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In silico tools for splicing defect prediction have a key role to assess the impact
of variants of uncertain significance. Our aim was to evaluate the performance of
a set of commonly used splicing in silico tools comparing the predictions against
RNA in vitro results. This was done for natural splice sites of clinically relevant
genes in hereditary breast/ovarian cancer (HBOC) and Lynch syndrome. A study
divided into two stages was used to evaluate SSF-like, MaxEntScan, NNSplice, HSF,
SPANR, and dbscSNV tools. A discovery dataset of 99 variants with unequivocal
results of RNA in vitro studies, located in the 10 exonic and 20 intronic nucleotides
adjacent to exon–intron boundaries of BRCA1, BRCA2, MLH1, MSH2, MSH6, PMS2,
ATM, BRIP1, CDH1, PALB2, PTEN, RAD51D, STK11, and TP53, was collected
from four Spanish cancer genetic laboratories. The best stand-alone predictors or
combinations were validated with a set of 346 variants in the same genes with clear
splicing outcomes reported in the literature. Sensitivity, specificity, accuracy, negative
predictive value (NPV) and Mathews Coefficient Correlation (MCC) scores were used to
measure the performance. The discovery stage showed that HSF and SSF-like were
the most accurate for variants at the donor and acceptor region, respectively. The
further combination analysis revealed that HSF, HSF+SSF-like or HSF+SSF-like+MES
achieved a high performance for predicting the disruption of donor sites, and SSF-
like or a sequential combination of MES and SSF-like for predicting disruption of
acceptor sites. The performance confirmation of these last results with the validation
dataset, indicated that the highest sensitivity, accuracy, and NPV (99.44%, 99.44%,
and 96.88, respectively) were attained with HSF+SSF-like or HSF+SSF-like+MES for
donor sites and SSF-like (92.63%, 92.65%, and 84.44, respectively) for acceptor sites.

Frontiers in Genetics | www.frontiersin.org 1 September 2018 | Volume 9 | Article 366

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2018.00366
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-7339-0570
http://orcid.org/0000-0002-1711-6101
https://doi.org/10.3389/fgene.2018.00366
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2018.00366&domain=pdf&date_stamp=2018-09-05
https://www.frontiersin.org/articles/10.3389/fgene.2018.00366/full
http://loop.frontiersin.org/people/517413/overview
http://loop.frontiersin.org/people/586481/overview
http://loop.frontiersin.org/people/580123/overview
http://loop.frontiersin.org/people/605013/overview
http://loop.frontiersin.org/people/432197/overview
http://loop.frontiersin.org/people/310601/overview
http://loop.frontiersin.org/people/518435/overview
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00366 September 4, 2018 Time: 10:22 # 2

Moles-Fernández et al. Performance Evaluation of Splicing Prediction Tools

We provide recommendations for combining algorithms to conduct in silico splicing
analysis that achieved a high performance. The high NPV obtained allows to select the
variants in which the study by in vitro RNA analysis is mandatory against those with a
negligible probability of being spliceogenic. Our study also shows that the performance
of each specific predictor varies depending on whether the natural splicing sites are
donors or acceptors.

Keywords: hereditary cancer genes, NGS of gene-panel, VUS classification, in silico tools, splicing, RNA
alteration

INTRODUCTION

The increasing use of massive parallel sequencing of customized
multi-gene panels, for germline clinical testing of hereditary
breast and ovarian cancer (HBOC) and Lynch syndrome, is
leading to higher detection of genetic variants of unknown
significance (VUS).

