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AbstrAct
Background In this study, we discovered and validated 
candidate microRNA (miRNA) biomarkers for coronary 
artery disease (CAD).
Method Candidate tissue- derived miRNAs from 
atherosclerotic plaque material in patients with stable 
coronary artery disease (SCAD) (n=14) and unstable 
coronary artery disease (UCAD) (n=25) were discovered by 
qPCR- based arrays. We validated differentially expressed 
miRNAs, along with seven promising CAD- associated 
miRNAs from the literature, in the serum of two large 
cohorts (n=395 and n=1000) of patients with SCAD and 
UCAD and subclinical atherosclerosis (SubA) and controls, 
respectively.
Result From plaque materials (discovery phase), miR- 
125b- 5p and miR- 193b- 3p were most upregulated in 
SCAD, whereas miR-223- 3p and miR-142- 3p were 
most upregulated in patients with UCAD. Subsequent 
validation in serum from patients with UCAD, SCAD, SubA 
and controls demonstrated significant upregulation of 
miR-223- 3p, miR- 133a- 3p, miR-146- 3p and miR-155- 
5p. The ischaemia- related miR-499- 5p was also highly 
upregulated in patients with UCAD compared with the 
other groups (SCAD OR 20.63 (95% CI 11.16 to 38.15), 
SubA OR 96.10 (95% CI 40.13 to 230.14) and controls 
OR 15.73 (95% CI 7.80 to 31.72)). However, no significant 
difference in miR-499- 5p expression was observed across 
SCAD, SubA and controls. MiR-122- 5p was the only 
miRNA to be significantly upregulated in the serum of both 
patients with UCAD and SCAD.
Conclusion In conclusion, miR-122- 5p and miR-223- 3p 
might be markers of plaque instability.

IntRoduCtIon
Cardiovascular disease is one of the leading 
causes of death worldwide.1 However, early 
detection of coronary artery disease (CAD) 
remains a challenge. Therefore, biomarkers 
are needed to improve prognostication and 
to individualise treatment. Nowadays, the 
risk of CAD is assessed by algorithms based 
on patients’ risk factors such as the Amer-
ican College of Cardiology/American Heart 
Association or Systematic COronary Risk 

Evaluation (SCORE) calculators.2 3 Unfor-
tunately, these risk score algorithms provide 
a poor estimate of an individual’s risk, espe-
cially in young individuals. Besides, these algo-
rithms do not take into account that CAD can 
either remain stable (SCAD) or can become 
unstable (UCAD). Although atherosclerosis is 
their common factor, SCAD and UCAD have 
completely different pathophysiology and 
outcome.4 SCAD can remain stable for many 
years and may cause cardiac complaints during 
exercise, yet it does not immediately jeopardise 
the myocardium. Whereas, in patients with 
UCAD, the atherosclerotic plaque may erode 
or even rupture and as such cause an acute 

Key questions

What is already known about this subject?
 ► Several circulating microRNAs (miRNAs) have been 
reported to differentially express between healthy 
individuals and patients with coronary artery dis-
ease (CAD).

 ► Unfortunately, none of the identified circulating 
miRNA biomarkers was strong enough to make it to 
clinical practice.

What does this study add?
 ► In this large cross- sectional study, we were able to 
show that tissue- derived miR-223- 3p and serum 
miR-122- 5p are robust and promising biomarkers 
for unstable CAD disease, possibly reflecting plaque 
instability.

 ► Besides, miR-122- 5p could also reflect an ad-
verse metabolic profile increases in the risk for 
atherosclerosis.

How might this impact on clinical practice?
 ► Existing CAD risk algorithms do not take into the ac-
count that CAD can either remain stable (SCAD) or 
can become unstable (UCAD).

