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The primary cellular substrates of atrial fibrillation (AF) and the mechanisms 
underlying AF onset remain poorly characterized and therefore, its risk assessment 
lacks precision. While the use of omics may enable discovery of novel AF risk factors 
and narrow down the cellular pathways involved in AF pathogenesis, the work is far 
from complete. Large-scale genome-wide association studies and transcriptomic 
analyses that allow an unbiased, non-candidate-gene-based delineation of 
molecular changes associated with AF in humans have identified at least 150 genetic 
loci associated with AF. However, only few of these loci have been thoroughly 
mechanistically dissected, indicating that much remains to be discovered for 
targeted diagnostics and therapeutics. Metabolomics and metagenomics, on the 
other hand, add to the understanding of AF downstream of the primary substrate 
and integrate the signalling of environmental and host factors, respectively. These 
two rapidly developing fields have already provided several correlates of prevalent 
and incident AF that require additional validation in external cohorts and 
experimental studies. In this review, we take a look at the recent developments in 
genetics, transcriptomics, metagenomics, and metabolomics and how they may aid 
in improving the discovery of AF risk factors and shed light into the molecular 
mechanisms leading to AF onset.
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Introduction

Atrial fibrillation (AF) risk assessment on the individual 
level still lacks precision. Even the best AF risk scores 
achieve a c-statistic (a measure of discrimination also 
known as the area under the receiver operating 
characteristic curve) of approximately only 0.80.1 This 

means that a 20% probability still exists for the risk 
prediction model to be unable to discriminate an 
individual likely to develop cardiovascular disease 
(CVD) on follow-up from one less likely to do so. In 
addition to risk factors and correlates, the molecular 
mechanisms underlying AF onset remain to a large 
extent controversial or unknown despite recent 
developments. This review focuses on how ‘omics’, in 
this case, genetics, transcriptomics, metagenomics, 
and metabolomics, are helping to improve AF risk 
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factor discovery and to elucidate the mechanisms 
underlying AF.

The missing links of AF genetics

Linkage analysis in families with many affected individuals 
and a clear hereditary pattern has helped to identify 
several mutations associated with AF, such as those 
affecting KCNQ1, NPPA, MYL4, TBX5, and TTN.2 Although 
rare by nature and thereby having only a small impact on 
the global AF burden, analysis of these hereditary forms 
of AF has been most informative and aided greatly the 
understanding of AF disease biology and the potential 
molecular mechanisms of variant action. For example, 
the AF-linked mutations for the ion channel encoding 
gene, KCNQ1, have been shown to result in gain of 
channel function and likely shorten the atrial refractory 
period.3 For atrial natriuretic peptide, NPPA, a 
frame-shift mutation removes a stop codon and leads to 
an extended mutant protein that can bypass degradation 
and thereby achieve increased activity and higher 
circulating levels.4 In vivo experiments have shown this 
to lead to changes in atrial electrophysiology (i.e. 
shorter duration of monophasic action potential and 
effective refractory period) that could promote AF. 
Autosomal recessive mutations in atrial-specific myosin 
light chain, MYL4, can lead to early-onset AF through 
abnormal F-actin binding region and consequent 
disruption of the sarcomere and enlargement of the 
atria.5 And finally, a gain-of-function mutation in the 
transcription factor, TBX5, causes developmental 
disorder that leads to heart and limb malformations 
through enhanced binding of the mutated TBX5 to DNA 
and up-regulation of downstream targets, including NPPA 
and GJA5, a component of gap junctions that itself 

carries AF-associated variants.6–12 Together, these 
studies provide an anchor to disease biology and help to 
shape the potential mechanisms of action for AF variants 
more broadly.