All exonic or intronic VUS can be potentially spliceogenic
by disrupting the cis DNA sequences that define exons, introns,
and regulatory sequences necessary for a correct RNA splicing
process. Specifically, the cis DNA elements include: (i) exon–
intron boundary core consensus nucleotides (GT at +1 and
+2 of the 5′donor site and AG at -1 and -2 of the 3′acceptor
site); (ii) intronic and exonic nucleotides adjacent to these
invariable nucleotides that are also highly conserved and have
been found to be critical for splice site selection: CAG/GUAAGU
in donor sites and NYAG/G in acceptor sites; (iii) branch
point and polypyrimidine tract sequence motifs, essential for
the spliceosome complex formation; (iv) intronic and exonic
sequences that act as splicing enhancers (ISE and ESE) or
silencers (ISS and ESS), regulatory motifs that are usually bound
by serine/arginine (SR)-rich proteins and heterogeneous nuclear
ribonucleoproteins (hnRNPs), respectively (Cartegni et al., 2002;
Soukarieh et al., 2016; Abramowicz and Gos, 2018). A nucleotide
change in any of these elements could lead to incorrect splice
site recognition, creating new ones or activating the cryptic ones,
resulting in aberrant transcripts and in non-functional proteins
associated with disease such as hereditary cancer.

Interestingly, it has recently been described that hereditary
cancer genes (including some HBOC and Lynch genes) are
enriched for spliceogenic variants (Rhine et al., 2018). This
finding highlights the importance of both the identification
and the functional interpretation of variants causing RNA
alterations in hereditary cancer genes. In HBOC syndrome
and Lynch Syndrome, the clinical classification of VUS is
essential since carriers of pathogenic variants may benefit from
cancer prevention and risk-reducing strategies, make informed
decisions about prophylactic surgery, and benefit from targeted
treatments (Moreno et al., 2016). Conversely, carriers of non-
pathogenic variants can be excluded from intensive follow-ups
and avoid unnecessary risk-reducing surgery (Eccles et al., 2015).

To detect splice site alterations, in vitro splicing assays with
patient’s RNA or minigenes are widely used. However, testing all
variants detected in the vicinity of exon–intron boundaries can be
time consuming and expensive. In consequence, to select variants
to be experimentally evaluated, a large number of prediction

programs have been developed. These splicing computational
tools are based on different premises. The most commonly used
are based on Position Weight Matrix (PWM), in which each
nucleotide on the splice site sequence is scored and ranked based
on its frequency from its aligned consensus sequence (Shapiro
and Senapathy, 1987; Desmet et al., 2009). Neural network
programs use sets of sequences from databases to identify
splicing sites (Reese et al., 1997). Tools based on Maximum
Entropy Distribution models take into account the dependencies
between nucleotide positions (Yeo and Burge, 2004). Approaches
like SPANR (Xiong et al., 2015) use DNA and RNA sequence
information and a machine learning method, to predict splicing
alterations, enabling the identification of variants affecting cis
and trans splicing factors. Another type of splicing tool has been
developed using ensemble learning methods (adaptive boosting
and random forest) taking advantage of individual computational
tools (Jian et al., 2014a).

Several studies have analyzed the performance of these tools
for genes related to cancer and other diseases and report
discordant results without a consensus guideline recommending
which programs should be used (Houdayer et al., 2008, 2012;
Holla et al., 2009; Vreeswijk et al., 2009; Desmet et al., 2010;
Théry et al., 2011; Colombo et al., 2013; Jian et al., 2014a;
Tang et al., 2016) (Table 1). Here, we present an evaluation
of the performance of commonly used splicing in silico tools,
comparing their output with the experimental evidences obtained
by RNA in vitro analysis of variants detected in HBOC and
Lynch syndrome genes. In the first phase of the study, we
assessed the accuracy of the splicing in silico tools with a dataset
of RNA in vitro outcomes collected from four Spanish cancer
genetic units. Subsequently, we validated the best algorithms
obtained in the discovery phase, with findings obtained after RNA
analysis extracted from different curated databases and reported
literature.