 ► Therefore, these miRNAs could be helpful in risk 
prediction for (early) CAD as well as markers that 
can discriminate SCAD from UCAD.
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coronary syndrome, which can lead to loss of myocardium 
by ischaemia and eventually heart failure and/or death.5 
Therefore, for accurate cardiovascular risk prediction 
and early treatment, it is crucial to have markers that can 
discriminate SCAD from UCAD in an early phase.

miRNAs are short, non- coding RNAs that post- 
transcriptionally regulate gene expression6 by binding the 
3′ untranslated region of target gene mRNAs.7 miRNAs 
are noted as key players in modulating the function of 
endothelial cells, smooth muscle cells and macrophages, 
regulating atherosclerosis pathogenesis.8–11 They are 
ideal biomarkers since they are quite tissue- specific and 
remain stable in the blood,12 13 but an optimal performing 
biomarker should only present in the circulation in the 
diseased state and absent in healthy controls. This poses 
a problem for CAD since one would ideally need biopsy 
material to be able to investigate the most abundant 
miRNAs for CAD. Nowadays, there are a few studies on 
miRNA expression profiles in atherosclerotic plaques,8 14 15 
but because of the often small sample sizes, these studies 
are prone to bias, because of small sample errors and 
issues with reproducibility (ref: small sample size paper).

In this study, we aimed to overcome the issues of small 
sample error and reproducibility, by showing robust 
outcomes of miRNAs for either SCAD or UCAD from 
discovery to multiple validations. Explicitly this study was 
not intended to explore the mechanisms of the proposed 
miRNAs, but to explore the reproducibility of earlier 
discovered atherosclerotic plaque miRNAs, as a robust 
marker of SCAD or UCAD. We used an epidemiological 
approach using larger sample sizes and multiple valida-
tion methods, to overcome small sample errors. There-
fore, this study, on miRNA biomarkers for SCAD and 
UCAD, comprises a discovery phase, a first validation of 
the discovery phase and a second validation to be able to 
further substantiate the first validation.

MetHods
A flow chart of the distinct cohorts and their properties 
used in the discovery and validation phase of the study is 
presented in figure 1.

source populations
For our study, we made use of two different source popu-
lations A and B. In short, source population A consisted of 
patients who underwent a percutaneous coronary inter-
vention, electively or because of acute coronary syndrome. 
Source population B consisted of serum samples from a 
biobank of patients with premature atherosclerosis and 
their ‘healthy’ family members. From these two source 
populations, we selected three study populations (a, b 
and c). For details on source and study populations, see 
online supplementary methods.

study populations
Discovery cohort
The discovery cohort a (n=39) consisted of patients with 
an acute coronary syndrome (UCAD group; n=25; Aa) or 

stable angina (SCAD group; n=14; Aa) from whom tissue 
of either thrombectomy or atherectomy material from 
coronary angiography was available. Further detailed 
information on tissue collection is described in online 
supplementary methods.

First validation cohort
The first validation cohort b (n=395) consisted of patients 
with an acute coronary syndrome (UCAD group; n=64; 
Ab), or stable angina (SCAD group; n=139; Ab) and 
controls (control; n=192; Bb). Controls did not have any 
detectable atherosclerosis as indicated by an Agatston 
coronary artery calcium (CAC) score of 0 determined by 
coronary CT scan.

Second validation cohort
The second validation cohort c (n=1000) consisted of 
patients with an acute coronary syndrome (UCAD group; 
n=250; Ac), or patients with a history of CAD, without 
cardiac complains (SCAD group; n=250; Bc), or patients 
with subclinical atherosclerosis, as indicated by a CAC 
score of ≥1, without cardiac complains (SubA group; 
n=250; Bc) and controls with a CAC score of 0 (control; 
n=250; Bc).

Blood withdrawal
Serum samples were drawn before the administration of 
heparin and were stored in cryovials at –80°C as described 
in online supplementary methods.

Selection of candidates for the first validation phase
Tissue- derived miRNAs from the discovery cohort were 
ranked, as described in online supplementary methods, 
for the first validation candidate selection.

