2010;100 Suppl 1(Suppl 1):S186-
- 356 S196.
- 7. Ratcliffe C, McKernan SM, Zhang S. How much does the Supplemental Nutrition Assistance
- 358 Program reduce food insecurity? Am J Agric Econ. 2011;93(4):1082-1098.
- 8. Fang Zhang F, Liu J, Rehm CD, Wilde P, Mande JR, Mozaffarian D. Trends and Disparities in Diet
- 360 Quality Among US Adults by Supplemental Nutrition Assistance Program Participation Status.
- *JAMA network open.* 2018;1(2):e180237.
- 362 9. Abdalla SM, Yu S, Galea S. Trends in Cardiovascular Disease Prevalence by Income Level in the
- 363 United States. JAMA Netw Open. 2020;3(9):e2018150.
- 10. Rehm C, Peñalvo J, Afshin A, Mozaffarian D. Dietary Intake Among US Adults, 1999-2012. *JAMA*.
- 365 2016;315(23):2542-2553.
- 366 11. Liu J, Micha R, Li Y, Mozaffarian D. Trends in Food Sources and Diet Quality Among US Children
- 367 and Adults, 2003-2018. JAMA Netw Open. 2021;4(4):e215262.
- 368 12. Andreyeva T, Tripp AS, Schwartz MB. Dietary Quality of Americans by Supplemental Nutrition
- Assistance Program Participation Status: A Systematic Review. Am J Prev Med. 2015;49(4):594-
- 370 604.
- 371 13. Nguyen BT, Shuval K, Njike VY, Katz DL. The Supplemental Nutrition Assistance Program and
- dietary quality among US adults: findings from a nationally representative survey. *Mayo Clin Proc.*
- 373 2014;89(9):1211-1219.
- 374 14. Xu Z, Steffen LM, Selvin E, Rebholz CM. Diet quality, change in diet quality and risk of incident
- 375 CVD and diabetes. *Public Health Nutr.* 2020;23(2):329-338.

- 376 15. Kang M, Boushey CJ, Shvetsov YB, et al. Changes in Diet Quality over 10 Years and Subsequent
- Mortality from Cardiovascular Disease in the Multiethnic Cohort Study. *Nutrients*. 2023;15(15).
- 378 doi:10.3390/nu15153482
- 379 16. Patel YR, Robbins JM, Gaziano JM, Djoussé L. Mediterranean, DASH, and Alternate Healthy
- Eating Index Dietary Patterns and Risk of Death in the Physicians' Health Study. *Nutrients*.
- 381 2021;13(6). doi:10.3390/nu13061893
- 382 17. Dehghan M, Mente A, Teo KK, et al. Relationship between healthy diet and risk of cardiovascular
- disease among patients on drug therapies for secondary prevention: a prospective cohort study of 31
- 384 546 high-risk individuals from 40 countries. *Circulation*. 2012;126(23):2705-2712.
- 385 18. Nettleton JA, Polak JF, Tracy R, Burke GL, Jacobs DR Jr. Dietary patterns and incident
- cardiovascular disease in the Multi-Ethnic Study of Atherosclerosis. *Am J Clin Nutr.*
- 387 2009;90(3):647-654.
- 388 19. Heidemann C, Schulze MB, Franco OH, van Dam RM, Mantzoros CS, Hu FB. Dietary patterns and
- risk of mortality from cardiovascular disease, cancer, and all causes in a prospective cohort of
- 390 women. Circulation. 2008;118(3):230-237.
- 391 20. Hu FB, Rimm E, Smith-Warner SA, et al. Reproducibility and validity of dietary patterns assessed
- with a food-frequency questionnaire. *Am J Clin Nutr.* 1999;69(2):243-249.
- 393 21. Zhao J, Li Z, Gao Q, et al. A review of statistical methods for dietary pattern analysis. *Nutr J*.
- 394 2021;20(1):37.
- 395 22. Curtin LR, Mohadjer LK, Dohrmann SM, et al. National Health and Nutrition Examination Survey:
- 396 sample design, 2007-2010. Vital Health Stat 2. 2013;(160):1-23.
- 397 23. Johnson CL, Dohrmann SM, Burt VL, Mohadjer LK. National health and nutrition examination
- 398 survey: sample design, 2011-2014. Vital Health Stat 2. 2014;(162):1-33.
- 399 24. Chen TC, Clark J, Riddles MK, Mohadier LK, Fakhouri THI. National Health and Nutrition
- Examination Survey, 2015-2018: Sample Design and Estimation Procedures. *Vital Health Stat 2*.
- 401 2020;(184):1-35.
- 402 25. Akinbami LJ, Chen TC, Davy O, et al. National Health and Nutrition Examination Survey, 2017-
- 403 March 2020 Prepandemic File: Sample Design, Estimation, and Analytic Guidelines. *Vital Health*
- 404 Stat 1. 2022;(190):1-36.
- 405 26. Lachat C, Hawwash D, Ocké MC, et al. Strengthening the Reporting of Observational Studies in
- 406 Epidemiology-Nutritional Epidemiology (STROBE-nut): An Extension of the STROBE Statement.
- 407 *PLoS Med.* 2016;13(6):e1002036.
- 408 27. Food Patterns Equivalents Database (FPED) overview. USDA Agricultural Research Service.
- Published July 19, 2023. Accessed August 3, 2023. https://www.ars.usda.gov/northeast-
- 410 area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-
- 411 group/docs/fped-overview/
- 412 28. Groth D, Hartmann S, Klie S, Selbig J. Principal components analysis. *Methods Mol Biol*.
- 413 2013;930:527-547.
- 414 29. Krebs-Smith SM, Pannucci TE, Subar AF, et al. Update of the Healthy Eating Index: HEI-2015. J

