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Survival of Shigella within the host is strictly dependent on the ability of the pathogen

to acquire essential nutrients, such as iron. As an innate immune defense against

invading pathogens, the level of bio-available iron within the human host is maintained

at exceeding low levels, by sequestration of the element within heme and other host

iron-binding compounds. In response to sequestration mediated iron limitation, Shigella

produce multiple iron-uptake systems that each function to facilitate the utilization of a

specific host-associated source of nutrient iron. As a mechanism to balance the essential

need for iron and the toxicity of the element when in excess, the production of bacterial

iron acquisition systems is tightly regulated by a variety of molecular mechanisms. This

review summarizes the current state of knowledge on the iron-uptake systems produced

by Shigella species, their distribution within the genus, and the molecular mechanisms

that regulate their production.
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INTRODUCTION

Shigella is a genus of Gram negative, facultative anaerobic, pathogenic enterobacteria, composed of
four species (S. boydii, S. sonnei, S. flexneri, and S. dysenteriae), each a causative agent of dysentery
in humans. Like all invading pathogens, Shigella experiences a wide variety of environmental
conditions during transmission and throughout the course of a natural infection. The survival of
Shigella, and thus its ability to cause disease, is strictly dependent on the ability of the organism
to acquire iron from each encountered environment. The strict requirement for iron stems from
the fact that this element is an essential co-factor of several enzymes involved in basic biological
processes such as DNA replication and respiration. While iron is essential, too much of the element
is toxic to a bacterium (Imlay et al., 1988). To balance the necessity and potential toxicity of the
element, iron homeostasis must be precisely maintained, a requirement that is facilitated, at least
in part, by regulation of bacterial iron-acquisition systems.

As an innate immune defense against invading pathogens, iron within the human body
is sequestrated within iron binding compounds and proteins, generating a concentration of
bioavailable iron of approximately 10−24 M, a concentration that is far below the 10−7M required
for the survival of most bacteria (Andrews et al., 2003; Raymond et al., 2003). In response to this
iron limitation, pathogenic bacteria have evolved several systems to utilize the various sources
of iron present within the infected host. Regulating the production of specific iron acquisition
systems in response to environmental conditions allows the bacterium to both efficiently utilize the
iron present within a given environment and to avoid iron-mediated toxicity. This review briefly
summarizes the current state of knowledge regarding the function and regulation of iron-uptake
systems in Shigella species.
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IRON-UPTAKE SYSTEMS IN SHIGELLA

The currently identified Shigella iron-uptake systems can be
grouped into three broad categories based on the form of iron
that they facilitate the utilization of: (1) systems for the utilization
of ferric iron (Fe3+), (2) systems for the utilization of heme-
bound iron, and (3) systems for the utilization of ferrous iron
(Fe2+). Each of the four Shigella species contains multiple iron
uptake systems, however, the combination of iron acquisition
systems present vary by species. Each identified Shigella iron-
uptake system and their distribution among Shigella species is
presented below and is summarized in Table 1.

Ferric Iron Utilization Systems
To utilize Fe3+, Shigella have evolved several systems to
synthesize, secrete, and uptake siderophores, a group of
compounds with high affinity for iron that functionally compete
for iron bound by iron-sequestrating factors within the infected
host (Carrano and Raymond, 1979; Hider and Kong, 2010). In
Shigella, the combination of siderophores that are synthesized
and utilized varies by species, but the uptake process is generally
conserved (Figure 1). Specifically, transport of each Fe3+-
siderophore into the bacterium is initiated by binding of the
complex to a specific outer-membrane receptor. Once bound
by its receptor, the complex is transported across the outer-
membrane, passed to a periplasmic binding protein (PBP), and
finally transported across the inner-membrane by the activity
of an ABC permease complex. Compared to that of the outer-
membrane receptors, PBPs have lower substrate specificity, thus
one PBP can facilitate the transportation ofmultiple siderophores
with similar chemical structures (Miethke and Marahiel, 2007).
Transport of any cargo across a membrane requires energy.
Anchored within the inner-membrane, the TonB/ExbB/ExbD
complex transduces energy generated by the proton gradient
to a given iron-binding outer-membrane receptor to provide
the energy required to transport the associated cargo across the
outer-membrane (Larsen et al., 1997). ATP hydrolysis generates
the energy needed for the subsequent transport of the cargo
across the inner-membrane. Once inside the bacterial cell, iron

TABLE 1 | Summary of the iron-uptake systems in Shigella and the regulatory factors.

