
Research Article
Leveraging a Neuroevolutionary Approach for Classifying Violent
Behavior in Video

Carlos Flores-Munguı́a , José C. Ortiz-Bayliss , and Hugo Terashima-Marı́n

Tecnologico de Monterrey, Escuela de Ingenieŕıa y Ciencias Ave, Eugenio Garza Sada 2501 Sur Col, Tecnológico C.P. 64849,
Monterrey, Nuevo Leon, Mexico

Correspondence should be addressed to José C. Ortiz-Bayliss; jcobayliss@tec.mx

Received 18 February 2022; Revised 22 June 2022; Accepted 4 July 2022; Published 15 July 2022

Academic Editor: Diego Oliva

Copyright © 2022 Carlos Flores-Munguı́a et al..is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Security has become a critical issue for complex and expensive systems and day-to-day situations. In this regard, the analysis of
surveillance cameras is a critical issue usually restricted to the number of people devoted to such a task, their knowledge and
judgment. Nonetheless, different approaches have arisen to automate this task in recent years. .ese approaches are mainly based
on machine learning and benefit from developing neural networks capable of extracting underlying information from input
videos. Despite how competent those networks have proved to be, developers must face the challenging task of defining both the
architecture and hyperparameters that allow such networks to work adequately and optimize the use of computational resources.
In short, this work proposes a model that generates, through a genetic algorithm, neural networks for behavior classification
within videos. Two types of neural networks evolved as part of this work, shallow and deep, which are structured on dense and 3D
convolutional layers. Each network requires a particular type of input data: the evolution of the pose of people in the video and
video sequences, respectively. Shallow neural networks use a direct encoding approach to map each part of the chromosome into a
phenotype. In contrast, deep neural networks use indirect encoding, blueprints representing entire networks, and modules to
depict layers and their connections. Our approach obtained relevant results when tested on the Kranok-NV dataset and evaluated
with standard metrics used for similar classification tasks.

1. Introduction

Nowadays, violence harms people physically and mentally.
Besides, it severely harms the economies of many countries.
Violence and crime represent a problem that we all have to
deal with. Unfortunately, while governments are trying to
counteract insecurity, citizens continue to suffer from
criminal violence. As an example, in Mexico, estimations
based on the number of investigations initiated in 2019
indicate that the most common types of crimes include
nearly 150 thousand cases of theft from 4-wheeled cars, more
than 82 thousand cases of residential burglary (with and
without violence), almost 83 thousand cases of robbery to
passers-by on public streets, around 18 thousand cases of
theft in public transportation, and over 118 thousand cases
of robbery to businesses [1]. .e types of crimes described

above, added to the lethal records, motivate families and
businesses to install security cameras in homes, parking lots,
and public places, to mention some. Although crimes can
occur anywhere, in this work, we focus on violent acts in
public places such as streets, pavements, shopping centers,
or schools.

Crime leaves psychological marks on its victims, which
are unable to cope with using common psychological re-
sources [2]. .e latter causes various types of emotional
sequelae that negatively affect their lives. Among the most
common disorders we can mention negative feelings, anx-
iety, constant concern due to trauma, depression, progres-
sive loss of personal confidence, decreased self-esteem,
alterations in the heart rhythm, and insomnia [3]. Con-
versely, physical integrity produces other effects such as
injuries, trauma, cuts, fractures, and more. Regarding

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 1279945, 14 pages
https://doi.org/10.1155/2022/1279945

mailto:jcobayliss@tec.mx
https://orcid.org/0000-0003-0563-4099
https://orcid.org/0000-0003-3408-2166
https://orcid.org/0000-0002-5320-0773
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1279945


physical violence, it is possible to identify the aggressor’s
actions by looking at the interaction between the aggressor
and the victim (their actions and movements), which are
observable for just a few seconds. Observing such interac-
tions is the basis of our proposal.

A reliable video surveillance system should be aware of
what is happening at a particular moment and the actions
that could result in potentially dangerous situations [4].
Covering all events in most current video surveillance
camera systems requires security workers to watch what
happens periodically. One of the main disadvantages of this
approach is the cost of keeping people working for so long,
which is likely to cause human errors because of tiredness
and fatigue. Even if we can overcome these issues, each
observer may rate an individual’s suspicious action dif-
ferently depending on their criteria and experience. .ese
differences may cause the detection of actual suspicious
actions to take longer to be labeled as such and to avoid
undesirable situations [5]. Detecting violent attacks, rob-
beries, and other criminal conducts requires a change in
video surveillance systems that adapts to the current re-
quirements [6]. For example, Mart́ınez-Mascorro et al. [7]
proposed a video surveillance system powered by AI that
allows the early detection of robbery attempts through the
analysis of behavior. In their work, they classify video
segments as normal or suspicious, where the latter is
interpreted as an indication that a robbery is about to
occur. As we can observe, the constant development of
artificial intelligence algorithms seems like an excellent
option when detecting different behaviors in people cap-
tured by video surveillance cameras, which is the focus of
this work.

Current research uses different techniques based on deep
learning to tackle problems for image/video pattern rec-
ognition such as 3D convolutional neural networks [8–10],
hybrid architectures using convolutional neural networks,
and long-short termmemory [11, 12], or including any form
of deep learning for feature extraction, transformation, or
classification at some point in their pipeline. However, their
use may be limited because the topology of the neural
networks is fixed. .erefore, the number of nodes and
hidden layers must be chosen, leading to questions such as:
how many hidden layers and hidden neurons per layer
should the networks have? How many training pairs should
the training phase use?Which neural network architecture is
the best? Finding the values for the parameters is one of the
most important steps because failing to do so usually causes
the neural network not to be powerful enough to meet the
requirements [13] or increases the error by accuracy satu-
ration [14].

Neural network developers usually answer the above
questions using their previous experience and design a fixed
architecture throughout the training. On the opposite, in
nature, the human brain has evolved up to 100 billion
neurons and 100 trillion connections. .is number sur-
passes, by far, the number of neurons and connections our
ancestors counted with [15]. Similarly, hyperparameters in
artificial neural networks should change in time by
leveraging the ancestors’ knowledge.

Neuroevolution is a type of artificial intelligence inspired
by the evolution of biological nervous systems, used to
generate artificial neural networks with a suitable topology
and parameters to perform a given task. Neuroevolution has
proved to be a reliable alternative in different tasks such as
the classification of the electrocardiographic signal in health
applications [16], the design of mobile robot controllers in
robotics [17] or in video games to play at a human-like level
[18]. However, detecting violent behavior in videos through
neuroevolution remains an unexplored topic. Given the
good results of neuroevolution in different scenarios, we
consider it may also achieve competent results for generating
networks that correctly classify the behavior shown in a
video as violent or normal.

In this work, we are motivated by the idea that by
providing tools that allow for the prompt detection of violent
behavior, we can help people maintain a safe environment
and respond accordingly to such stressful situations. .en,
we address the problem of creating a suitable architecture for
a neural network to classify behavior in videos correctly. For
this purpose, we use genetic algorithms to create and evolve
neural networks that, without human intervention, recog-
nize violent-related activities in people who appear in the
range of vision of a surveillance camera.

To summarize, the main contributions of this work are as
follows:

(1) Advancing towards surveillance systems that rely less
on human intervention since our system can ade-
quately discriminate violent behavior from a normal
one in video clips from the database used for this
work.

(2) Contributing to the automation of designing neural
networks since we use a genetic algorithm to gen-
erate different architectures of neural networks to
detect violent-related activities in videos.

(3) Providing empirical evidence that both dense
layer–based and 3D convolutional layer–based net-
works can sidestep the task of detecting violent-re-
lated activities in videos.