- 415 Acad Nutr Diet. 2018;118(9):1591-1602.
- 416 30. Bundy JD, Mills KT, He H, et al. Social determinants of health and premature death among adults in 417 the USA from 1999 to 2018: a national cohort study. Lancet Public Health. 2023;8(6):e422-e431.
- 418 31. Mitchell DC, Marinangeli CPF, Pigat S, et al. Pulse Intake Improves Nutrient Density among US 419 Adult Consumers. Nutrients. 2021;13(8). doi:10.3390/nu13082668
- 420 32. Bechthold A, Boeing H, Schwedhelm C, et al. Food groups and risk of coronary heart disease, stroke 421 and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Crit
- 422 Rev Food Sci Nutr. 2019;59(7):1071-1090.
- 423 33. Drewnowski A. The cost of US foods as related to their nutritive value. Am J Clin Nutr. 424 2010;92(5):1181-1188.
- 425 34. Mozaffarian D, Blanck HM, Garfield KM, Wassung A, Petersen R. A Food is Medicine approach to 426 achieve nutrition security and improve health. Nat Med. 2022;28(11):2238-2240.
- 427 35. Mozaffarian Dariush, Aspry Karen E., Garfield Kathryn, et al. "Food Is Medicine" Strategies for 428 Nutrition Security and Cardiometabolic Health Equity. J Am Coll Cardiol. 2024;83(8):843-864.
- 429 36. Bleich SN, Dupuis R, Seligman HK. Food is medicine movement—key actions inside and outside 430 the government. JAMA Health Forum. 2023;4(8):e233149.
- 431 37. Kaang P, Babaei M, Freeland-Graves J. Supplemental Nutrition Assistance Program (SNAP): does 432 receiving assistance impact food choices? Nutrition and Dietary Supplements. 2019;11:19-35.
- 433 38. Grummon AH, Taillie LS. Supplemental Nutrition Assistance Program participation and 434 racial/ethnic disparities in food and beverage purchases. Public Health Nutr. 2018;21(18):3377-435 3385.
- 436 39. Taillie LS, Grummon AH, Miles DR. Nutritional Profile of Purchases by Store Type: Disparities by 437 Income and Food Program Participation. Am J Prev Med. 2018;55(2):167-177.
- 438 40. Leung CW, Ding EL, Catalano PJ, Villamor E, Rimm EB, Willett WC. Dietary intake and dietary 439 quality of low-income adults in the Supplemental Nutrition Assistance Program. Am J Clin Nutr. 440 2012;96(5):977-988.
- 441 41. Martínez-González MA, Sánchez-Tainta A, Corella D, et al. A provegetarian food pattern and 442 reduction in total mortality in the Prevención con Dieta Mediterránea (PREDIMED) study. Am J 443 Clin Nutr. 2014;100 Suppl 1:320s-328s.
- 444 42. Estruch R, Ros E, Salas-Salvado J, et al. Primary prevention of cardiovascular disease with a 445 Mediterranean diet. N Engl J Med. 2013;368(14):1279-1290.
- 446 43. Delgado-Lista J, Alcala-Diaz JF, Torres-Peña JD, et al. Long-term secondary prevention of 447 cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): a randomised 448 controlled trial. Lancet. 2022;399(10338):1876-1885.
- 449 44. Senkus KE, Dudzik JM, Lennon SL, et al. Medical nutrition therapy provided by a dietitian 450 improves outcomes in adults with prehypertension or hypertension: a systematic review and meta-451 analysis. Am J Clin Nutr. Published online April 18, 2024. doi:10.1016/j.ajcnut.2024.04.012