Substrates Iron-uptake systems Effects of identified regulatory factors Distribution among Shigella species

Fe3+ Ent/Fep Fe (↓) S. sonnei, S. dysenteriae, S. boydii*, S. flexneri*

Iro Fe (↓) S. dysenteriae

Iuc/Iut Fe (↓), O2 (↑), RhyB (↑) in E. coli S. sonnei, S. boydii, S. flexneri

Fec Fe (↓), ECF (↑) S. sonnei, S. flexneri

Fhu Fe (↓), O2 (↑) S. sonnei, S. dysenteriae, S. boydii, S. flexneri

Heme Shu Fe (↓), High temperature (↑) S. dysenteriae, S. sonnei

Fe2+ Feo Fe (↓), O2 (↓) S. sonnei, S. dysenteriae, S. boydii, S. flexneri

Sit Fe (↓), O2 (↑) S. sonnei, S. dysenteriae, S. boydii, S. flexneri

Efe Fe (↓), low pH (↑) S. sonnei

*The biosynthetic system of enterobactin in S. boydii and S. flexneri is inactivated by the presence of a frameshift, a premature stop codon, and/or an insertion within the coding genes;

as a consequence, no detectable enterobactin is produced.

is either released from the siderophore for utilization, or bound
within storage proteins for future use. Each identified Shigella
siderophore and its transport system is discussed below.

Enterobactin
Discovered in 1970, enterobactin is the siderophore with the
highest known affinity for Fe3+ (∼1049) (O’Brien et al., 1970;
Pollack and Neilands, 1970; Loomis and Raymond, 1991). Genes
involved in the synthesis, secretion, and uptake of enterobactin
are encoded in a single locus, with ent genes encoding factors
involved in the synthesis/secretion of the siderophore and fep
genes encoding factors composing the uptake system (Laird
et al., 1980). Specifically, fepA encodes a TonB-dependent outer-
membrane receptor, fepB encodes a PBP, and fepCDG encodes
proteins constituting the ABC permease complex (Ozenberger
et al., 1987). All four Shigella species contain the ent/fep locus,
however some of these genes are inactivated in S. boydii and in
some strains of S. flexneri, due to the presence of a frameshift,
a premature stop codon, and/or an insertion mutation (Payne,
1980; Payne et al., 1983).

Due to its high iron-binding affinity, enterobactin can chelate

the element from various host iron-binding factors (Carrano and

Raymond, 1979). For example, a recent study demonstrates that
enterobactin can overcome the sequestration of iron by ATP
within the intracellular environment, and as such would promote

survival of the pathogen within a macrophage (Tatano et al.,
2015). When present in the extracellular environment however,

bacteria often induce host cells to produce and secrete lipocalin-
2, a protein that specifically binds enterobactin, thus preventing

the bacterium from utilizing the iron bound within it (Flo et al.,

2004).

Salmochelin
Due to their different chemical structures, some enterobactin

derivatives are not recognized by lipocalin-2 and, therefore

not surprisingly, have been found to contribute to virulence.

One such enterobactin derivative is salmochelin, a siderophore

produced by S. dysenteriae (Fischbach et al., 2006; Wyckoff
et al., 2009). The iro locus contains genes encoding enzymes
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FIGURE 1 | Iron-uptake systems in Shigella. This figure is a schematic of

the Shigella iron-uptake systems categorized into three broad groups based

on the form of iron or iron-containing compounds being utilized. These three

groups are (1) systems for the utilization of ferric iron (Fe3+), (2) systems for

the utilization of heme (Heme), and (3) systems for the uptake of ferrous iron

(Fe2+). Within the ferrous iron uptake systems, the PBP represents SitA, while

the ABC permease represents SitBCD. “PBP” stands for periplasmic binding

protein.

that transform enterobactin into salmochelin, the machinery
required to secrete salmochelin, and a salmochelin specific
TonB-dependent outer-membrane receptor (Hantke et al., 2003).
Additional factors involved in salmochelin utilization, including
the PBP and the ABC transporter, are the same as those used for
the utilization of enterobactin (Müller et al., 2009).