.e remainder of this document is organized as follows.
In Section 2, we introduce different approaches from the
literature that address the detection of different behaviors, as
well as related works on the evolution of neural networks.
Section 3 describes the technical overview of different
methods used in this work for evolving neural networks..e
dataset, the procedure to extract features from videos, the
fitness function, and the metrics considered in this work are
detailed in Section 4. Section 5 presents the experiments and
results of the proposed approach for generating shallow,
deep dense-based, and 3D convolutional neural networks,
respectively. Finally, Section 6 presents the conclusion and
some ideas for future work.

2. Related Work

.is section describes relevant works that are significantly
related to the problem we address and how we solve it in this

2 Computational Intelligence and Neuroscience



work. We first describe the problem and emphasize how
current solving approaches are limited since they depend on
human intervention. Later, we describe different solving
approaches described in the literature, which cover systems
using spatiotemporal features, pose estimation, and deep
features. We finally describe neuroevolution and NEATas a
way to familiarize ourselves with the rationale behind this
work.

Intelligent video surveillance systems are based on ob-
servable behavior monitoring, categorizing it into different
classes. For instance, we can mention theft, violence, and
fraud detection, among others [19]. Existing intelligent video
surveillance systems for behavior classification generally fall
into one out of three broad groups, according to the set of
features used to classify: two-dimensional, three-dimen-
sional, and deep features. Among these categories, two-di-
mensional recognition systems have been explored the most
[19].

Systems using two-dimensional features employ spatial
information and RGB intensity to classify the cases. One
example of such systems was proposed by Li et al. [20]. .eir
system relies on analyzing spatiotemporal video-volume
space configuration to detect and localize anomalies in
videos. .eir method considers three main steps. .e first
step is the construction of an activity codebook through the
extraction of low-level features referring to the global ac-
tivity patterns on the video. .e second step detects the
anomalies at local sites using a Bag-Of-Words approach on a
video cube (a spatiotemporal video window), producing
composition-representation vectors. .e third, and final
step, builds a dictionary to detect the video activities and
locates the regions where anomalies occur.

Another example using 2D spatiotemporal features in-
volves two optical flow-based motion descriptors in Ref.
[21]. .e authors propose two spatiotemporal approaches to
solve the detection of abnormal activities. .e first one,
called Silhouette and Optic Flow-based Features (SOF), uses
background subtraction, then the optic flow values are
generated. On the other hand, the second motion descriptor
uses the Dense Trajectory Based Features (DTF), a method
that calculates trajectories to create Histogram of Gradients
(HOG), Histogram of Optic Flow (HOF), and Motion
Boundary Histogram (MBH) descriptors, followed by a
standard bag of visual words approach to create a visual
vocabulary (codebook). Both SOF and HOF use a one-class
Support Vector Machine (SVM) classifier to classify normal
and abnormal samples. .e two methods proposed endure
major drawbacks despite promising results. As in most real-
life scenarios, these methods can work well in a particular
dataset, but their performance worsens in others. .is is a
problem that is present in real-life implementations. Not all
the scenarios will be the same, yet the algorithm must
generalize to be distributed in different environments and
work acceptably.

Methods employing two-dimensional features typically
use speed, direction, trajectory, and optical flow to under-
stand the behavior of the entire scene captured by a camera.
However, these characteristics apply to the people in the
scenes and the elements that move in the videos. .us,

objects falling, rolling, or other elements that work by
moving on their own can cause noise in the evaluation of
scenes. Moreover, changes in lighting, reflection, or back-
ground clutter can significantly affect the method’s per-
formance. One way to better understand the movements
relies on skeleton-based features. .ese approaches tend to
have better results because they are less limited than pre-
vious ones. It is better to use the shape of the poses as well as
their deformations over time to understand the silhouette of
a person similar to real life, rather than just the represen-
tation of the two-dimensional segmentation approach that
would consider a binary image silhouette [22].

.erefore, the pose estimation approach is gaining
strength among researchers despite the need for better
hardware. For example, Markovitz et al. [23] interpret
people’s poses using graphs to mitigate the viewpoint and
lighting problems of the scenes. Weighted adjacency ma-
trices generate pose graphs where each node represents a key
point, a body joint, and each edge represents some rela-
tionship between two nodes. Some implementations work
with skeletons at the cost of using additional devices. For
example, Chaaraoui et al. [24] use Microsoft’s Kinect since
this type of RGB-D device has become cheap over the years
and offers remarkable results in retrieving information from
human bodies. .ey propose a novel skeletal-based spa-
tiotemporal feature called the Join Motion History feature
(JHM), representing the 3D location of skeletal joints and
motion’s age. As a classifier, they use the Bag-Of-Key-Poses
method described by Chaaraoui et al. [25].

To conclude, deep learning models produce classes based
on deep features. Such deep learning models include con-
volutional neural networks (CNNs) and recurrent ones,
which tend to have more embracing use in addressing
problems of this kind. One example of suchmethodologies is
described by Vignesh et al. [26], where a CNN is used to-
gether with Long short-term memory neural networks
(LSTM) to classify between normal and violent behavior
frames..e convolutional network learns the spatial features
of the images, and the LSTM neural network learns the long-
term dependencies between frames. .e main disadvantage
of this work is the extraction of spatial and temporal features
as different models carry it out. Li et al. [8] use a 3DCNN
model without the addition of handcrafted features or RNN
architectures to avoid the need for two different models.
Handcrafted features can be eliminated because methods
focused on deep learning can yield robust results and great
accuracy.

.e works described above are built on hand-designed
architectures. In most cases, the hyperparameters are de-
fined and set based on the expertise of their designers.
Various works based on genetic algorithms have dealt with
the constructions of neural networks by minimizing human
intervention. One example is described by Xie and Yuille
[27] as a genetic CNN. .ey propose a direct encoding
represented as a fixed-length binary string that, in turn, is
split into stages trying to simulate the parts into which state-
of-the-art models are partitioned. .e most critical limita-
tion of genetic CNN concerns the genome representation
since a fixed-length encoding affects networks that need to

Computational Intelligence and Neuroscience 3



be deeper in order to converge to global (minima/maxima)
values of the solution space. Besides this, the kernel size is
also fixed within each stage. .is limitation can help prevent
networks from growing out of control and restrain the
search space’s size.

Large-Scale Evolution of Image Classifiers [28] overtakes
the disadvantages of the previously detailed approach with
fewer restrictions in depth, arbitrary connections, and nu-
merical parameters by relying on individual encoding as
graphs called DNA. .e authors predefined a set of oper-
ations, similar to human designers’ actions when con-
structing a network, which can be carried out on the
mutation step as Remove-Convolution, Alter-Stride, Filter-
Size Alter-Number-of-Channels, Add-Skip, and more.
Authors of Large-Scale Evolution of Image Classifiers em-
phasize the massively parallel computational power required
by their work. Nevertheless, some works seek to optimize
resources. For example, Efficient Multi-Objective Neural
Architecture Search via Lamarckian Evolution [29] proposes
a multi-objective evolutionary algorithm for architecture
search. .is multi-objective function allows an approxi-
mation to the Pareto front (a front of solutions dominating
all other solutions), optimizing several objectives such as
accuracy, size of the network, and number parameters. To
avoid large resource consumption, the authors choose in-
dividuals that most fit the Pareto front using the set of cheap
objectives (easily calculable objectives such as the number of
parameters) and evaluating this subset on their expensive
objectives, in addition to employing a Lamarckian inheri-
tance where learned parameters are passed to network’s
offsprings.

Initial approaches for neuroevolution are based on
direct coding..e genome treats each node and connection
as an individual element, making it more difficult and
memory-consuming to store all of them in the population
during the evaluation of generations. Another disadvantage
of this idea is that it cannot reuse elements and must be
coded and evolved independently. .e Hybercube-based
NeuroEvolution of Augmenting Topologies (HyperNEAT)
[30] uses Indirect Encoding employing a variant of an
artificial neural network called a connective Compositional
Pattern-Producing Network (CPPN) [31], which represents
sophisticated repeating patterns in the Cartesian space.
.ese CPPNs produce spatial patterns based on functions
such as Sigmoid, Gaussian, Sine, Cosine, Tanh, Relu, and
others to exhibit properties of all these activations and
create a symmetrical output, a repeating pattern, a re-
peating pattern with variation, and more. .ese patterns
can be produced thanks to spatial interpretations of pat-
terns generated within a hypercube (hence the name) as
connectivity patterns in a lower-dimensional space. .e
CPPN does not work as a neural network for inferring
based on the input data. Instead, it generates the weight of
the connection between two neural network nodes being
searched. It receives the coordinates of the Cartesian space
between two nodes located in an n -dimensional space
called the substrate.