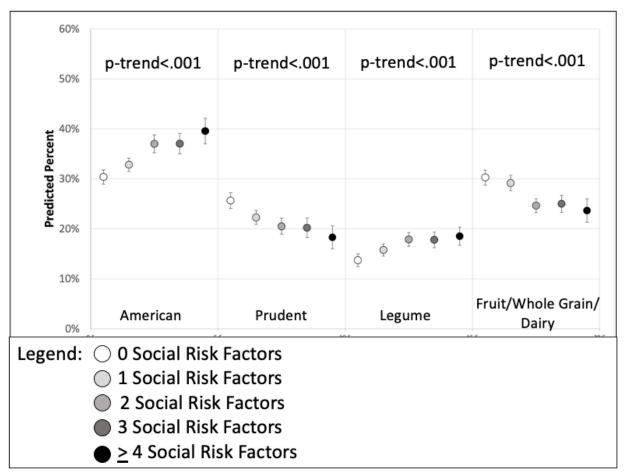

- 452 45. Sikand G, Cole RE, Handu D, et al. Clinical and cost benefits of medical nutrition therapy by
- registered dietitian nutritionists for management of dyslipidemia: A systematic review and meta-
- 454 analysis. *J Clin Lipidol*. 2018;12(5):1113-1122.
- 455 46. Sikand G, Handu D, Rozga M, de Waal D, Wong ND. Medical Nutrition Therapy Provided by
- Dietitians is Effective and Saves Healthcare Costs in the Management of Adults with Dyslipidemia.
- 457 *Curr Atheroscler Rep.* 2023;25(6):331-342.
- 458 47. Evert AB, Dennison M, Gardner CD, et al. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. *Diabetes Care*. 2019;42(5):731-754.
- 460 48. Lichtenstein AH, Appel LJ, Vadiveloo M, et al. 2021 Dietary Guidance to Improve Cardiovascular
- Health: A Scientific Statement From the American Heart Association. *Circulation*.
- 462 2021;144(23):e472-e487.
- 463 49. Brandt EJ, Kirch M, Ayanian JZ, Chang T, Thompson MP, Nallamothu BK. Dietary counseling
- documentation among patients recently hospitalized for cardiovascular disease. J Acad Nutr Diet.
- 465 Published online March 8, 2024. doi:10.1016/j.jand.2024.03.003
- 466 50. Braveman P, Parker Dominguez T. Abandon "Race." Focus on Racism. Front Public Health.
- 467 2021;9:689462.
- 468 51. Dwyer-Lindgren L, Bertozzi-Villa A, Stubbs RW, et al. Inequalities in Life Expectancy Among US
- Counties, 1980 to 2014: Temporal Trends and Key Drivers. JAMA Intern Med. 2017;177(7):1003-
- 470 1011.
- 471 52. Lacko AM, Popkin BM, Smith Taillie L. Grocery Stores Are Not Associated with More Healthful
- Food for Participants in the Supplemental Nutrition Assistance Program. J Acad Nutr Diet.
- 473 2019;119(3):400-415.
- 474 53. Grummon AH, Taillie LS. Nutritional profile of Supplemental Nutrition Assistance Program
- household food and beverage purchases. *Am J Clin Nutr.* 2017;105(6):1433-1442.
- 476 54. Maino Vieytes CA, Zhu R, Gany F, Burton-Obanla A, Arthur AE. Empirical Dietary Patterns
- 477 Associated with Food Insecurity in U.S. Cancer Survivors: NHANES 1999-2018. *Int J Environ Res*
- 478 *Public Health.* 2022;19(21). doi:10.3390/ijerph192114062
- 479 55. Mazidi M, Ofori-Asenso R, George ES, Vatanparast H. Association Between Nutrient Patterns and
- 480 Hypertension Among Adults in the United States: A Population-Based Survey. *High Blood Press*
- 481 *Cardiovasc Prev.* 2020;27(2):133-138.
- 482 56. Mazidi M, Kengne AP, Vatanparast H. Association of dietary patterns of American adults with bone
- 483 mineral density and fracture. *Public Health Nutr*. 2018;21(13):2417-2423.
- 484 57. Tseng M, DeVellis RF, Maurer KR, et al. Food intake patterns and gallbladder disease in Mexican
- 485 Americans. *Public Health Nutr*. 2000;3(2):233-243.
- 486 58. Costello AB, Osborne J. Best practices in exploratory factor analysis: four recommendations for
- getting the most from your analysis. *Practical Assessment, Research and Evaluation*. 2005;10:1-9.
- 488 doi:10.7275/JYJ1-4868