Genome-wide association studies (GWAS) have further 
helped to provide insights into the onset and progression 
of human CVD.13 The first AF-associated locus (4q25), 
near PITX2, was reported in 2007.14–16 Since then, 
multiple studies have identified new susceptibility 
loci,2,14,17–29 and linked them to putative genes (Table 1; 
Supplementary material online, Table S1).17 However, 
the major challenge with GWAS approach remains the 
same—instead of specific causal genes, it identifies a 
region of interest. In the case of PITX2 locus, the link 
between the non-coding variants and the affected gene 
was obvious due to the exceptionally strong link, but for 
most of the 150 AF loci uncovered by GWAS (Table 1; 
Supplementary material online, Table S1),17 the causal 
variants remain unknown, as they may reside far away 
from the affected genes and have moderate effects, 
making their mechanisms of function less obvious. In 
addition, the variants may also affect both the 
expression and function of the target gene through 
different mechanisms and multiple variants, as 
illustrated by NKX2-5. The gene encoding transcription 
factor NKX2-5 has been associated with ECG traits and is 
an example of an AF-linked transcription factor whose 
function is affected by regulatory variants. A recent 
study by Benaglio et al.30 identified ∼2000 
single-nucleotide variants associated with allele-specific 
effects on NKX2-5 binding sites across the genome. They 
experimentally confirmed two variants that modulate 
target gene expression through differential transcription 
factor binding in cardiac cells, concluding them 
as putative functional variants underlying the 

Table 1 Classification based on biological processes and cell biology of the nearest genes in AF associate loci in genome-wide 
association studies

Process/compartment Genes

Classification based on biological processes
Cardiac and skeletal muscle function 
and integrity

AKAP6, CFL2, MYH6, MYH7, MYO18B, MYO1C, MYOCD, MYOT, MYOZ1, MYPN, PKP2, RBM20, 
SGCA, SSPN, SYNPO2L, TTN, TTN-AS, WIPF1

Mediation of developmental events ARNT2, EPHA3, FGF5, GATA4, GTF2I, HAND2, LRRC10, NAV2, NKX2–5, SLIT3, SOX15, TBX5
Intracellular calcium handling in the 
heart

CALU, CAMK2D, CASQ2, PLN

Angiogenesis TNFSF12, TNFSF12-TNFSF13
Hormone signalling CGA, ESR2, IGF1R, NR3C1, THRB
Function of cardiac ion channels HCN4, KCND3, KCNH2, KCNJ5, KCNN2, KCNN3, SCN10A, SCN5A, SLC9B1

Classification based on cell biology
Cell polarity and epithelial to 
mesenchymal transition

PITX2, WNT8A, SMAD7

Cell–cell interaction GJA5, GJA1, CAV1, PHLDB2, PKP2, PHLDA1
Microtubules MAPT, CEP68, TUBA8, REC114, DNAH10
Transcription regulator ZNF462, ZFHX3, HSF2, NKX2-5, CASZ1, TLE3, GTF2I, DPF3, SCMH1, NR3C1, ZNF292, 

KDM1B, PRDM8
RNA binding RPS2, RBM20, POLR2A
Cytoskeleton SSPN, PHLDB2, CFL2, WIPF1
Post-translational regulation PKP2, USP3
Golgi GORAB, COG5, GOSR2, GOPC
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electrocardiographic GWAS signals. Compelling evidence 
from several large-scale studies suggests that such 
regulatory variants (i.e. variants affecting transcription 
factor binding to cis-regulatory elements thereby 
altering target gene expression cell-type-specifically) 
may encompass substantial fraction of the non-coding 
variants with unknown functions.31–36

Another major limitation with GWAS approach is that it 
does not capture all known variants in the genome but 
usually utilizes genotyping arrays that assess hundreds of 
thousands of genetic variants throughout the genome from 
which a greater number of single-nucleotide polymorphisms 
can be imputed. Therefore, the discovery of rare and 
unknown variants is limited. Despite the firm links of 
familial mutations to AF, only a few of these loci have 
been identified in GWAS.17,37 For example, TTN was first 
identified of having loss-of-function mutations in familial 
early-onset AF and shortly after, a similar finding was 
made among unrelated individuals with early-onset AF, 
and finally, exome sequencing data confirmed a similar 
strong association for loss-of-function variation in the 
general AF population, with markedly higher penetrance 
among polygenic TTN mutation carriers.38–40 Although 
the loss-of-function approach used in this case provides a 
considerable advantage over GWAS by establishing a direct 
link from gene function to disease and directionality for 
the effect, it would miss the gain-of-function mutations 
such as those identified for TBX5.