However, HyperNEAT also presents some disadvan-
tages. .e most obvious one concerns the positions the

hidden layer nodes should have. .is is a decision that must
be made by the developer as CPPN is not able to determine
them, although there is an extension to HyperNEAT called
ES-HyperNEAT (evolvable-substrate HyperNEAT) [32]
which looks for areas with much variance in the pattern
produced by CPPN, and it remains costly in execution time.

In this work, we propose using NeuroEvolution of
Augmenting Topologies (NEAT) and its extension, Co-
Evolution Deep NEAT (CoDeepNEAT), to solve the task of
detecting people comparing two different types of networks:
shallow and deep ones based on dense and 3D convolutional
layers. .ese networks were selected as they do not carry over
other approaches’ problems and solve previously untackled
problems (like the co-evolution of different niches).

3. A Brief Review on NEAT

.e literature describes several works on the creation of
neural networks through an evolutionary process [33, 34].
Such works can be divided into two large groups based on
the encoding they use [35]. .e methods that rely on direct
encoding use the genome to establish the network topology
within the phenotype. Usually, the representation relies on
binary encoding to represent the neural network connec-
tions. However, this method is limited to the size of the
matrix used to store the bits [34]. .e second group is
formed by the methods that use indirect encoding. .ese
methods rely on rules to precisely indicate how the phe-
notype—that is, the neural network—will be constructed
based on such rules. .e most significant problem with this
type of encoding is that it does not directly map the in-
formation from the genotype into the phenotype (the neural
network), which may move the search away from desirable
solutions. In this work, we evaluate two different types of
neural networks, Shallow networks generated by Neuro-
Evolution of Augmented Topologies (NEAT) and Deep
networks evolved by CoEvolution Deep NEAT (CoDeep-
NEAT). .e overall technical explanations of these tech-
niques are given as follows.

3.1. Neuroevolution of Augmented Topologies (NEAT).
Genetic algorithms have applications in many fields, in-
cluding Neural Networks. NeuroEvolution of Augmented
Topologies (NEAT) [36] has been used for reinforcement
learning problems and has even proven to perform better
than other reinforcement methods like Adaptive Heuristic
Critic for solving the single-pole balancing problem [37].

Using a direct encoding for evolving neural networks is
difficult because of the different components involved in an
artificial neural topology, such as the number of neurons and
connections. Instead, NEATencodes each genotype with two
lists, one for storing all the nodes (called node genes), which
includes inputs, hidden and output nodes in the neural
network, and a second one (connection genes) that represents
all the connections between every pair of nodes as seen in
Figure 1. Each of the nodes in the node genes has two at-
tributes, one node number and the other for the type of node
it represents (which can take a value from Sensor (Input),

4 Computational Intelligence and Neuroscience



Output, andHidden). On the other hand, the elements in the
list of connection genes have more than two attributes
specifying the in-node, out-node, the weight of the con-
nection, a Boolean pointing if it is enabled or not, and an
innovation number allowing finding its corresponding
genes. A visual representation of these genotypes and
phenotypes is shown in Figure 1.

.e innovation number of each element in the list of
connection genes allows NEAT to use information in the
historical origin to perform crossover. When two networks are
selected for crossover, they are lined up following the gene’s
historical markings producing matching genes, and disjoint
genes referencing nodes and connections being removed or kept
in a new neural network. Moreover, mutation and crossover
could lead new individuals’ fitness to drop and lead them to a
lower probability of survival even when these mutations can
significantly help future generations. .is is the reason why
NEATuses speciation acting like a niche, where individuals are
only allowed to compete with others in the same niche.

3.2. Coevolution Deep NEAT (CoDeepNEAT). Just like
HyperNEAT, CoDeepNEAT is also another extension of
NEAT [38, 39]. NEAT is first extended to deep neural
networks by calling it “DeepNEAT” using the same prin-
ciples: individuals of minimum complexity are represented
as graphs, nodes and edges are added or removed using
mutation, and historical markings are used during crossover
to align individuals and combining them among the most
similar ones, the population is divided into species based on
a similarity measure and each species grows proportionally
to fitness with evolution occurring separately in each species.
.e main difference to NEAT is that it does not evolve
complete networks; each individual is represented as a
graph, and each node represents one or more layers of the
deep neural network. In addition to these layers, each node
also contains a table with hyperparameters, known as “node
hyperparameters,” containing real or binary values mutated
through evolution via a random bit-flipping (using a uni-
form Gaussian distribution) depending on the type of value.
.ose also help identify the type of network (convolutional,
fully connected, recurrent) and properties such as the
number of neurons, kernel size, and activation function. .e
edges no longer indicate weights but with which other layers
they are connected to.

.e graph also has a table called “global hyper-
parameters” that, as the name suggests, describes the
hyperparameters that apply to the entire network, such as
training algorithm, learning rate, and data preprocessing
steps. DeepNEAT tends to produce complex and unprin-
cipled structures, and CoDeepNEAT solves this by evolving
two different populations of blueprints and modules
separately.

Blueprints refer to graphs representing individuals
where each node points to one subpopulation or species of
modules. Each module is a graph representing a small DNN.
When the evaluation of a generation starts, the blueprints
replace the node with a module to the species it points to, as
illustrated in Figure 2, and the hyperparameters in the “node
hyperparameters” table are applied. Once the network is
assembled (when all the nodes were replaced by their
modules), the “global hyperparameters” table is also applied,
and the evaluation starts..e overall fitness of the network is
attributed back to blueprints and modules as average fitness.
.is evaluation reduces noise and allows blueprints or
modules to be preserved for future generations even when
they performed poorly in an assembled network. Once
CoDeepNEAT ends, the best network is trained until it
converges and is evaluated using a different test set.

4. Dataset, Features, and Metrics

Features used to feed the networks are an essential part that
should be carefully chosen as they help the models to
converge faster with the best inference results. .e dataset
and how the features were obtained from the videos are
described in this section. Moreover, the fitness function
(how well an individual performs during the training) and
the evaluation metrics (how well each model performs on
unseen data) are also described in their corresponding
subsection.

For a reference, Figure 3 provides a general view of the
pipeline proposed for evolving shallow and deep neural
networks followed in this work.

4.1. Kranok-NV Dataset. .is work uses the Kranok-NV
dataset to evolve and train neural networks..e Kranok-NV
dataset [40] consists of 2,026 videos, divided into 597 violent
behavior videos and 1,429 normal behavior ones with a

Genome (genotype) Neural network (phenotype)

Node 1
Input

Node 2
Input

Node 3
Input

Node 4
Output

Node 5
Hidden

Node
genes

Connection
genes

In: 1
Out:4
Weight: 0.7

Enabled
Innov 1

In: 2
Out:4
Weight: –0.5

Disabled
Innov 2

In: 3
Out:4
Weight: 0.5

Enabled
Innov 3

In: 2
Out:5
Weight: 0.2

Enabled
Innov 4

In: 5
Out:4
Weight: 0.4

Enabled
Innov 5

In: 1
Out:5
Weight: 0.6

Enabled
Innov 6

In: 4
Out:5
Weight: 0.7

Enabled
Innov 11

1

2

3

5 4

0.7

–0.5

0.5

0.2
0.4

0.6

0.7

Figure 1: Individual representation NEAT: genotype and phenotype.