Figure 1: Probability of US Adults Following Four Different Dietary Patterns Across Cardiovascular Disease Status

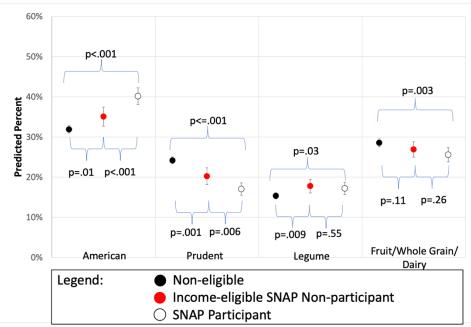

Note: Proportions are predicted as part of a multinomial logit model.

Figure 2: Probability of US Adults Following Four Different Dietary Patterns Scross Number of Social Risk Factors

Note: Proportions are predicted as part of a multinomial logit model.

Figure 3: Probability of US Adults Following Four Different Dietary Patterns Across SNAP Participation Status

Note: Proportions are predicted as part of a multinomial logit model.

Table 1: Principal Components Analysis Result Showing Component Loading (>0.15) of the Four Dietary Patterns ^a

Dietary Component	Pattern 1 "American Pattern"	Pattern 2 "Prudent Pattern"	Pattern 3 "Legume Pattern"	Pattern 4 "Fruit/Whole Grain/Dairy Pattern"
Citrus/Melons/Berries				0.28
Other Fruits				0.43
Fruit Juices				
Dark Green Vegetables		0.26		
Tomatoes	0.17	0.16		
Other Red Orange Vegetables		0.24		
Starchy Potatoes		0.21		-0.19
Starchy Non-Potatoes				
Other Vegetables		0.36		
Vegetable Legumes			0.68	
Whole Grains				0.44
Refined Grains	0.41			
Meats	0.16			
Cured Meats	0.26			
Organ Meats				
Poultry		0.22		
Seafood (High Omega-3)		0.20		
Seafood (Low Omega-3)		0.26		-0.15
Eggs		0.19		
Soy Protein				
Nuts/Seeds		0.34		
Protein Legumes			0.68	
Milk	0.25			0.41
Yogurt				0.34
Cheese	0.41			
Oils	0.19	0.53		
Solid Fats	0.53			
Added Sugars	0.36			
Alcohol		0.16		-0.26

^a Components shown after promax rotation. The four dietary patterns were named based on their strongest loading dietary patterns. In *post hoc* testing of the PCA the Kaiser-Meyer-Olkin (kmo) measure of sampling adequacy revealed poor sampling of potatoes, organ meats, poultry, seafoods low in n-3 fatty acids, and nuts/seeds (kmo <0.5). A sensitivity test was performed for the main analysis with these factors excluded.

Table 2: Weighted Population Characteristics (n=32,498, representing 230,612,714 US adults)

<u>Characteristic</u>	%(95% CI) or mean (SD)		
Age, years	47.7 (17.1)		
Female	51.9% (51.3%,52.6%)		
Race	-		
Asian ^a	4.7% (4.0%,5.6%)		
Black	11.4% (10.0%,13.1%)		
Hispanic	14.9% (13.0%,17.1%)		
White	65.0% (62.0%,67.8%)		
Other ^a	4.0% (3.5%,4.5%)		
Cardiovascular Disease Diagnosis	8.3% (7.8%,8.9%)		
Social Determinants of Health	-		
Not High School Graduate or GED recipient	14.8% (13.7%,16.0%)		
Not Married or Living with Partner	37.5% 36.2%,38.9%)		
Public Insurance or Uninsured	34.6% (33.2%,36.1%)		
Low, or Very Low Food Security b	15.7% (14.8%,16.6%)		
Unemployed	11.6% (10.9%,12.4%)		
No Regular Healthcare Access	15.6% (14.8%,16.5%)		
Adverse SDOH score	-		
0	34.5% (32.9%,36.1%)		
1	29.1% (28.3%,30.0%)		
2	18.7% (18.0%,19.5%)		
3	11.3% (10.6%,12.1%)		
<u>≥</u> 4	6.4% (5.9%, 6.9%)		
SNAP Participation Status	-		
Non-eligible	72.8% (71.1%,74.4%)		
Income-Eligible Non-Participant	10.2% (9.6%,10.9%)		
Participant	17.0% (15.7%,18.4%)		
Total energy intake (kcal/day)	3935 (1679)		

²⁶

^a Other included non-Hispanic Asian individuals in the 2009-2010 cohort. ^b Measured using the US Household Food Security Survey Module. 27