Aerobactin
Some strains of S. flexneri, S. boydii, and S. sonnei produce
aerobactin, a siderophore that has a different chemical structure
from that of enterobactin and as a result, can also escape the
sequestration by host protein lipocalin-2 (Lawlor and Payne,
1984; Flo et al., 2004). Aerobactin has been shown to promote
the virulence of uropathogenic Escherichia coli, and to facilitate
extracellular growth of Shigella (de Lorenzo and Martinez, 1988;
Torres et al., 2001). iucABCD encodes the enzymes required for
the synthesis of aerobactin and is found within a single locus
along with iutA, a gene encoding the aerobactin-specific TonB-
dependent outer-membrane receptor (Carbonetti and Williams,
1984). The remaining factors required for the utilization of
aerobactin are encoded within the fhu locus, and are also utilized
for the transportation of ferrichrome (see below; Köster and
Braun, 1990).

Xenosiderophores
Like many other bacterial species, Shigella can utilize
xenosiderophores, siderophores produced by other
microorganisms (Payne, 1980). For example, ferrichrome, a
fungal siderophore with a chemical structure similar to that
of aerobactin is utilized by Shigella species. The utilization of
ferrichrome is mediated by factors composing the Fhu system
including FhuA, a ferrichrome-specific TonB-dependent outer-
membrane receptor (Köster and Braun, 1990; Miethke and
Marahiel, 2007).

Ferric-Dicitrate
Ferric iron can bind with citrate to form ferric-dicitrate. S. sonnei
and at least one strain of S. flexneri can utilize ferric-dicitrate
as a source of nutrient iron (Luck et al., 2001; Wyckoff et al.,
2009). The utilization of ferric-dicitrate bound iron is mediated
by factors encoded within the fec locus, including an outer-
membrane receptor (FecA), a PBP (FecB), and an ABC transport
complex (FecCDE) (Braun and Mahren, 2005).

Heme Utilization System
The Shigella heme-uptake (Shu) system was first identified in
S. dysenteriae and is predicted to be present in some strains of
S. sonnei (Wyckoff et al., 1998). Inactivation of shuA, a gene
encoding the outer-membrane heme receptor, eliminates the
ability of S. dysenteriae to utilize heme as a sole source of nutrient
iron, suggesting that the Shu system is the only functional
heme-utilization system in this species (Mills and Payne, 1997).
In uropathogenic E. coli, inactivation of the orthologous gene
(chuA) results in attenuation of virulence, a finding that directly
identifies the heme receptor as a virulence factor in this closely
related species (Torres et al., 2001). Additional components of the
Shu system include a PBP (ShuT) and an inner-membrane ABC
permease complex (ShuUV) (Wyckoff et al., 1998; Eakanunkul
et al., 2005; Burkhard and Wilks, 2008). The process of heme-
uptake is similar to that detailed above for the uptake of
siderophores (Figure 1). Interestingly, the fact that Shigella
species which lack the shu genes are able to utilize heme-bound
iron suggests the existence of a yet unidentified heme-utilization
system(s) (Payne et al., 2006).

Ferrous Iron Utilization Systems
Under anaerobic and/or acidic conditions, Fe2+ is the dominant
form of the element. Three Fe2+-uptake systems have been
identified in Shigella: the Feo system, the Sit system, and the Efe
system (Kammler et al., 1993; Zhou et al., 1999; Jin et al., 2002;
Große et al., 2006; Figure 1).

Feo System
Despite being the first Fe2+ utilization system identified in
Shigella, details of the molecular mechanism(s) underlying the
activity of the Feo system remain largely unknown (Kammler
et al., 1993). Only three components of the Feo system have
been identified to date: FeoA, FeoB, and FeoC. FeoB is an inner-
membrane transporter with GTPase activity and a structure
similar to that of a eukaryotic G protein (Marlovits et al.,
2002). FeoC contains an oxygen-responsive [4Fe-4S] cluster and
functions to promote proteolysis of FeoB in the presence of
oxygen (Hsueh et al., 2013; Kim et al., 2015). While known to
be required for the transport of Fe2+ by FeoB, the exact function
of FeoA remains to be determined (Kim et al., 2012; Lau et al.,
2013).