Selection of miRNAs for the second validation phase
To be able to show the robustness of our results, we 
decided to revalidate these results in a second valida-
tion phase. The first validation phase showed that miR- 
125b- 5p, miR-223-3 p, miR-142-3 p and miR- 193b- 3p could 
be promising biomarkers for either stable or unstable 
cardiovascular disease. These miRNA together with the 
most promising miRNA biomarkers for cardiovascular 
disease published, namely miR- 133a- 3p, miR-146-3 p, 
miR-126-3 p, miR-145-5 p, miR-155-5 p and miR-122-5 p, 
were measured in the second validation phase. For the 
literature miRNAs, we conducted a literature search and 
selected all miRNAs that were consistently upregulated 
or downregulated in more than two studies.9 16–19 To be 
able to differentiate whether the candidate miRNAs were 
due to ischaemia, we also added an ischaemia- related 
miR-499–5 p to our panel.20

RNA isolation and quantification of miRNAs by RT-qPCR
Procedure on RNA isolation, complementary DNA 
synthesis, quantification, RT- qPCR data handling, and 
normalisation are described in online supplementary 
methods.

https://dx.doi.org/10.1136/openhrt-2019-001223
https://dx.doi.org/10.1136/openhrt-2019-001223
https://dx.doi.org/10.1136/openhrt-2019-001223
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https://dx.doi.org/10.1136/openhrt-2019-001223
https://dx.doi.org/10.1136/openhrt-2019-001223
https://dx.doi.org/10.1136/openhrt-2019-001223
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Figure 1 Flow chart of the study outline. miRNA, microRNA; SCAD, stable coronary artery disease; SubA, subclinical 
atherosclerosis; UCAD, unstable coronary artery disease.

Biochemical parameters
Liver enzymes and lipids were measured as described in 
the online supplementary methods.

Coronary CT scan
Coronary artery CT scan was performed as described in 
the online supplementary methods.

Patient and public involvement
It was not appropriate or possible to involve patients or 
the public in the design, conduct, reporting, or dissemi-
nation plans of our research.

statistical analysis
Baseline characteristics are expressed as mean±SD for 
continuous variables and number (%) for dichotomous 
variables, except when indicated otherwise. Analysis of 
variance with post hoc Student’s t- test, Mann- Whitney U 
test and Fisher’s exact test was used to calculate differences 
in baseline characteristics as appropriate. In the discovery 
phase, T- tests were used to calculate differences in array 
expression which were expressed in a mean difference of 

normalised Cq values. P values of the qPCR- based array 
were Benjamini- Hochberg corrected for multiple testing. 
In the validation phase, logistic regression was used to 
analyse the differences in miRNA expression between 
the SCAD, UCAD and the control group expressed as 
normalised log- transformed starting concentrations (N0) 
as calculated by LinRegPCR.21 In the validation cohort, 
multivariate analyses were performed on two different 
models to adjust for age and gender. All statistical anal-
yses were performed using SPSS for Windows V.23. A p 
value <0.05 was considered to be statistically significant.

Results
discovery phase
qPCR-based miRNA array on tissue samples
The clinical characteristics of the discovery cohort are 
shown in table 1. Of the 742 measurable tissue- derived 
miRNAs, 125 qualified for reliable analysis as described 
in the ‘Methods’ section and were included in the anal-
ysis. In total, 54 tissue- derived miRNAs were significantly 

https://dx.doi.org/10.1136/openhrt-2019-001223
https://dx.doi.org/10.1136/openhrt-2019-001223
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Figure 2 Expression levels of microRNAs (miRNAs) upregulated in SCAD (miR- 125b- 5p and miR- 193b- 3p). Normalised 
expression levels are shown for both the discovery and the validation experiments. Expression levels of miR- 125b- 5p (A) and 
miR- 193b- 3p (D) in both atherectomy (SCAD, n=14) and thrombectomy material (UCAD, n=25) were determined by qPCR- 
based array in the discovery experiments. In the first validation phase, log- transformed expression levels of miR- 125b- 5p 
(B) and miR- 193b- 3p (E) were determined by serum qPCR measurement in patients with UCAD (n=64), SCAD (n=139) and 
controls (n=192). In the second validation phase, log- transformed expression levels of miR- 125b- 5p (C) and miR- 193b- 3p (F) 
were determined by serum qPCR in patients with UCAD (n=250), SCAD (n=250), SubA (n=250) and controls (n=250). Statistical 
analyses in the validation phases were corrected for age and gender. More detailed information on expression level differences 
is found in online supplementary table 3 (first validation) and online supplementary table 5 (second validation). SCAD, stable 
coronary artery disease, SubA, subclinical atherosclerosis (ie, coronary calcium score ≥1 on coronary CT scan); UCAD, 
unstable coronary artery disease. *P<0.05, **p<0.01.