MATERIALS AND METHODS

Variant Selection
Discovery Set
We restricted the study to variants located within the last
10 exonic and 20 first intronic nucleotides from the 5′ splice
donor site, and the last 20 intronic and the first 10 exonic
nucleotides from the 3′ splice acceptor site (−10 to +20 and
−20 to +10, respectively). BRCA1, BRCA2, MLH1, MSH2,
MSH6, and PMS2 variants were selected from HBOC and Lynch
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syndrome patients routinely analyzed for diagnostic purposes.
We also included ATM, BRIP1, CDH1, PALB2, PTEN, RAD51D,
STK11, and TP53 variants obtained in a research series of
BRCA1 and BRCA2 negative HBOC patients. Genetic variants
with unequivocal experimental evidences showing presence or
absence of alterations in the mRNA, were collected from four
different Spanish centers: Hospital Universitari Vall d’Hebron
(HUVH), Barcelona; Hospital Clínico San Carlos (HCSC)
Madrid; Fundación Pública Galega de Medicina Xenomica
(FPGMX), Santiago de Compostela; Institut Català d’Oncologia
(ICO), Hospital Duran i Reynals, Barcelona.

The variants included in the discovery set were analyzed
in vitro in carriers and controls. RNA was isolated from
whole blood leukocytes or short-term lymphocyte cultures,
phytohaemagglutinin stimulated, and treated with and without
puromycin. The contributing laboratories used diverse isolation
protocols and/or cDNA synthesis strategies following ENIGMA
recommendations (Colombo et al., 2014; Whiley et al.,
2014). Briefly, the splicing products generated by reverse
transcription-polymerase chain reaction (RT-PCR) assays were
characterized using agarose gel or capillary electrophoresis in
a QIAxcel instrument with QIAxcel DNA High Resolution
Kit (QIAGEN) or an Agilent 2100 Bioanalyzer (Agilent), and
Sanger sequencing. PCR primers were designed to amplify at
least one whole exon 5′ and 3′ flanking the exon harboring
the variant of interest. Primer sequences are available upon
request.

The study was approved by the Institutional Review Board
of each participating center. Patients received genetic counseling
and written informed consent was obtained for further genetic
and research studies.

Validation Set
At this stage, the predictors that presented the best performance
alone or in combination, were applied to compare their
predictions with the in vitro RNA results from the dataset
obtained through literature and databases. We chose a collection
of variants reported in INSIGHT, ClinVar and published works
that were (i) located within the regions defined for the
discovery set; (ii) identified in the set of cancer risk genes
included above; (iii) experimentally confirmed as spliceogenic
and non-spliceogenic in blood samples or with minigene
assay at least by RT-PCR, agarose gel and Sanger Sequencing
analysis; and (iv) not located at exonic splicing enhancer (ESE)
regions with specific experimental evidence of causing splicing
alteration.

In silico Splice Tools
A total of six splice-site prediction software programs were
selected for this study. Two ensemble prediction scores
constructed by Jian et al. (2014a) using adaptive boosting
and random forests ensemble learning methods, were extracted
from dbscSNV database1. Splicing-based Analysis of Variants
(SPANR), a computational model of splicing derived from the
application of “deep learning” computer algorithms (Xiong

1https://sites.google.com/site/jpopgen/dbNSFP

et al., 2015) was ascertained by its own web site2. Splice Site
Finder (SSF-like) (based on Shapiro and Senapathy, 1987),
MaxEntScan (MES) (Yeo and Burge, 2004), Splice Site Prediction
by Neural Network (NNPLICE) (Reese et al., 1997), and Human
Splicing Finder (HSF) (Desmet et al., 2009) accessed through
Alamut Visual 2.10 (Interactive Biosoftware). The GeneSplicer
program is also included in the splicing module of Alamut,
but it was excluded from the study since we noticed it
had an exceedingly high missing scores (no estimation was
obtained for 30% of the variants analyzed; data not shown),
which had also been reported by Jian et al. (2014a). SPANR
and dbscSNV do not analyze insertions and deletions and
dbscSNV gives estimations for variants only located from
−3 to +8 at 5′ and −12 to +2 at 3′ (Supplementary
Table 1).