Sit System
The sit locus contains four genes: sitA encoding the PBP and
sitBCD encoding components of the ABC permease complex
(Zhou et al., 1999; Fisher et al., 2009). Interestingly, no outer-
membrane receptor has been identified to date, leading to the
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hypothesis that Fe2+ is transported through the outer-membrane
via non-specific porins and/or ion channels (Andrews et al.,
2003). Interestingly, studies in Salmonella indicate that SitA has
a higher affinity for manganese than for Fe2+, suggesting that
the primary function of the Sit system might be to transport
manganese (Kehres et al., 2002). It has been demonstrated
however, that S. flexneri is able to use the Sit system as the sole
iron-uptake system to survive and form plaques in a monolayer
of eukaryotic cells, suggesting not only that the system can
function to uptake iron but also that the Sit system has a direct
role in pathogenesis (Runyen-Janecky et al., 2003). It remains
a formal possibility that the Shigella Sit system functions to
transport both manganese and iron. Interestingly, the E. coli
orthologous of the Shigella manganese transporter MntH and
zinc transporter YgiE (MntH and ZupT, respectively) have
been shown to transport Fe2+ in addition to their specific
substrates, findings that support the hypothesis that additional
Fe2+ transport systemsmay exist in Shigella species (Kehres et al.,
2000; Grass et al., 2005).

Efe System
Originally characterized in E. coli, genetic analysis demonstrates
that the EfeUOB system, formally called YcdNOB, is encoded by
genes present on a tricistronic transcript in at least one strain
of S. sonnei (Große et al., 2006; Cao et al., 2007; Payne and
Alexandra, 2010). efeU encodes the inner membrane permease
and is homologous to the yeast Fe2+ transporter Ftr1p (Große
et al., 2006). EfeO and EfeB are both periplasmic proteins
necessary for Fe2+ transport, however their specific functions
remain unknown.

REGULATION OF IRON-UPTAKES
SYSTEMS

To ensure that a given iron acquisition system is optimally
produced under the specific environmental condition(s) in
which its function will be most advantageous to the pathogen,
production of Shigella iron-uptake systems is tightly controlled
by multiple regulatory factors via distinct molecular mechanisms
(Table 1). The major regulatory mechanisms governing the
production of Shigella iron acquisition systems are detailed
below.

Regulation by Extracytoplasmic Function
(ECF) Sigma Factors
The Shigella Fec system, utilized for the uptake of ferric-dicitrate,
is regulated by the ECF sigma factor FecI (Lonetto et al., 1994;
Braun and Mahren, 2005). Upon binding of ferric-dicitrate to
FecA, the TonB-dependent outer-membrane receptor undergoes
a conformational change resulting in the interaction of its
N-terminal domain with the C-terminal domain of the trans-
membrane anti-sigma factor FecR. The interaction of FecA with
FecR results in the release of the alternative sigma factor FecI that,
in turn, directs RNA polymerases to the alternative promoter
region of the fecABCDE operon (Braun and Mahren, 2005). Such
regulation results directly in increased production of the Fec

system when Shigella is within an environment containing ferric
citrate.

Regulation by Fur
Availability of iron influences the production of several
Shigella iron-acquisition systems via Fur, an iron-responsive
transcriptional regulator (Fleming et al., 1983; de Lorenzo et al.,
1987; Wyckoff et al., 1998; Payne et al., 2006). The interaction
of Fur with intracellular iron induces a conformational change
in the protein that enables it to dimerize and bind DNA in
a sequence specific manner (Troxell and Hassan, 2013). Iron-
dependent binding of Fur at or near the promoter region of
a target gene most often inhibits transcription by physically
blocking binding of RNA polymerase (Troxell and Hassan, 2013).

Regulation by RhyB
RyhB, a Fur-repressed regulatory small RNA first identified in
E. coli, plays an important role in achieving iron homeostasis
in several bacterial species, including Shigella. RyhB functions to
modulate the stability of specific target transcripts in response to
iron availability within the environment (Massé and Gottesman,
2002). Specifically, under iron-poor conditions, Fur-mediated
repression of RhyB is relieved, and once produced, the small
RNA functions to repress the production of several factors
including iron-containing enzymes, such as SodB and iron-
storage proteins, such as ferritin, in both E. coli and Shigella
(Massé and Gottesman, 2002; Murphy and Payne, 2007). In
E. coli, RhyB also regulates the production of aerobactin, however
the details of this regulatory mechanism, as well as the role
that such a mechanism may play in controlling Shigella gene
expression remains to be revealed (Porcheron et al., 2014).