upregulated in SCAD compared with UCAD and 50 
tissue- derived miRNAs were significantly upregulated in 
UCAD compared with SCAD. For expression levels of all 
tissue- derived miRNAs, see online supplementary table 1.

The top three most upregulated tissue- derived miRNAs 
in SCAD were miR- 125b- 5p (mean diff: 5.94), miR-455-3 p 
(mean diff: 5.66) and miR- 193b- 3p (mean diff: 5.66) and 
in UCAD were miR-223-3 p (mean diff: 2.55), miR-142-3 p 
(mean diff: 2.24) and miR-126-5 p (mean diff: 1.77).

Of these tissue- derived miRNAs, miR-455-3 p and 
miR-126-5 p could not be measured in serum. For 
miR-455-3 p, the expression level was undetectable and 
for miR-126-5 p the cDNA synthesis failed and there was 
not enough material to repeat the analyses. Therefore, 
four out of the six candidate tissue- derived miRNAs were 
validated: miR- 125b- 5p, miR- 193b- 3p, miR-223-3 p and 
miR-142-3 p.

First validation
Multivariate analysis of the four candidate tissue-derived miRNAs 
in serum
Clinical characteristics of validation cohort 1 are shown in 
table 1. We performed a multivariate analysis correcting 
for age and gender, in the first validation. We were able 

to validate, in serum, all four candidate tissue- derived 
miRNAs observed in our discovery experiment against 
controls. We were able to show that miR- 125b- 5p (OR 
2.09, 95% CI 1.30 to 3.36), miR- 193b- 3p (OR 1.41, 95% CI 
1.00 to 2.00), miR-223-3 p (OR 1.61, 95% CI 1.20 to 2.15) 
and miR-142-3 p (OR 1.38, 95% CI 1.05 to 1.82) (figures 2 
and 3 and online supplementary table 3) were signifi-
cantly upregulated in patients with SCAD as compared 
with controls. On the other hand, we were only able to 
validate the difference in SCAD versus UCAD for miR- 
125b- 5p (OR 1.64, 95% CI 1.09 to 2.48). On the other 
hand, there was a slight non- significant higher expression 
of miR- 193b- 3p in SCAD as compared with UCAD, similar 
as observed in the discovery experiment. In addition, for 
patients with UCAD miR-223-3 p (OR 2.38, 95% CI 1.41 to 
4.01) and miR-142–3 p (OR 1.62, 95% CI 1.12 to 2.35) also 
showed a significant difference with controls. Combined, 
these results suggest that all four tissue- derived miRNAs 
could be validated in serum and might serve as markers 
for the presence of coronary atherosclerosis and to a 
lesser extent, miR-223-3 p might serve as a marker for 
UCAD.