To interrogate the splicing prediction tools, we calculated the
score variation caused by the variant in the donor site or acceptor
site. To do that, we compared the score computed in the wild-type
sequence (WT) to the score computed in the variant sequence
(VAR) as:

%scorevariation = (VARscore − WTscore)/WTscore)∗100

We calculated the % score variation for four out of the six
tools (SSF-like, HSF, MES, and NNSPLICE), since dbscSNV and
SPANR already provide a score change.

To consider a % score change as a positive prediction of a
splicing motif disruption caused by the variant, which would
lead to aberrant splicing, we adopted thresholds pre-established
in the literature (Supplementary Table 1). When two programs
were combined, a correct prediction of splicing alteration was
considered if at least one of them scored above the threshold.
When three, four, five, or six programs were combined, all tools
but one had to score above the threshold to indicate splicing
alteration.

Performance Assessment
In the discovery and validation phases, the experimental RNA
results for each collected variant were annotated as positive
splicing alteration when they unequivocally, verified by gel
electrophoresis and Sanger sequencing, lead to: exon skipping,
use of a new or cryptic splice site or altered alternative transcript
profile. In contrast, a negative splicing alteration was annotated
when the in vitro RNA result was exactly the same as that
obtained in control samples.

For both stages, we calculated the overall accuracy (ratio of
overall correct predictions to the total number of predictions),
specificity (correct identification of non-spliceogenic variants;
true negative rate), and sensitivity (correct identification of
deleterious variants; true positive rate). The positive predictive
values (PPV, proportion of positive predictions that were
true positives), negative predictive values (NPV, proportion of
negative predictions that were true negatives), false negative rates
(FNR, proportion of false negative detection), and false positive
rates (FPR, proportion of false positive detection) were also

2http://tools.genes.toronto.edu/
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FIGURE 1 | In vitro RNA results collected in the discovery set. Experimental data are displayed according to variation location. Positive splicing alterations include:
exon skipping, use of a new or cryptic splice site or an altered-alternative transcript profile. Negative splicing alteration: in vitro RNA result was exactly the same as
that obtained in control samples. Spl, splicing.

calculated. Matthews correlation coefficient (MCC) was used to
provide a balanced comparison between in silico tools.

RESULTS

Discovery Set
A total of 99 variants with unequivocal RNA in vitro results
were studied, located within positions −10 to +20 from the 5′
donor site, and within −20 to +10 from the 3′ acceptor site
(Supplementary Table 2). Forty-four of the 99 variants generated
a splice defect, with 11 and 9 disrupting the canonical GT
or AG dinucleotides, respectively. The 24 remaining variants
with aberrant splicing were located outside invariable GT or
AG positions, with 15 variants altering the 5′ splice site and
nine altering the 3′ splice site. Fifty-five variants did not yield
an aberrant splicing, all located outside invariant dinucleotides.
Figure 1 displays the number of positive and negative splicing
results relative to variant location.

Six in silico tools were used to interrogate the 99 variants,
and their corresponding % score variation was obtained. These
outputs were compared to the experimental RNA results. The
respective thresholds pre-established in the literature were
adopted for each program (Supplementary Table 1).

Supplementary Table 2 lists the % score variation obtained
from each splicing tool used to assess the 99 variants, highlighting
which scores were in agreement with the RNA analysis outcome.
Of note, seven insertions or deletions were not computed by
SPANR and dbscSNV, while estimations for 33 substitutions were
not provided by dbscSNV.

Table 2 shows separately, for 5′ (52 variants), 3′ (47 variants),
and both splice sites (global, 99 variants), the results of
performance analysis for each one of the tools. The six predictors
detected wild type (WT) splice sites in reference sequences for all
the genes of interest.

On average, predictions for variants located in 5′ regions have
higher accuracy (90.98%), sensitivity (90.44%) and specificity
(91.28%) compared to those located in 3′ regions (83.74%,

84.52%, and 82.30%, respectively) (Table 2). The predictions
computed by HSF (with a score change threshold of −2%)
were the most accurate and sensitive for variants at donor
site, while for variants at acceptor sites or affecting either
acceptor or donor sites (global), SSF-like were the most
accurate (with a score change threshold of −5%). MES
program (with a score change threshold of −15%) showed
100% of sensitivity on all predictions, but its specificity did
not reach 87% in any case. In contrast, SPANR program
showed the highest values of specificity for predictions of
variants at donor site or all variants affecting either at acceptor
or donor splice sites, but the lowest values of sensitivity
(Table 2).