Oxygen-Dependent Regulation
Within a given environment, the amount of oxygen influences the
relative abundance of Fe3+ and Fe2+; thus it is reasonable that
bacterial iron-uptake systems are also regulated in response to
environmental oxygen levels. Two regulatory systems with over-
lapping, yet non-identical regulons control the production of
Shigella bacterial iron acquisition systems in response to oxygen
status: the two component system ArcAB, and the DNA-binding
regulator Fnr (Carpenter and Payne, 2014).

ArcAB System
Within the ArcAB two-component system, ArcB is a membrane-
anchored kinase and ArcA is a DNA-binding response regulator
(Carpenter and Payne, 2014). Following auto-phosphorylation
of ArcB, a process that occurs only under anaerobic conditions,
the activated kinase phosphorylates ArcA. Once phosphorylated,
ArcA functions to directly alter the expression of specific
target genes (Carpenter and Payne, 2014). Under aerobic
conditions, the auto-phosphorylation of ArcB is inhibited,
ultimately resulting in the lack of ArcA activation and thus
altered expression of ArcA-regulated genes. As a global regulator,
ArcA not only modulates the production of factors involved in
iron-uptake, but also that of the iron-responsive regulator Fur
(Boulette and Payne, 2007).
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Fnr
As aDNA-binding protein, the regulatorymechanism underlying
the activity of Fnr is similar to that underlying the activity of
Fur. Unlike Fur however, the conformational change controlling
the regulatory activity of Fnr is determined directly by the
oxidative status of its [4Fe-4S] cluster, and thus indirectly by the
oxygen status of the environment (Carpenter and Payne, 2014).
With increased levels of intracellular oxygen, the [4Fe-4S] cluster
within Fnr is oxidized into [2Fe-2S], a transition that results into
the loss of DNA-binding ability, and thus regulatory activity, of
the protein.

Temperature-Dependent Regulation
A change in environmental temperature to that encountered
within the human body (37◦C) is an important signal that can
indicate a transition from the non-host environment to the
human host. As such, temperature influences the expression
of many Shigella virulence-associated genes, including that
of shuA (Tobe et al., 1991; Kouse et al., 2013). Production
of ShuA, an outer-membrane heme receptor, is subject
to temperature-dependent post-transcriptional regulation via
the activity of an RNA thermometer located within the
5′ untranslated region of shuA (Kouse et al., 2013). RNA
thermometers regulate translation of the gene in which they
are housed by the formation of an inhibitory structure that
physically occludes the ribosomal binding site at relatively low
temperatures. At relatively high temperatures, such as that
encountered within the human host, the inhibitory structure
within an RNA thermometer is destabilized, the ribosomal
binding site is exposed and translation proceeds. While ShuA
is currently the only Shigella iron acquisition factor known
to be regulated by the activity of an RNA thermometer,
the full impact of this temperature-dependent regulatory
mechanism on iron utilization by these pathogens remains to be
determined.

FUTURE PROSPECTIVE

Given the importance of iron homeostasis to survival,
the mechanisms by which bacteria acquire iron from the
environment and the regulatory mechanisms controlling the
production of bacterial iron acquisition systems have long been
the subject of active investigation. As highlighted above, the
importance of several iron utilization systems to virulence has
been proven in other pathogenic bacteria, however, exactly
how these factors, and their associated regulation, contribute
to Shigella virulence remains to be fully elucidated. Moreover,
whether the presence of a specific combination of iron uptake
systems in a given Shigella species contributes to differences
in survival within host or non-host environments, differences
in geographic distribution and/or differences in pathogenesis
would be a potentially revealing analysis, but one that can
only be completed after all the iron acquisition systems in
these pathogenic organisms are recognized. Finally, future
investigations to identify additional Shigella iron acquisition
systems and to understand the role of these systems in Shigella
virulence could lead to the development of novel therapeutics
designed to disrupt iron acquisition, and by doing so eliminate
or reduce the ability of these bacterial pathogens to cause human
disease.
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