https://dx.doi.org/10.1136/openhrt-2019-001223
https://dx.doi.org/10.1136/openhrt-2019-001223
https://dx.doi.org/10.1136/openhrt-2019-001223
https://dx.doi.org/10.1136/openhrt-2019-001223
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Figure 3 Expression levels of microRNAs (miRNAs) upregulated in UCAD (miR-223-3 p, miR-142-3 p). Normalised expression 
levels are shown for both the discovery and the validation experiments. Expression levels of miR-223-3 p (A) and miR-142-3 p 
(D) in both atherectomy (SCAD, n=14) and thrombectomy material (UCAD, n=25) were determined by qPCR- based array in 
the discovery experiments. In the first validation phase, log- transformed expression levels of miR-223-3 p (B) and miR-142-3 p 
(E) were determined by serum qPCR measurement in patients with UCAD (n=64), SCAD (n=139) and controls (n=192). In the 
second validation phase, log- transformed expression levels of miR-223-3 p (C) and miR-142-3 p (F) were determined by serum 
qPCR in patients with UCAD (n=250), SCAD (n=250), SubA (n=250) and controls (n=250). Statistical analyses in the validation 
phases were corrected for age and gender. More detailed information on expression level differences is found in online 
supplementary table 3 (first validation) and online supplementary table 5 (second validation). SCAD, stable coronary artery 
disease; SubA, subclinical atherosclerosis (ie, coronary calcium score ≥1 on coronary CT scan); UCAD, unstable coronary 
artery disease. *P<0.05, **p<0.01.

second validation
The previous data imply that the discovered tissue- derived 
miRNA markers can also detect the presence of athero-
sclerosis in the serum of these patients. Since circulating 
miRNA biomarkers for the disease are often not being 
replicated in other studies, we deemed it necessary to try 
and replicate this finding ourselves in a second, larger 
cohort. Besides, for replication purposes, we added 
miRNAs from the literature which were suggested to be 
associated with CAD.

Multivariate analysis of the candidate miRNAs from the second 
validation study
The clinical characteristics of the validation cohort 
are shown in table 1. In our second validation study, in 
which we did a multivariate analysis correcting for age 
and gender, we were able to validate, in serum, one out 
of the four candidate tissue- derived miRNAs identified 
from our discovery experiment. MiR-223-3 p was signifi-
cantly upregulated in the UCAD group compared with 
controls (OR 13.92 (95% CI 7.29 to 26.57) and patients 
with SCAD (10.75 (95% CI 6.46 to 17.89); figure 3 and 
online supplementary table 5). This miRNA was also 
significantly upregulated when compared with patients 

with SubA (OR 12.75 (95% CI 7.42 to 21.91). Concerning 
the other candidate miRNAs from the discovery experi-
ment, miR-142-3 p showed an opposite effect, namely a 
significant downregulation as compared with controls 
(OR 0.90 (95% CI 0.75 to 1.07)) and patients with SubA 
(OR 0.83 (95% CI 0.72 to 0.96)) when compared with 
patients with UCAD.

Multivariate analysis of the candidate miRNAs from literature
Age- corrected and gender- corrected multivariate analysis 
of the CAD- related miRNAs from the literature (figure 4, 
online supplementary table 5) showed an elevated expres-
sion, in serum, in patients with UCAD of miR-122-5 p, 
miR-146-3 p and miR-155-5 p with all other subgroups 
(OR and 95% CI, online supplementary table 5). On the 
other hand, miR-145-5 p was significantly downregulated, 
in serum, in patients with UCAD as compared with the 
other subgroups. Furthermore, miR-122-5 p was signif-
icantly upregulated in patients with UCAD versus the 
other groups, and patients with SCAD as compared with 
both SubA OR 1.38 (95% CI 1.07 to 1.77) and controls 
OR 1.45 (95% CI 1.09 to 1.93). The ischaemia- related 
miR-499-5 p was also highly upregulated in patients with 
UCAD compared with the other patient groups (SCAD 

https://dx.doi.org/10.1136/openhrt-2019-001223
https://dx.doi.org/10.1136/openhrt-2019-001223
https://dx.doi.org/10.1136/openhrt-2019-001223
https://dx.doi.org/10.1136/openhrt-2019-001223
https://dx.doi.org/10.1136/openhrt-2019-001223
https://dx.doi.org/10.1136/openhrt-2019-001223
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Figure 4 MicroRNA (miRNA) expression levels of atherosclerosis- related miRNAs from literature. Graphs show log 
transformed and normalised concentrations of miR-122-5 p (A), miR126- 3p (B), miR133a- 3p (C), miR145- 5p (D), miR-146-3 p 
(E), miR-155-5 p (F) and miR-499-5 p (G). SCAD, stable coronary artery disease; SubA, subclinical atherosclerosis (ie, coronary 
calcium score >0 on coronary CT scan); UCAD, unstable coronary artery disease. *P<0.05.
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Table 2 AUC for ROC curve for SCAD compared with 
controls