Accordingly, the lowest false negative rates for 5′splice site
were reached by the HSF and MES predictors, while at 3′splice
sites, the SSF-like and MES predictors obtained the lowest false
negative rates (Table 2 and Figure 2). In contrast, SPANR
predictor had the highest false negative and the lowest false
positive rates in almost all cases (Table 2 and Figure 2). Regarding
the estimation of the proportion of negative predictions that
were true negatives (NPV), HSF or MES and SSF-like or MES
achieved the highest values (100%) for donor and acceptor sites,
respectively (Table 2).

The accuracy of all possible predictor combinations was
further assessed. For 5′ donor splice sites, predictions of HSF
alone or HSF together with seven different combinations, SSF-
like+SPANR and SSF-like+MES+SPANR reached a 98.08%
of accuracy with the highest sensitivity for all the models
(100%), obtaining 96.15% of specificity, 0.96 MCC and 100%
of NPV (Supplementary Table 3). For 3′ splice sites, a
sequential combination recommended by Houdayer et al.
(2012) using MES as first-line analysis with a cut-off of
15% followed by SSF-like with a 5% threshold achieved
the best performance, with a 100% of sensitivity, 96.55% of
specificity, 97.87 % of accuracy, 0.96 MCC, and 100% of NPV
(Supplementary Table 4). However, SSF-like alone and two
more combinations including it also showed a 100% of NPV
together with 100% sensitivity and high values of accuracy
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FIGURE 2 | False negative and false positive rates for individual splicing
prediction tools in the discovery set. dbscSNV, database consulted for
extracting the adaptive boosting and random forests scores.

(for predictions at acceptor site, Supplementary Table 4).
Considering the tool combinations for predicting disruption
caused by variants located in any of the two splice sites
(global), MES and SSF-like sequential combination achieved
the best accuracy with a 96.97% and 0.94 of MCC, followed
for two combinations, including SSF-like and MES, which
showed 100% sensitivity and 100% of NPV (Supplementary
Table 5).

Validation Set
In order to validate the predictors with the best performance
obtained in the discovery set, we analyzed a dataset of 346
variants with RNA in vitro results published or detailed in free
available databases. At donor region, 210 variants were included,
177 showing in vitro splicing alterations (65 at intronic GT
positions) and 33 showing no splicing effects (all outside intronic

GT) (Figure 3 and Supplementary Table 6). One hundred thirty-
six variants were located at the acceptor region, 95 showing
splicing alterations (67 of them at intronic AG positions), and
41 with absence of alterations (40 of them outside intronic
AG) (Figure 3 and Supplementary Table 7). Only SSF-like and
SPANR were able to identify all WT splice sites in reference
sequences for all the genes of interest.

We selected for validation, the HSF stand-alone and
the combinations HSF+SSF-like and HSF+SSF-like+MES for
5′donor sites (Supplementary Table 3), and the SSF-like alone
and the sequential MES and SSF combination for 3′acceptor
sites (Supplementary Table 4), considering sensitivity, accuracy,
MCC and NPV scores. We excluded the combinations including
SPANR or dbscSNV since they do not provide predictions on
insertions and deletions.

Overall, the in silico predictions in the validation dataset were
more accurate for variants with effects on donor splice sites than
acceptor sites (Table 3 and Figure 4). These findings were in
agreement with those results obtained with the discovery set
(Table 2).