Genomics and transcriptomics as tools for 
uncovering AF mechanisms

The general dissection of the molecular changes 
underlying AF initiation and progress in human bulk right 
and left atrial tissue has identified pathway changes in 
mechanotransduction, extracellular matrix remodelling, 
ion channel signalling, oxidative stress, apoptosis, 
fibrosis, and structural tissue organization under both 
developmental and inflammatory signalling.41,42 These 
profiling studies generally credit the development of AF 
to deregulation of ion channels, calcium handling, 
structural remodelling, or autonomic neural regulation, 
and as such, AF is seen as a consequence of other 
cardiovascular pathologies.42 However, the overlap of 
the results in these studies is not overwhelming at the 
molecular level, indicating that much remains to be 
discovered for targeted diagnostics and therapeutics.

In a recent paper by Hulsmans et al.,43 first single-cell 
characterization of human left atrial tissue from five 
control participants and seven patients with chronic AF 
was performed. The study reported inflammatory 
monocyte and SPP1+ macrophage expansion in atrial 
fibrillation and confirmed the findings in an in vivo 
mouse model combining hypertension, obesity, and 
mitral valve regurgitation to create enlarged, fibrosed, 
and fibrillation-prone atria. Single-cell transcriptome of 
the model recapitulated the human tissue findings and 
inhibition of monocyte migration reduced arrhythmia, as 
did deletion of Spp1, which was identified as the signal 
that promotes AF through local crosstalk with immune 
and stromal cells. Although the study was limited in its 
coverage in terms of pathway enrichments and cell 
types, as only six major non-cardiomyocyte populations 

were captured, it clearly demonstrated the power of 
single-cell dissection of molecular mechanisms in finding 
putative diagnostic and therapeutic targets.

In recent years, genomics has emerged as a way to bridge 
the gap between GWAS variants and their function, 
highlighting putative causal variants based on chromatin 
conformation, gene regulation and expression. However, 
the existing datasets largely arise from bulk tissue samples 
that represent a complex and variable mix of cell types, 
masking the signal for the less abundant cell types. To 
overcome the issue, two studies have used the 
combination of single-cell transcriptome and chromatin 
accessibility profiling in human cardiac tissue together 
with GWAS mapping, improving the cell type-resolution of 
the risk variant mapping.44,45 These studies confirmed the 
assumption that the interrogation of the cell-type-specific 
genomic and transcriptional changes is a prerequisite for 
the understanding of the molecular mechanisms of variant 
action. In the paper by Hocker et al.,45 the researchers 
described 16 451 differentially accessible cis-regulatory 
elements between the pooled atria and ventricles, most of 
them in cardiomyocytes, whereas the difference between 
the left and right sides was less pronounced, but stronger 
between the left and right atria (101 differentially 
accessible sites between left and right ventricles, and 2  
687 between left and right atria). AF-associated variants 
showed significant enrichment in both atrial and 
ventricular cardiomyocytes but were not enriched in 
accessible chromatin of non-cardiac tissues, with the 
exception of endothelial cells. In contrast to comparisons 
between atria and ventricles, the differentially accessible 
regions resided primarily in cardiac fibroblasts. Taken 
together, the findings of the paper suggest that the causal 
risk variant mapping requires data from the whole heart, 
as differences exist both between the left–right and 
atrium–ventricle axes.