Computational Intelligence and Neuroscience 5



resolution of 840 pixels width and 472 pixels height, each
having a different duration..is dataset was built for explicit
use for violence detection in classification tasks. Violent
behavior videos were made up from the YouTube website of
people training in different practices such as boxing and
kickboxing in joint or individual activities. In contrast,
normal behavior videos consist of people going from one
place to another walking down a corridor from three dif-
ferent cameras/angles in a closed-circuit television camera

system. .ere is a noticeable class imbalance in the number
of videos in the dataset. However, violent behavior videos
have more frames as a whole than normal behavior videos
because of their length. .e class with fewer instances
(normal behavior) was upsampled using two different
techniques: zoom and mirror. .e camera’s vision field gets
smaller by using zoom but makes objects (including people)
bigger. Mirror comprises a horizontal flip in the image
leaving, for instance, people that went from left to right now

Niche 1 Niche 3

Niche 2

Blueprints

Niche 1 Niche 2

Niche 3

Modules

Niche 4

Assembled network

Input

Output

Module
Niche 2

Module
Niche 2

Module
Niche 4

Figure 2: Coevolution of blueprints and modules.

KranokNV Pose estimation Angle calculation
Append valid poses

to buffer People tracking

Data pre-processing

Training

Real-time implementation

Dataset Divide into 5 folds
Are there

more folds
to analyze?

Initialize population Evolve using
genetic algorithms

Get the best
individual

Detect people
using pose
estimation

Extract joints of
pedestrians' poses

Is there a
pedestrian

in the frame?

Append valid 
frames/poses to

buffer
For 3D Convolution layers NN

For Shallow and Dense layers NN

Is the buffer
length < 10?

Yes

No

Yes

No

Yes

Model

Normal

Violent

No

Figure 3: Pipeline for evolving shallow and deep neural networks.

6 Computational Intelligence and Neuroscience



going from right to left. In addition, 5-fold Cross-Validation
was used in the training phase partitioning the dataset into
five equal-sized subsamples trying to keep as close as pos-
sible to 50/50% class balance in the number of frames.
Kranok-NV is freely available at https://www.kaggle.com/
kevinbkwanloo/kranoknv.

4.2. Feature Extraction. Previous works not based on neural
networks have based their solutions in features like binary
image silhouette [22] or in histograms of gradients [41],
among others..is has been done regardless of whether such
features represent people and may represent other noisy
elements. Furthermore, those features do not directly rep-
resent attributes for behavior classification. Instead, they
tend to represent the entire scene. .anks to machine
learning advances, human pose recognition has also had
advances in different areas, even going from 2D output of
human pose estimation in images to 3D shape–based on
RGB-D devices and estimation from video. In contrast to the
former described features, poses map actions of people that
humans can easily interpret, so a network is expected to do
the same.

.ere are many types of research related to pose esti-
mation in which the detection and estimation of people’s
poses are made in a short time with high accuracy. In this
project, such a task relies on deep learning models. Deep
learning models for human keypoint detection are classi-
fied into two groups, depending on the order of the op-
erations of the approach; top-down and bottom-up,
bottom-up models are more robust to occlusion and
complex poses. For instance, OpenPose [42–45] is defined
as a multi-person real-time keypoint detection and operates
as a bottom-up approach and was (and continues to be) one
of the best alternatives for pose estimation. Nevertheless, it
requires high-end GPU hardware to run correctly at
competent Frames Per Second in live videos, like those in
closed-circuit television environments. Fortunately, there
are other options, such as Lightweight OpenPose [46],
which is the one used in this work. .e authors designed
this option intending to maintain the excellent inference
results but make it more suitable for real-time performance
on edge devices, not only to be run in a GPU but also usual
CPUs.

Two out of three neural networks evolved in this work
share the same features. Shallow and deep neural networks
based on dense layers expect numerical values as input in
their input layers, leading to the same data for training and
testing. In contrast, 3D convolutional neural networks ex-
pect images represented as numerical values in a 3D vector
(height, width, and channels), requiring a particular feature
preprocessing step. Nevertheless, a single pose cannot
provide enough evidence about people’s behavior consid-
ering a person could have a pose similar to another different
action and be classified as such. We can use the poses’
keypoints as spatial features plus their evolution throughout
frames to extract the context as in Figure 4. .is is achieved
by stacking the poses from previous frames and iteratively
keeping track of them. .e angle between keypoints

determines the spatial features..is is utilized to avoid using
the raw Lightweight OpenPose’s keypoints output and help
offer a better generalization in the features. Such angles are
calculated by using the arctan formula.

On the other side, temporal features are added by taking
the person’s pose in the video and seeing how the pose
evolves in time..e longer the period, the more complex the
neural network should be. Nevertheless, shortening the
length of the period to reduce the network complexity may
seriously decrease its classification power. .e process for
tracking people is described in more detail in Section
C. .us, measuring the relations in the people’s poses and
tracking their change over a short period (ten frames) can
perfectly describe their behavior and be mapped to a clas-
sification using a neural network.

All the preceding describes the features used to input
shallow and dense neural networks. Nonetheless, the feature
extraction for 3DConvolutional Neural Networks (3DCNNs)
is simpler. .is is mainly attributable to 3DCNNs having the
skill to model complex, both spatial and temporal, charac-
teristics using cube-shaped kernels [9]. Experimentally,
3DCNN should outperformmodels with handcrafted features
as long as the feed sequences are of correct data related to the
task to be solved..erefore, only video sequences with people
in the field of view must be used in training and real-time
implementations. Consequently, noise in the training data
refers to every sequence not containing people, primarily if
that sequence comprises objects in movement, although
frames with no people can be labeled as nonaction.

3DCNN receives a 10-frame sequence as a context span
to maintain a similarity in time concerning the input of
shallow and deep dense networks. As previously stated, only
if there is at least one person in the frame, then that frame
can be used as part of the sequence. However, if there are no
people in the frame, it cannot be used as part of the sequence
nor past frames where people did appear. .us, the entire
sequence is discarded. Both features, pose angles based on
pose estimation and video sequences, use ten frames as the
pose’s context, and networks do not receive noisy frames
without people. In conclusion, the algorithm somehow
trains all the networks with the same features.

Overall, a brief description of the previously detailed
feature extraction step is detailed in the data preprocessing
stage depicted in Figure 3.

4.3. Tracking. Tracking employs the keypoints of the peo-
ple’s poses to simulate the skeleton as independent variables
to feed the networks. As mentioned before, in this work, we
use Lightweight OpenPose [46] as a pose estimator. .e
neural networks should classify human actions based on
their pose with such a skeleton. Conversely, a single pose as
the context may attribute multiple false-positive classifica-
tions given that it could match with another pose of a
different activity as someone moves. .us, additional con-
text is essential and should also be fed into the network and
the pose. .e temporal features are extracted by concate-
nating a sequence of poses as long as the person appears in
the video sequence (tracking).

Computational Intelligence and Neuroscience 7

https://www.kaggle.com/kevinbkwanloo/kranoknv
https://www.kaggle.com/kevinbkwanloo/kranoknv


.e approaches for detecting and tracking people are
usually separated into two categories: Model-Free-Tracking
(MFT) and Tracking-By-Detection (TBD). Tracking-By-
Detection trackers are more widely used nowadays. Such
models have several advantages, such as not requiring people
in the first video frame, dealing with many people in the
image, high detection accuracy, and not accumulating minor
errors resulting in significant performance degradation in
long videos. .e solution comes by localizing the target in
each frame without reliance on previous inferences. Instead
of adding a new model on top of our solution approach, we
decided to perform the tracking task using only the key-
points extracted by Lightweight OpenPose. .e operation
works by associating each person based on their whole body
comprising joint points with a unique identifier on the first
frame the person appears in the image. On posterior frames,
each individual is compared with every person in the pre-
vious frame using their area of interest/bounding box by an
operation called Intersection-over-Union (IoU), chooses the
one with the highest rate, obtains its ID value, and assigns it
back as its current ID will allow us to track their poses over
time. Figure 5 shows a visual example of applying IoU.