The data analysis indicated that for 5′ donor sites the best
combinations, with 98.57% accuracy, 99.44% of sensitivity and
96.88% of NPV, are HSF+SSF-like or HSF+SSF-like+MES
(Table 3) with very slight differences in performance, between the
estimations of splicing effects for all variants (including variants
placed at invariable dinucleotides) and for the group of variants
located outside the two invariable nucleotides. For acceptor sites,
the sequential combination of MES and SSF-like (Houdayer et al.,
2012) and SSF-like stand-alone reached a performance with the
same score of accuracy, 92.65%, but SSF-like showed a highest
NPV (Table 3). Unlike the donor site, the accuracy of these
predictors decreased (to 85.29%) when the variants analyzed did
not include those at the two nucleotide invariables (AG) of the 3′
acceptor splice site (Table 3). For predictions of variants outside
these dinucleotides, the rate of false negatives showed by SSF-like
is slightly lower than those rates of MES and SSF-like sequential
combination (25% versus 28.57%, respectively, Table 3).

DISCUSSION

The use of massive parallel sequencing in clinical diagnostics is
leading to a significant increase in data and the detection of a
high number of variants of uncertain significance (VUS) with
potential effect on splicing which need interpretation. Therefore,
prediction of the effect of DNA sequence variations on splicing
using in silico tools has become a common approach. Several
studies have been published on the performance and reliability
of in silico predictions of the splicing impact of variants (Jian
et al., 2014b). Table 1 details the results obtained in these studies
and shows that the recommendations provided about the most
appropriate to be used are not concordant. However, the studies
that give clear recommendations, always include one of the HSF,
SSF, or MES programs, alternatively.

We have evaluated the reliability of in silico splicing effect
predictions of six programs (MES, HSF, SSF-like, SPANR,
NNSplice, and dbscSNV) comparing their scores with splicing
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FIGURE 3 | In vitro RNA results collected in the validation set. Experimental data are displayed according to variation location. Variants located at 0 position are
those that affect the invariable dinucleotide positions (GT or AG) plus other contiguous nucleotides. Positive splicing alterations include: exon skipping, use of a new
or cryptic splice site or an altered-alternative transcript profile. Negative splicing alteration: in vitro RNA result was exactly the same as that obtained in control
samples. Spl, splicing.

in vitro analysis outcomes of variants identified in hereditary
cancer related genes. We elaborated the study in two stages,
discovery and validation, to identify the best predictors or the
best combination for their application in routine clinical testing,
taking into account the percentages reached for sensitivity,
specificity, accuracy and NPV as well as the score of Mathews
Coefficient Correlation (MCC).

In the discovery stage, significant performance differences
were appreciated among individual tools (Table 2). For global,
as well as for 5′, and 3′ splice sites, low accuracies of SPANR and
NNSplice contrasted with the high performance achieved by SSF,
MES, and HSF, while dbscSNV demonstrated an intermediate
accuracy.

At the second stage of our study, we validated the
combinations of HSF with SSF-like or HSF+SSF-like+MES as
the highest performance for splicing aberrations at donor sites,
and SSF-like stand-alone at acceptor sites (Table 3). All these
results are in agreement with the trend observed in the previous
published results, where HSF or SSF or MES outperformed other
methods (Table 1). Of note, besides high accuracy and sensitivity,
these validated tools, combined or as stand-alone, also had high
NPV. This is relevant in a clinical setting, since it allows to
separate the variants with an extremely low or non-existent
probability of being abnormally spliceogenic from those variants
in which in vitro RNA studies are of interest, with the consequent
saving of resources in the laboratory.

All of the three predictors are available through Alamut
Visual 2.10 (Interactive Biosoftware, Rouen), allowing a high
throughput analysis, which is essential in a massive parallel
sequencing annotation pipeline. Yet, in the newest version
of Alamut Visual (2.11) the HSF predictor is not included
in its splicing module, it is freely available at Human Splice
Finder website3 or through VarAFT software4, which allows the
annotation of a large batch of variants. MES program is also freely

3http://www.umd.be/HSF3/
4https://varaft.eu/

accessible via web5,6, although caution should be taken when
obtaining predictions via Alamut or via web, since differences
have been reported (Tang et al., 2016). SSF-like tool is currently
only accessible through Alamut, yet it has been recently published
a free program named Splicing Prediction in Consensus Elements
(SPiCE7) that combines predictions from SSF-like and MES
(Leman et al., 2018). On the other hand, SPANR and dbscSNV are
free and could be easily implemented in a pipeline (Xiong et al.,
2015; Liu et al., 2017), but these tools are not able to interpret
splicing alterations caused by insertion or deletions (6.36% of
validation set variants), which represents a limitation for their use
compared to the other tools.