In a more recent paper by Selewa et al.,44 a more 
thorough fine-mapping of AF risk variants was performed, 
identifying putative causal variants in 122 AF-associated 
loci and highlighting known AF risk genes (Table 1; 
Supplementary material online, Table S1), such as 
transcription factors involved in cardiac development and 
atrial rhythm control (e.g. NKX2-5, TBX5, and PITX2), ion 
channels (e.g. KCNN3), and genes involved in muscle 
contraction (e.g. TNN), and several new ones, such as 
ASAH1, ATXN1, ERBB4, RPL3L, TUBA8, EPHA3, THRB, 
BEND5, and PKP2. The study concluded that most 
uncovered AF risk variants did not colocalize with heart 
eQTLs, due to under-detection of cell-type-specific 
effects with bulk eQTL studies and over-detection of 
variants with effects in cell types shared across tissues, 
undermining the common strategy of annotating GWAS 
results using eQTLs, and partially explaining the lack of 
functional understanding of the disease-associated loci.

The ‘second genome’ and AF

Many of the established AF risk factors have been linked to 
gut microbial dysbiosis and, conversely, gut microbiota 
derived metabolites have been associated with 
cardiovascular health. This has led to the hypothesis 
that gut microbiota is associated with AF pathogenesis.46

The first evidence of this link was obtained in a Chinese 

Omics of atrial fibrillation                                                                                                                                                                        iv35

http://academic.oup.com/ehjsupp/article-lookup/doi/10.1093/eurheartjsupp/suae072#supplementary-data


case–control study of 50 patients hospitalized with 
non-valvular AF.46 Individuals with AF exhibited alterations 
in seven microbial genera, 96 serum metabolites and 
63 stool metabolites compared to healthy controls. 
In particular, AF was associated with relative overgrowth 
of genera Ruminococcus, Streptococcus, and Enterococcus 
and a reduction of the genera Faecalibacterium, 
Alistipes, Oscillibacter, and Bilophila. The first large-scale 
observational study (n = 6763) was published in 2023 
(Figure 1), in which nine microbial genera were associated 
with prevalent AF (Bacteroides, Bifidobacterium, Eisenber 
giella, Enorma, Enterobacter, Holdemanella, Kluyvera, 
Parabacteroides, and Turicibacter) and eight microbial 
genera with incident AF (Bifidobacterium, Enorma, 
Hungatella, Lactococcus, Mitsuokella, Sanguibacteroides, 
Sellimonas, Tyzzerella).47 These results were replicated in 
an independent German case–control cohort, in which a 
consistent trend was observed for 56% microbial genera 
associated with prevalent AF and 75% of genera associated 
with incident AF.47

In addition to observational correlations, two Mendelian 
randomization studies have also reported on the potential 
causal pathways between gut microbiota and AF. Mao 
et al.48 published the first report using GWAS summary 
statistics for AF and microbiota. The authors observed a 
positive association for genus Ruminococcaceae and a 
negative association for genus Turicibacter with AF that 
is consistent with a causal effect. Dai et al.49 used GWAS 
meta-analysis of six contributing European and American 
studies for AF and the Dutch Microbiome Project for 
species level gut microbial GWAS summary statistics; the 
authors also used data from the FinnGen and UK Biobank 
projects for validation. The authors observed positive 
associations for genus Holdemania (validated in FinnGen 

and UK Biobank) and species Eubacterium ramulus 
(insignificant in validation cohorts) with AF that is 
consistent with causal effect. A consistent association 
was observed for three of the four potentially causal 
taxa in one of the two previously published observational 
studies.46,47

Animal studies have also provided evidence on the 
pathophysiological pathway linking gut microbiota to AF. 
Faecal matter transplantation (FMT) from aged rats to 
young hosts led to increased levels of circulating 
lipopolysaccharide and up-regulated expression of 
NOD-like receptor protein (NLRP)-3 inflammasome 
promoting development of AF.50 Conversely, selective 
inhibitors of the NLRP3 inflammasome and FMT from 
young rats to old hosts both reduced AF susceptibility.50

In another study, cross-species FMT from AF patients to 
mice led to prolonged P wave duration, aggregated atrial 
electrical remodelling, and decreased circulating and 
faecal linolenic acid concentration compared to FMT 
from healthy donors.51 Finally, an in vitro experiment 
has suggested that linoleic acid mediates a protective 
anti-inflammatory effect on mouse atrial myocytes 
against lipopolysaccharide/nigericin-induced injuries.51