4.4. Fitness andEvaluationMetrics. Fitness must be assigned
to each individual in the population over generations. Al-
though we could have chosen the model’s accuracy as a
fitness value, it does not consider the class imbalance, and
then, it does not penalize large errors in the classification.
Fortunately, Shallow, Deep Dense, and 3DC neural networks
use the same loss function, which does take large errors into

account. Categorical Cross-Entropy was chosen as such a
loss function given this task is a classification task using a
one-hot encoded output.

We have opted for five popular metrics used in many
classification applications. .ese metrics are defined below.

Accuracy �
TP + TN

TP + FP + FN + TN
,

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

F1 � 2∗
Precision∗Recall
Precision + Recall

,

Specificity �
TN

FP + TN
,

Balanced accuracy �
Recall + Specificity

2
.

(1)

In all cases, TP, FP, TN, and FP stand for “true positives,”
“false positives,” “true negatives,” and “false positives,” re-
spectively. All these values can be extracted from the cor-
responding confusion matrices. It is relevant to recall that
the values for Precision, Recall, and F1-score obtained from
a confusion matrix when violent behavior is the class of
interest may change when the class changes to normal
behavior. Conversely, the accuracy and balanced accuracy
do not change when the class of interest changes.

SSSSS

Figure 4: Poses’ context from time.

loU score:
0.905

loU score:
0.123 loU score:

0.0

Current Frame:Past Frame:

Figure 5: Example of IoU applied in videos.

8 Computational Intelligence and Neuroscience



5. Experiments

In this section, we describe the experiments conducted and
the results obtained.

5.1. Evolution of Shallow Neural Networks through NEAT.
.is section describes the NEAT implementation and how
we incorporated it into the training of the shallow neural
networks. We have selected a set of hyperparameters that
produce an acceptable performance of the genetic algorithm
on each fold. .ese hyperparameters were obtained by
preliminary experimentation, running the algorithm several
times until finding the ones that perform satisfactorily on
different scenarios.

It is well known that, for genetic algorithms to work
correctly, they require to tune many hyperparameters, such as
initial population size, initialization of individuals, proba-
bilities for mutation, crossover, and more. A slight modifi-
cation of these may lead to drastic changes, for better or for
worse. Several runs of the NEAT-based part of this work were
conducted to find the best configuration of hyperparameters
for producing the neural networks..e selected configuration
considers running for 100 generations, where the probability
of adding or deleting a connection between nodes is 50%,
respectively. Besides, the probability of adding and deleting a
node was 50% for each case. Lastly, only the two best indi-
viduals from each species remain untouched and are moved
to the next generation, while 20% of each species is allowed to
reproduce.

When an individual is initialized, a connection between
input and output nodes is established, with a 50% proba-
bility. .is means that, on average, each individual starts
with half of its input nodes connected to half of its output
ones. .e former was done to avoid starting with completely
disconnected neural networks (individuals), which may
increase the algorithm’s convergence time. Finally, the
neural network has two output nodes representing violent/
normal behavior, with a softmax postprocessing. .e results
presented in this section correspond to one network out of
the 100 produced (the one with the highest fitness) using ten
frames as input.

Figure 6(a) presents the confusion matrix of the Shallow
neural network when violent behavior is the class of interest.
245,874 (48.95%) samples were correctly classified as violent
behavior, while 221,750 (44.15%) samples were correctly
classified as normal behavior. .e larger the TP and TN in a
confusion matrix, the better the network’s performance
(they represent the successes). .us, the Shallow neural
network performed notably, obtaining an overall accuracy of
93.6741%.

As we mentioned before, the values for Precision, Recall,
and F1-score depend on the class of interest. Although both
types of behavior are relevant, it is critical to identify violent
behavior over the normal one in this work. Table 1 shows the
results of Precision, Recall, and F1-score for both violent and
normal behavior. Although the performance is similar in all
the metrics, for Precision and F1-score, the Shallow neural

network was slightly better at identifying violent behavior
than the normal one.

As observed from Table 1, the Shallow neural network
seems to exhibit a well-balanced behavior. A balanced ac-
curacy of 93.7111% confirms this. Overall, the Shallow
neural network performed well for classifying the video
samples as violent or normal.

5.2. Evolution of Deep Neural Networks through CoDeep-
NEAT:Dense Layers. .e following model is an extension to
evolve deep neural networks to detect violence in videos.
.ere is a similarity between the shallow neural network
evolved using NEAT, and the dense, deep neural networks
evolved using CoDeepNEAT: how input values are fed into
the networks. Both models expect feature vectors repre-
senting ten frames of angles between joints from the body of
people in videos; therefore, bothmodels use the same dataset
for training and testing along with 5-fold cross-validation.

.e hyperparameters for the macro and micro-archi-
tecture, i.e., the Blueprints and Modules, respectively, were
selected after several runs and are described as follows. .e
blueprints’ hyperparameters are set and not modified
throughout the evolutionary process. Such hyperparameters
include the loss function using categorical cross-entropy,
Adam optimizer, along with its learning rate with a fixed
value of 0.005. .e output layer activation function is
softmax right as in the shallow model approach described in
the previous experiment. .e only parameter we can vary is
the number of nodes in the blueprint; it was set to three as a
maximum and one as a minimum.

.e modules’ parameters (dense layers that will replace
the blueprint nodes) comprise some nodes in a layer, in a
range between 35 and 80, and activation and function, either
ReLU or Sigmoid. In addition, each module can have a
maximum of three dense layers and a minimum of one. In
this manner, considering that the blueprint could have three
modules as maximum and each module three layers, the
largest neural networks produced by the algorithm would
contain nine hidden layers. Nonetheless, the depth is ex-
tended by placing fixed layers at the beginning (after the
input layer) and the end (before the output layer) of each
blueprint..ese fixed layers are used by reasoning that layers
should have fewer nodes the closer to the output layer. Such
fixed layers do not belong to any niche module. Instead, they
are placed in their respective places at the beginning of the
evolution process when the blueprint population is created
and not removed or modified. One of these two “fixed”
layers is contained after the input layer and can have node
units ranging from 150 to 200 using a Sigmoid or ReLU
activation function. .e second “fixed” layer follows the
previous one and can have node units from 80 to 120. All the
modules (evolved in niches through the generations of the
genetic algorithm) come after this second fixed layer,
allowing the network to grow initially and eventually be-
come more condensed towards the output. Furthermore,
each dense layer in the modules is followed by a dropout
layer using a rate from 0 to 0.07 units to drop. .is helps the

Computational Intelligence and Neuroscience 9



network to prevent from growing so much and producing
overfitting.

.e genetic algorithm runs for 20 generations using a
population size of 15 blueprints and 30 modules, both
evolving within their related niches. When possible, niches
group similar blueprints and modules in three different
species using the k-means clustering algorithm. Evolu-
tionary parameters cover mutation set to 50% probability,
crossover rate of 20%, elite modules and blueprints of 20%,
the latter referring to keeping a portion of chromosomes
intact and passing the individuals to the next generation
without modifications.

Fitness is assigned when the blueprint’s nodes are
replaced with the respective modules niches they point to.
One thing to look out for is that training each network using
the entire dataset in every generation is computationally
expensive and time-consuming. .erefore, only a portion of
the dataset’s training and testing data are used. For the
fitness assignation, the networks are first trained using five
training epochs with randomly picked samples equivalent to
only 40% of the training data, and the fitness is yielded by the
loss using 30% of randomly picked samples from the test set.
Finally, the algorithm outputs the networks with the highest
fitness and is converged using the entire training set during
15 epochs; its parameters are saved, and the classification
results are presented in the section below.

As can be seen in Table 2, the metrics of the evolved
networks using 5-fold cross-validation for ten frames as
inputs outperform those from the Shallow neural network
developed in the previous experiment. .e deep dense
neural network performs slightly above 98% in the same
metrics used to evaluate the shallow network. From the
confusion matrix depicted in Figure 6(b), we can observe

that the overall accuracy has increased to 98.7333%.
Moreover, the value of 98.7228% in the balanced accuracy
confirms that this neural network maintains its quality
across the two classes of interest.