Non-canonical GC-AG and AT-AC sequences at the splice site
invariant positions occur in 0.56 and 0.09% of the splice site pairs,
respectively (Abramowicz and Gos, 2018). In the list of the genes
that we analyzed, only six splice sites vary from the canonical
splice site GT-AG: ATM exon 50 donor site (GC), BRCA2 exon 17
donor site (GC), MUTYH exon 14 donor site (GC), PALB2 exon
12 donor site (GC), STK11 exon 2 donor site (AT) and exon 3
acceptor site (AC). In our validation dataset, we only had variants
at atypical BRCA2 exon 17 donor site (GC), and among the
studied tools, only SSF-like and SPANR were able to identify these
atypical splicing sites and made a prediction for variants located
nearby. As the performance of SSF-like is better than SPANR, we
suggest the use of SSF-like to analyze these non-canonical splicing
sites.

The tools analyzed in this article have only been interrogated
to predict alteration at donor and acceptor splice sites. However,
alterations in RNA may be produced by variant effects on other
factors in cis (branch points, polypyrimidine tract, intronic and
exonic splicing silencers and enhancers) or create new splice sites
or activate cryptic ones. At the stage of validation, the rate of
false negative predictions is significantly higher for acceptor sites

5http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
6http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq_acc.html
7https://sourceforge.net/projects/spicev2-1/
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FIGURE 4 | Prediction performance of HSF+SSF-like for donor sites and SSF-like for acceptor sites with variants collected in the validation set. Correct prediction:
in silico and in vitro results are concordant. Incorrect prediction: in silico and in vitro results are discordant.

than for donor sites (Table 3). This difference may be due to
the greater complexity of the sequence adjacent to the 3′, with
the presence of the branch point and the polypyrimidine tract.
Therefore, variants located in these two last elements could alter
RNA and not be detected as changes in the scores of the splicing
sites computed by the predictors. For example, the variant c.1066-
6T>G at ATM (included in the validation set), which is not
predicted correctly by MES and SSF-like sequential combination
(Supplementary Table 7), alters the polypyrimidine tract causing
an aberrant transcript (Dörk et al., 2001).

Likewise, the BRCA2 exonic variant c.467A>G, located nine
nucleotides upstream from the 5′ donor site, causes the loss of
these last nine nucleotides, while the HSF and SSF-like predicts
that their scores for the native donor splice site of 88.9 and
84.5, respectively, are not changed by the variant, which it is
misinterpreted as a false negative (Supplementary Table 6).
Using some of the tools analyzed in our study to identify
enhanced cryptic sites or creation of new splice sites, the variant
is predicted to cause a new donor site at nine nucleotides from
5′, in concordance with in vitro results: SSF-like indicates a new
donor site with a score of 96.9 against 84.5 of the natural splice
site, MES 11.1 vs. 9.5 and HSF 98.2 vs. 88.9.

Furthermore, variants located in the exonic regions collected
in our study could affect enhancer elements (ESEs) leading to
an exon skipping, but they would not be correctly predicted by
the analyzed tools. Although variants with specific experimental
evidence of suffering this type of alteration were not included in
our study, most articles consulted do not explicitly describe or
exhaustively exclude the effect of ESEs. As an example, the BRCA1
c.557C>A altering splicing variant gathered at validation set is
not predicted to affect native acceptor site by SSF-like, but specific
tools to predict splicing defect caused by regulatory sequence
disruption indicates an ESE disturbance: ESRseq score of−1.567
(Ke et al., 2011) and HEXplorer 1HZEI =−30.24 (Erkelenz et al.,
2014).