Increased lipopolysaccharide levels have consistently 
been linked with age, AF, and recurrence of AF after 
ablation in humans.50,52

Short-chain fatty acids (SCFAs) are gut microbial 
fermentation products of dietary fibres influencing cell 
signalling that can be absorbed to the circulation.53 In a 
mouse model, the lack of dietary fibre-derived SCFAs 
was linked to AF susceptibility while supplementation of 
SCFAs attenuated the observed NLRP3 inflammasome 
activation.54 Two Chinese human studies have also 
reported that AF is linked with lower number of SCFA 

Figure 1 The links of gut microbiota with prevalent and incident AF in the FINRISK 2002 cohort. Gut microbiota likely contributes to AF both directly and 
mediating effects through overlapping risk factors and diseases. Reprinted from Palmu et al. eBioMedicine 2023:91:104583. Copyright 2023, with 
permission from Elsevier.47
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producing gut microbial taxa and reduced faecal SCFA 
levels.54,55

Gut microbial metabolism of cholines, phosphatidyl 
cholines, and L-carnitine produces trimethylamine (TMA) 
that is converted to trimethylamine-N-oxide (TMAO) in the 
liver.56 Increased levels of TMAO are an independent risk 
factor for thrombus formation in AF.57 Dietary sources of the 
TMA precursor include red meat, cheese, and egg yolk 
nutrients abundant in Western diet.58 In a rat model, AF 
susceptibility was linked with reduced abundance of 
Akkermansia muciniphila, leading to increased levels of 
enzymes involved in TMA synthesis.59 In two small cohort 
studies, AF was consistently linked to changes in gut 
microbial TMA production and plasma TMAO levels in 
humans.60,61

Metabolic end-products and AF

In metabolomics, the metabolic responses of an organism to 
various stimuli (i.e. metabolites) are profiled most commonly 
using mass spectrometry.62 This method can measure ionized 
molecules based on their mass-to-charge ratios and allows a 
wide range of metabolites to be recognized especially when 
used in tandem with liquid (or other) chromatography 
separation techniques. The circulating metabolomic profile 
is strongly associated with environmental factors (e.g. diet 
and exposure to xenobiotics), genetics, and the gut 
microbiome, providing valuable information on the host, 
host environment, and host microbiome.63

Several studies have studied the relation of circulating 
metabolites with incident AF (see Supplementary 
material online, Table S2). Tissue metabolomics, animal 
studies, and operative patients are out of scope of this 
review. The Atherosclerosis Risk in Communities (ARIC) 
was the first large study to link elevated levels of 
conjugated bile acids to incident AF in black individuals, 
followed by the Framingham Heart Study, which 
connected perturbations in glucose, fructose, and 
galactose metabolism to incident AF.64,65 In a follow-up 
study with a more diverse sample of ARIC participants, 
the associations of the metabolites pseudouridine, uridine 
(from pyrimidine metabolism), and acisoga (a catabolic 
product of spermidine in the polyamine metabolism) with 
AF were also statistically significant. The results for 
acisoga and other spermidine metabolites, such as 
arginine, were later confirmed in the Malmö Diet and 
Cancer Study and the Prevención con Dieta Mediterránea 
(PREDIMED) trial.66,67 Arginine may have antioxidative 
effects and could prevent cardiovascular dysfunction by 
increasing impaired nitric oxide synthesis as the reactive 
oxygen species (ROS) are neutralized.68