5.3. Evolution of 3D-Convolutional Neural Networks through
3D-CoDeepNEAT: 3DCNN. So far, two types of neural
networks have evolved: shallow and deep based on dense
layers (also known as fully connected layers) using NEAT
and CoDeepNEAT. .e input values of these two types of
networks are temporal features that indicate how the angles
between joints change in a span of ten frames. However, the
spatial features must also be considered to classify the ac-
tivities. Convolutional neural networks (CNN), also known
as Shift Invariant or Space Invariant Neural Networks, are
highly used for this task, considering they are skilled at
recognizing patterns in the input images by producing
abstractions that are visible in activation maps. In short, the
input images are feed representing low-level features, and
the CNN is responsible for obtaining high-level features as
data travel across the network.

CoDeepNEAT was developed to evolve convolutional
neural networks. In this work, we have extended its func-
tionality. We have seen that CNNs are better than fully
connected and shallow neural networks for extracting the
features from an image, although an iteration of CNNs adds
one more dimension called 3D convolutional neural net-
works. As the name suggests, 3DCNN convolve cube-shaped
kernels in a set of given images transforming their input into
four dimensions; height, weight, number of channels, and
sequence length. .e sequence is conformed of n images
stacked one after the other. .e addition of images in the

Table 2: Precision, recall, and F1-score obtained by the dense
neural network for both classes of interest (violent and normal
behavior).

Precision Recall F1-score
Violent behavior 98.7226 98.8937 98.8081
Normal behavior 98.7456 98.5520 98.6487

4.13%48.95%

2.77% 44.15%

Predicted behavior

A
ct

ua
l b

eh
av

io
r

Violent Normal

V
io

le
nt

N
or

m
al

(a)

0.59%52.50%

0.68% 46.23%

Predicted behavior

A
ct

ua
l b

eh
av

io
r

Violent Normal

V
io

le
nt

N
or

m
al

(b)

0.01%45.03%

0.01% 54.95%

Predicted behavior

A
ct

ua
l b

eh
av

io
r

Violent Normal

V
io

le
nt

N
or

m
al

(c)

Figure 6: Confusion matrices for the three networks evaluated. (a) Shallow neural network. (b) Deep dense neural network. (c) 3D
Convolutional neural network.

Table 1: Precision, recall, and F1-score obtained by the Shallow
neural network for both classes of interest (violent and normal
behavior).

Precision Recall F1-score
Violent behavior 94.8773 93.1110 93.9859
Normal behavior 92.3655 94.3113 93.3283

10 Computational Intelligence and Neuroscience



input eliminates the limitations of previous 2D CNN that
convolve two-dimensional kernels into single images.

For the previous reasons, CoDeepNEAT was expanded
to evolve 3DCNN and see if it can generate suitable ar-
chitectures for these more complex networks. With that, the
model addresses the same questions that arose with the
previous models: how do we know that we have selected the
architecture that gets the most out of our training data while
at the same time generalizing to perform on previously
unseen data?

Again, by using 5-fold cross-validation, the genetic al-
gorithms will produce different models trained in different
datasets, which will have unbiased error estimates on the test
data. Many tests were conducted using a single fold from the
five generated to select the most suitable evolutionary al-
gorithm ratios such as crossover, mutation, number of elite
individuals, generations, and the values of the hyper-
parameter tables of the nodes.

.e definition of the final set of hyperparameters starts
with the hyperparameters table, i.e., the blueprints. .e table
got the best results when the number of nodes in each
blueprint was a minimum of 1 and a maximum of 2; this is
the only value in such a table that can vary during the al-
gorithm’s run. Moreover, categorical cross-entropy was used
as a fixed loss function, given that we are still working with
the same multiclass classification problem. Adam optimizer
is another fixed parameter with its learning rate established
at 0.005. .e softmax activation functions in the last layer of
the neural network converting the values to a probability
distribution. Lastly, the size of the input consists of 10
frames.

On the side of the modules, several values change in a
uniformly random fashion. For example, the first fixed
convolution layer (not included in modules) has as variable
hyperparameters the number of filters/kernels that can range
from 24 to 32 and the activation function deciding between
either ReLU or Sigmoid. It is worth pointing out that it is the
only layer that can have a max-pooling 3D compliment
because arbitrary connections between layers are allowed,
which means that some can be connected to more than one
hidden layer. .e problem emerges when some hidden
layers get input values from more than one layer, which
would cause incompatibility in the size of the inputs if the
data come from a layer performing max-pooling while
others do not. .e output is concatenated to be compatible
when two hidden layers point to a single layer.

Moving onto the hidden layers, they consist of numerous
filters that range from 32 to 64. .ese filters use kernels of
sizes 1, 3, or 5, with activation functions ReLU or Sigmoid.
.e layers’ complement is dropout with a ratio from 0 to 0.5,
avoiding overfitting, similar to the dense layer model evolved
before.

.e blueprint also contains two dense layers at the end of
the architecture to help in the classification. A final dense
layer is added after the nodes of the blueprint, containing
between 490 and 600 nodes, with ReLU being the only
activation function it can select from..e second dense layer
is the last and is in charge of classifying if the behavior is
normal or violent. .e maximum number of layers for the

modules is 2, while the minimum is 1. .us, the maximum
number of nodes in the blueprint plus the maximum
number of layers in the modules entail networks with a max
depth of four layers, without counting the fixed layers at the
end and add-ons of each layer.

.e evolution parameters are ten generations and a
population of seven individuals. .e number of blueprints
and modules is seven too. Blueprints and modules are
separated into three different species, each using k-means
unsupervised classification algorithm. .e crossover and
mutation rates were set to 20% and 50%, respectively. Also,
20% of the population was allocated as the elite to keep the
blueprints and modules without changes from one gener-
ation to another..e networks are trained using only 40% of
the training data for four epochs, while 30% of the test data
assign the fitness. .e testing and results section presents the
findings on the evolutions using 5-fold cross-validation with
10-frame inputs.

It is essential to highlight that the 3DCNN is a classifier
of the whole video image which means it does not designate
a probability rate to each person in the image. .e entire
frame (taking as context the previous nine) is classified as
violent when the disturbance starts, opposite to the shallow
and dense layer-based network models where each person
was classified based on their own behavior and pointed using
bounding boxes. .e results in Table 3 confirm the supe-
riority of the 3DCNN, supported by an overall performance
of 99% on all the metrics.

Finally, we can conclude that the 3DCNN produced
obtained almost perfect balanced accuracy (99.9850%),
which confirms that it is a suitable model for classifying
violent and normal behavior in the videos considered for this
work.

5.4.Discussion. .e work presented in this document shows
how the coevolution of blueprints and modules also works
for evolving neural networks it was not intended for
(convolutional neural networks and long-short term
memory networks). .is idea leads to a belief that coevo-
lution may also produce hybrid architectures. In addition,
allowing arbitrary connections between layers shows that
features extracted in previous layers can also help in attribute
transformation on further layers. .e previous practice is
probably the most challenging part if a developer wants to
build an architecture with skip connections at hand because
one is unsure which intermediate layer would connect to the
other.

However, as seen in the accuracy of the best individuals
and population in CoDeepNEAT, the best individuals start
with high accuracy since the beginning of the generations,
which raises the question: is the genetic algorithm helping to
find the best architecture? Cannot we just choose the best
individual from the first generation avoiding the time of
evolving the population? .e short answer, according to our
experiments, is no. .e evaluations are performed using a
different small portion of the dataset of each generation, so
the initial architectures may fit that data well but may not do
so well on the entire test set. .e minor improvements of the

Computational Intelligence and Neuroscience 11



best network (and the population in general) through the
generations help generalize appropriately on the test set.
Moreover, at the end of each run, almost all the individuals
in the population reach the global optima, which confirm
that the genetic algorithm is working properly..is leaves us
with the possibility of choosing the final network according
to different criteria; the network with fewer parameters, the
deepest network, or simply the one with the best accuracy.