Computational tools or programs able to perform predictions
on the disruption of all cis DNA elements would cover the whole
landscape of aberrant RNA splicing yielded by spliceogenic VUS.
Theoretically, SPANR is able to detect exon skipping caused by all

of the elements above mentioned, although our study indicated
that this program has a low performance for at least to predict
correctly alterations of donor and acceptor sites (Table 2). The
HSF predictor accessed via its website8, also predicts the impact
of genetic variations on branch point elements and has been
improved for the identification of natural non-canonical splice
sites (Oetting et al., 2018). The breast cancer genes PRIORS
probabilities program9, gives MES estimations of disruption of
natural splice sites and also computes the creation of new donor
and acceptor splice sites using NNSplice, yet only for BRCA1 and
BRCA2 genes (Vallée et al., 2016). However, the accuracy and
performance of SPANR, HSF, and PRIORS predictions of variants
placed in elements other than natural splice sites has not yet been
evaluated.

To our knowledge, our study is the only that evaluates the
accuracy of different tools separately for donor and acceptor sites,
resulting in different recommendations for each one with high
performance (Table 1).

One limitation of our study is the use of splicing in silico tools
through a non-free commercial program, Alamut Visual 2.10,
with the uncertainty of whether the predictions obtained through
Visual Alamut are the same as those estimated directly by the
tools in their respective free access websites. We have confirmed
that HSF via web (see footnote 8; data not shown) and MES via
SPICE (see footnote 7; Supplementary Table 8), at least for native
splice sites, provide the same estimations than those provided
by Alamut Visual 2.10. However, SSF-like predictions obtained
through Alamut Visual 2.10 slightly differ from the predictions
ascertained through SPICE (Supplementary Table 8). Therefore
and considering our findings, we recommend as a free pipeline
to use HSF accessed via web and MES via SPICE for donor and
acceptor site predictions, respectively.

Another limitation is the higher number of variants causing
splicing defects compared to the number of variants causing no

8http://www.umd.be/HSF3/
9http://priors.hci.utah.edu/PRIORS/index.php
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splicing alteration in our validation dataset. This bias is due to
a tendency to report only variants that cause splicing defects.
Some studies, in order to avoid this bias, have included common
single nucleotide polymorphisms (SNPs) from control dataset,
assuming that they do not cause alterations (Table 1). Likewise,
reports of RNA in vitro effects of variants in the two invariable
dinucleotides GT-AG are overrepresented, while those located
further from splice junctions are less frequently analyzed.

CONCLUSION

In conclusion, to perform in silico analysis of VUS potentially
affecting natural splice sites in hereditary cancer genes, we
recommend the use of the HSF+SSF-like combination (with
1-2% and 1-5% as thresholds, respectively) for donor sites
and SSF-like (1-5%) stand-alone for acceptor sites. These tools
have shown in the validation stage a high sensitivity and
especially a high NPV. Although the in vitro study of RNA
remains the gold standard to evaluate the process of splicing,
and it is not recommended to use these predictions as the
sole source of evidence to make clinical assertions (Richards
et al., 2015), our results indicate that these combined tools
can be used to filter out VUS with a very low probability of
altering splicing without losing true spliceogenic variants that
will need deeper experimental validation. Complementing the
analysis using specific predictors to identify variants that could
affect elements other than splice sites (such as branch points
or ESEs), may be useful for the screening of the whole RNA
defect landscape. Lastly, it is worth stating that (i) the aim of
this work was not to classify variants but to provide an in silico
algorithm with the highest performance to predict an altered
in vitro splicing regardless of whether the variants are benign
or pathogenic; and (ii) the detection of splicing defect does not
automatically denote the pathogenicity of the variant for which
a comprehensive qualitative and quantitative RNA analysis is
warranted as highlighted in ENIGMA10 or ACGM guidelines
(Richards et al., 2015) for variant classification.
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