In addition to the polyamine metabolites, the results with 
carnitines have been most consistent, suggesting a 
protective role against the onset of AF.67,69–71 Carnitines are 
an essential part of the cardiomyocyte energy metabolism, 
transporting fatty acids for use in mitochondrial energy 
production, while preventing ROS formation.72 There is also 
evidence for their cardioprotective abilities, blood 
pressure benefit, and reduction in left ventricle dilation 
after an acute myocardial infarction.73–75 However, a 
recent Mendelian randomization study found conflicting 
evidence, suggesting cardiovascular harm on a multitude 
of cardiovascular endpoints—including AF—with genetic 
variants predicting L-carnitine levels.76 It is also worth 

noting that large-scale intervention data are lacking. 
Fatty acids and other lipids have also been linked to AF in 
several studies,77–79 but these results must be considered 
with caution due to potential confounding effects. In 
addition, several lysophosphatidylcholines (LysoPC) and 
cholesterol esters have been linked to AF in many recent 
studies.69,77,78,80,81 LysoPC species are antiatherogenic, 
have anti-inflammatory responses, and reduce metabolic 
syndrome progression,82 and the concentrations of these 
metabolites have been lower in AF patients than in 
controls.81,82 There is also evidence on the connection 
between other inflammatory biomarkers and AF. In a 
PREDIMED follow-up study, the only significant predictor 
of AF was quinolinic acid, an inflammation-inducing 
metabolite from the tryptophan–kynurenine pathway.83

Conclusions and future perspectives

The continuously decreasing sequencing costs enable the 
transition towards large-scale sequencing studies, polygenic 
risk assessment in and across diverse ethnicities in both 
sexes,17,84 discovery of structural genetic variation, and 
integration of data from large-scale cell-based assays, and 
single-cell profiling of patient samples. Computational 
genetic fine-mapping utilizing these different data layers 
will in the future facilitate the discovery of disease-relevant 
conditions, such as cell types and cell states, and open a 
way for precision medicine. The key challenges hampering 
the genetic fine-mapping efforts include strong linkage 
disequilibrium among variants that can limit statistical 
power and resolution of the mapping, genetic signals at 
affected regions that commonly harbour many variants 
acting together that make the process of simultaneously 
searching for multiple causal variants computationally 
heavy, and the confounding bias hidden in GWAS summary 
statistics, such as socioeconomic status and geographic 
clustering, that can produce spurious signals.85 Despite the 
challenges, more powerful computational approaches are 
emerging to help the prioritization of putative causal 
variants underlying complex multifactorial traits and 
diseases. However, much remains unknown regarding the 
AF-associated variant effects on the expression, processing, 
and function of the non-coding genome, including the 
non-coding RNAs, such as microRNAs, long non-coding RNAs, 
and circular RNAs.

Although our review highlights the benefits of 
single-cell-resolution data over bulk tissues, the picture 
remains incomplete. In existing single-cell studies on AF, the 
number of samples has been low, sex-differences have not 
been considered, cells were profiled from post-mortem 
samples, and the focus has been on ‘healthy’ tissue, 
potentially missing disease-prevalent cell types, cell states, 
and signalling that may further elucidate the disease 
mechanisms. Current studies suggest cardiomyocytes as the 
main mediator cell type of AF risk.44,45 However, this is yet 
to be validated in larger datasets that address the previously 
mentioned limitations.86

Gut microbiota is a novel risk factor that has been linked 
with AF in observational studies, pre-clinical models, and 
Mendelian randomization studies. While the gut microbiota 
likely contributes to AF both directly and through 
overlapping risk factors and diseases, our understanding of 
the pathophysiology of the phenomenon is still dependent 
upon future observational and experimental research in 
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this rapidly developing field. In addition to environment and 
genetics, gut microbiota is also one of the key factors 
regulating the circulating human metabolome. Currently, 
there is budding evidence on the links between circulating 
metabolites, such as carnitine and LysoPC species, with 
prevalent AF, but the heterogeneous methods and 
populations of metabolomics studies have provided 
somewhat inconsistent results. Furthermore, metabolic 
changes in AF can arise from multiple reasons and do not 
yet permit any conclusions on their arrhythmogenic or 
preventive potential.87

In conclusion, many of the omics methods are still 
rapidly developing, but provide a great opportunity to 
discover novel risk markers and mechanisms of AF.

Supplementary material

Supplementary material is available at European Heart 
Journal Supplements online.
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