.e results also show that even a shallow network
performs well in this task. .ese three models leave us with
various options to choose from, according to different needs.
When the computational resources are scarce, we can sac-
rifice some accuracy and go for a shallow neural network. As
the resources become available, we can move to dense layer
neural networks or 3D convolution-based neural ones.

6. Conclusion and Future Work

.is work proposes using neuroevolution as an alternative to
generate topologies and choose the best set of hyper-
parameters for a neural network to classify behavior as either
normal or violent in a surveillance system. .e comparison
of results leverages the model’s ability to evolve networks
based on their depth and the type of input they receive.

Genetic algorithms can select the correct architecture of
a neural network to detect violent behavior. .ese algo-
rithms can produce shallow and deep neural networks based
on dense and 3D convolution layers. All the models analyzed
in this work can perform this task with high accuracy.
However, a deeper network can extract more information
from the input data, leading them to produce the best results.
Although the genetic part of the process finds the best ar-
chitecture, one limitation is that we still need to deal with the
parameters of the genetic algorithm itself, with some of them
being difficult to choose. .e list of hyperparameters in
neuroevolution includes the crossover, mutation, elite in-
dividuals rate, desired number of niches, number of nodes
per layer, number of kernels per layer, activation functions
to choose from, and more. Of course, the length of the
hyperparameter catalog increases for deep learning neural
networks compared to genetic algorithms. Still, it is ideal to
continue looking for the best set because GAs search several
parts of the solution space simultaneously, so a bit of change
in the probabilities of any other hyperparameter may affect
the entire population, implying stagnation in local optima.

Regardless of our efforts, there are some areas related to
the neuroevolution of neural networks for behavior classifi-
cation in videos that we have not explored and represent some
paths for future work. For example, we can mention handling
different objective classes. Instead of just classifying two types
of behavior (violent and normal), future developments could

focus on suspicion, protest, fainting, or harassment, to
mention some. In addition, more work is needed regarding
the dataset. Nowadays, the Kranok-NV dataset is limited to
violent and normal behavior only. In order to explore the
classification of other behaviors, we require to extend the
dataset to incorporate the corresponding samples. Besides,
future work may involve running the same experiments using
a different, larger video dataset. In these future experiments,
some hyperparameters may change on both the genetic al-
gorithm and the neural networks.

Future work can also integrate a multi-objective search if
accuracy is not the only target function. .e multi-objective
search would allow an approximation to the Pareto front (a
front of solutions dominating all other solutions), which can
optimize several objectives jointly. As a result, the list of
objectives can be quite diverse, ranging from searching for
the network with the lowest loss, the highest accuracy, the
network with the lowest number of parameters, and esti-
mators of the network’s depth.

Finally, we are aware that we need to compare our
approach against others from the literature. In this work, we
compared three neural network models, all generated
through their particular implementation of a neuroevolu-
tionary approach. Our models were generated on Kranok-
NV, which undoubtedly influences the outstanding per-
formance of the models. So far, the literature includes only
another model trained on this dataset. Kwan Chong Loo [40]
proposed the Kranok-NV dataset, and our networks im-
prove on such a model and obtain better results in various
metrics. For example, Kwan reports values for Precision,
Recall, and F1-score of 99.05%, 97.70%, and 98.37%, re-
spectively, for the normal behavior class. When comparing
the results against those obtained by our 3DCNN proposal
(Table 3), we obtain better results on the three metrics. For
the violent behavior class, a similar situation occurs. Re-
ported results indicate values of 97.44%, 98.94%, and 98.19%.
When compared again, the three metrics are outperformed
by our 3DCNN proposal (Table 3). Unfortunately, a com-
parison against other models not trained in this dataset
seems unfair since there is a risk of biasing the results to
favor our proposal. We plan to compare the performance of
our proposal against others from the literature as part of
future work.

Data Availability

.e Kranok-NV dataset is publicly available at https://www.
kaggle.com/kevinbkwanloo/kranoknv.

Conflicts of Interest

.e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

Tecnologico de Monterrey supported this research through
the fund for financing the publication of Scientific Articles
Initiative.

Table 3: Precision, recall, and F1-score obtained by the 3D con-
volutional neural network for both classes of interest (violent and
normal behavior).

Precision Recall F1-score
Violent behavior 99.9773 99.9886 99.9830
Normal behavior 99.9907 99.9814 99.9860

12 Computational Intelligence and Neuroscience

https://www.kaggle.com/kevinbkwanloo/kranoknv
https://www.kaggle.com/kevinbkwanloo/kranoknv


References

[1] S. E. del Sistema Nacional de Seguridad Pública, Incidencia
delictiva del fuero común, nueva metodoloǵıa, GDM, Mexico,
03 2021.

[2] D. G. Kilpatrick, B. E. Saunders, A. Amick-McMullan,
C. L. Best, L. J. Veronen, and H. S. Resnick, “Victim and crime
factors associated with the development of crime-related post-
traumatic stress disorder,” Behavior >erapy, vol. 20, no. 2,
pp. 199–214, 1989.

[3] E. Esbec, “El psicólogo forense en el proceso penal. evaluación
psicológica de la vı́ctima,” Psicologı́a forense y tratado
juŕıdicolegal de la discapacidad, vol. 23, no. 1, pp. 153–217,
2000.

[4] F. M. Donald, “Information processing challenges and re-
search directions in cctv surveillance,” Cognition, Technology
& Work, vol. 21, no. 3, pp. 487–496, 2018.

[5] B. C. Welsh and D. P. Farrington, “Effects of closed-circuit
television on crime,” >e Annals of the American Academy of
Political and Social Science, vol. 587, no. 1, pp. 110–135, 05
2003.

[6] H. M. Hodgetts, F. Vachon, C. Chamberland, and
S. Tremblay, “See no evil: cognitive challenges of security
surveillance and monitoring,” Journal of Applied Research in
Memory and Cognition, vol. 6, no. 3, pp. 230–243, 09 2017.

[7] G. A. Mart́ınez-Mascorro, J. R. Abreu-Pederzini, J. C. Ortiz-
Bayliss, A. Garcia-Collantes, and H. Terashima-Maŕın,
“Criminal intention detection at early stages of shoplifting
cases by using 3d convolutional neural networks,” Compu-
tation, vol. 9, no. 2, p. 24, 2021.

[8] J. Li, X. Jiang, T. Sun, and k. Xu, “Efficient violence detection
using 3d convolutional neural networks,” 2019 16th IEEE
International Conference on Advanced Video and Signal Based
Surveillance (AVSS), in Proceedings of the 2019 16th IEEE
International Conference on Advanced Video and Signal
Based Surveillance (AVSS), pp. 1–8, IEEE, September 2019.

[9] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri,
“Learning spatiotemporal features with 3d convolutional
networks,” in Proceedings of the 2015 IEEE International
Conference on Computer Vision (ICCV), pp. 4489–4497,
Santiago, Chile, December 2015.

[10] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural
networks for human action recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 1,
pp. 221–231, 2013.

[11] P. Singh and V. Pankajakshan, “A deep learning based
technique for anomaly detection in surveillance videos,” 2018
Twenty Fourth National Conference on Communications
(NCC), in Proceedings of the 2018 Twenty Fourth National
Conference on Communications (NCC), pp. 1–6, IEEE,
February 2018.

[12] G. Morales, I. Salazar-Reque, J. Telles, and D. Dı́az, “Detecting
violent robberies in cctv videos using deep learning, IFIP
advances in information and communication technology,” in
Artificial Intelligence Applications and Innovations,
J. MacIntyre, I. Maglogiannis, L. Iliadis, and E. Pimenidis,
Eds., Springer International Publishing, Cham, Switzerland,
pp. 282–291, 2019.

[13] K. G. Sheela and S. N. Deepa, “Review on methods to fix
number of hidden neurons in neural networks,” Mathe-
matical Problems in Engineering, vol. 2013, pp. 1–11, 2013.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” 2015, http://arxiv.org/abs/14004.3978.

[15] K. O. Stanley, “Neuroevolution: a different kind of deep
learning,” Radar, vol. 23, p. 334, Jul 2017.

[16] A. Azzini, M. Dragoni, and A. Tettamanzi, “A neuro-evolu-
tionary approach to electrocardiographic signal classifica-
tion,” Evolution, Complexity and Artificial Life, vol. 22,
pp. 193–207, 2014.

[17] I. Sekaj, L. Cı́ferský, and M. Hvozdı́k, “Neuro-evolution of
mobile robot controller,” MENDEL, vol. 25, no. 1, pp. 39–42,
06 2019.

[18] M. Risto, “Evolution of neural networks,” in Proceedings of the
Genetic and Evolutionary Computation Conference Com-
panion, GECCO ’19, pp. 694–709, Association for Computing
Machinery, New York, NY, USA, July 2019.

[19] C. Dhiman and D. K. Vishwakarma, “A review of state-of-the-
art techniques for abnormal human activity recognition,”
Engineering Applications of Artificial Intelligence, vol. 77,
pp. 21–45, 2019.

[20] N. Li, X. Wu, D. Xu, H. Guo, and W. Feng, “Spatio-temporal
context analysis within video volumes for anomalous-event
detection and localization,” Neurocomputing, vol. 155,
pp. 309–319, 2015.

[21] M. Manosha Chathuramali, S. Ramasinghe, and R. Rodrigo,
“Abnormal activity recognition using spatio-temporal fea-
tures,” 7th International Conference on Information and
Automation for Sustainability, in Proceedings of the 7th In-
ternational Conference on Information and Automation for
Sustainability, Colombo, Sri Lanka, December 2014.

[22] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau,
“Robust video surveillance for fall detection based on human
shape deformation,” IEEE Transactions on Circuits and Sys-
tems for Video Technology, vol. 21, no. 5, pp. 611–622, 06 2011.

[23] A. Markovitz, G. Sharir, I. Friedman, L. Zelnik-Manor, and
S. Avidan, “Graph embedded pose clustering for anomaly
detection,” pp. 10536–10544, 06 2020, http://arxiv.org/abs/
1912.11850.

[24] A. A. Chaaraoui, J. R. Padilla-Lopez, and F. Florez-Revuelta,
“Abnormal gait detection with RGB-d devices using joint
motion history features,” 2015 11th IEEE International
Conference and Workshops on Automatic Face and Gesture
Recognition (FG), in Proceedings of the 2015 11th IEEE In-
ternational Conference and Workshops on Automatic Face
and Gesture Recognition (FG), IEEE, May 2015.

[25] A. A. Chaaraoui, P. Climent-Pérez, and F. Flórez-Revuelta,
“Silhouette-based human action recognition using sequences
of key poses,” Pattern Recognition Letters, vol. 34, no. 15,
pp. 1799–1807, 2013, Smart Approaches for Human Action
Recognition.

[26] V. Vignesh, G. Yadav, and A. Sethi, “Abnormal event de-
tection on bmtt-pets 2017 surveillance challenge,” 2017 IEEE
Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), in Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pp. 2161–2168, Honolulu, HI, USA,
July 2017.

[27] L. Xie and A. Yuille, “Genetic cnn,” 2017, http://arxiv.org/abs/
1703.01513.

[28] E. Real, S. Moore, A. Selle et al., “Large-scale evolution of
image classifiers,” 2017, http://arxiz.org/abs/1703.01041.

[29] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-ob-
jective neural architecture search via lamarckian evolution,”
2019, http://arxiz.org/abs/1804.09081.

[30] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A hypercube-
based encoding for evolving large-scale neural networks,”
Artificial Life, vol. 15, no. 2, pp. 185–212, 2009.

Computational Intelligence and Neuroscience 13

http://arxiv.org/abs/14004.3978
http://arxiv.org/abs/1912.11850
http://arxiv.org/abs/1912.11850
http://arxiv.org/abs/1703.01513
http://arxiv.org/abs/1703.01513
http://arxiz.org/abs/1703.01041
http://arxiz.org/abs/1804.09081


[31] K. O. Stanley, “Compositional pattern producing networks: a
novel abstraction of development,” Genetic Programming and
Evolvable Machines, vol. 8, no. 2, pp. 131–162, June 2007.

[32] S. Risi and K. O. Stanley, “An enhanced hypercube-based
encoding for evolving the placement, density, and connec-
tivity of neurons,” Artificial Life, vol. 18, no. 4, pp. 331–363, 08
2012.

[33] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evo-
lutionary algorithm that constructs recurrent neural net-
works,” IEEE Transactions on Neural Networks, vol. 5, no. 1,
pp. 54–65, 1994.

[34] J. C. F. Pujol and R. Poli, “Evolving the topology and the
weights of neural networks using a dual representation,”
Applied Intelligence, vol. 8, no. 1, pp. 73–84, 01 1998.

[35] D. Whitley and L. Pyeatt, “A comparison between cellular
encoding and direct encoding for genetic neural networks,” in
Genetic Programming 1996: Proceedings of the First Annual
Conference, pp. 81–89, MIT Press, 1996.

[36] K. O. Stanley and R. Miikkulainen, “Evolving neural networks
through augmenting topologies,” Evolutionary Computation,
vol. 10, no. 2, pp. 99–127, 2002.

[37] D. E. Moriarty and R. Miikkulainen, “Efficient reinforcement
learning through symbiotic evolution,” Machine Learning,
vol. 22, no. 1–3, pp. 11–32, 1996.

[38] R. Miikkulainen, J. Liang, E. Meyerson et al., “Evolving deep
neural networks,” in Artificial Intelligence in the Age of Neural
Networks and Brain Computing, R. Kozma, C. Alippi, Y. Choe,
and F. C. Morabito, Eds., Elsevier, Amsterdam, 2018.

[39] J. Liang, E. Meyerson, B. Hodjat, D. Fink, K. Mutch, and
R. Miikkulainen, “Evolutionary neural automl for deep
learning,” in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2019), Prague, July 2019.

[40] K. B. Kwan Chong Loo, Detection of violent behavior in open
environments using pose estimation and neural networks, PhD
thesis, Instituto Tecnologico y de Estudios Superiores de
Monterrey, Mexico, 2020.

[41] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld,
“Learning realistic human actions from movies,” 2008 IEEE
Conference on Computer Vision and Pattern Recognition, in
Proceedings of the 2008 IEEE Conference on Computer Vision
and Pattern Recognition, Anchorage, AK, USA, June 2008.

[42] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and
Y. A. Sheikh, “Openpose: realtime multi-person 2d pose es-
timation using part affinity fields,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 33, pp. 129–
221, 2019.

[43] T. Simon, H. Joo, I. Matthews, and Y. Sheikh, “Hand keypoint
detection in single images using multiview bootstrapping,”
CVPR, 2017, http://arxiv.org/abs/1704.07809.

[44] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-
person 2d pose estimation using part affinity fields,” CVPR,
2017, http://arxiv.org/abs/1611.08050.

[45] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh,
“Convolutional pose machines,” CVPR, 2016, http://arxiv.
org/abs/1906.04104.

[46] D. Osokin, “Real-time 2d multi-person pose estimation on
cpu: Lightweight openpose,” 2018, http://arxiv.org/abs/1811.
12004.

14 Computational Intelligence and Neuroscience

http://arxiv.org/abs/1704.07809
http://arxiv.org/abs/1611.08050
http://arxiv.org/abs/1906.04104
http://arxiv.org/abs/1906.04104
http://arxiv.org/abs/1811.12004
http://arxiv.org/abs/1811.12004