Model AUC

Model I

  Age and gender 0.79

Model II

  miR-122-5 p 0.63

Model III

  miR-223-3 p 0.50

Model IV

  Age and gender+miR-122- 5p+miR-223-3 p 0.80

AUC for ROC curve for UCAD compared with controls

Model I

  Age and gender 0.88

Model II

  miR-122-5 p 0.90

Model III

  miR-223-3 p 0.76

Model IV

  Age and gender+miR-122- 5p+miR-223-3 p 0.96

AUC, area under the curve; ROC, receiver operating 
characteristic.

OR 20.63 (95% CI 11.16 to 38.15), SubA OR 96.10 (95% 
CI 40.13 to 230.14)) and controls OR 15.73 (95% CI 7.80 
to 31.72) and might indicate that most of the miRNAs 
that are upregulated in the patients with UCAD reflect 
acute ischaemia. Indeed, this could be the case for all 
miRNAs upregulated in patients with UCAD, except for 
miR-122-5 p, which was also upregulated in patients with 
SCAD. If the upregulation of miR-122-5 p in patients with 
UCAD would be an indication for acute ischaemia, this 
would mean that patients with SCAD with an upregu-
lated miR-122-5 p would have acute ischaemia, although 
they did not have any complaints. Since miR-499-5 p was 
only upregulated in UCAD and not in SCAD, this seems 
unlikely. Furthermore, in a linear regression model, no 
significant association was noticed between hsTnI and 
miR-122-5 p (data not shown).

Finally, we also performed a receiver operating 
characteristic analysis in which we were able to show 
that miR-122–5 p and miR-223–3 p when considered 
together in a model that identified SCAD and UCAD 
with an area under the curve of 0.80 and 0.96, respec-
tively (table 2).

To conclude, the second validation, miR-122-5 p, 
miR-146-3 p, miR-155-5 p and miR-145-5 p could be 
promising markers for unstable CAD. Besides, since 
miR-122-5 p was also significantly upregulated in SCAD 
as compared with controls, this miRNA could also be a 
promising marker for atherosclerotic disease.

To substantiate that our findings are not merely due 
to chance, we wanted to show that at least one of these 

miRNAs showed similar results as expected from the 
literature. Mir-122-5 p is known to be a liver- specific 
miRNA. Therefore, we expect that elevated miR-122-5 p 
is associated with increased liver enzymes. We observed 
a significant positive correlation with increasing 
levels of miR-122-5 p with gamma- glutamyltransferase 
(gamma- GT) β 0.08 (95% CI 0.06 to 0.09; p<0.001) and 
ALAT β 0.05 (95% CI 0.03 to 0.06; p<0.001). Besides, we 
also observed that gamma- GT and ALAT were signifi-
cantly elevated in SCAD (mean±SD; for gamma- GT 
35.5±1.9 U/L; ALAT 30.5±1.6 U/L) as compared with 
SubA (gamma- GT 27.7±1.7 U/L; ALAT 25.1±1.5 U/L, 
p<0.05) and controls (gamma- GT 23.0±1.8 U/L; ALAT 
22.8±1.5 U/L, p<0.05). Concerning the patients with 
UCAD, only gamma- GT (34.9±1.6 U/L) was significantly 
elevated as compared with SubA (27.7±1.7 U/L, p<0.05) 
and controls (23.0±1.8 U/L, p<0.05).

dIsCussIon
In this study, we were able to show that tissue- derived 
miR-223-3 p and serum miR-122-5 p are robust and prom-
ising biomarkers for unstable CAD disease, possibly 
reflecting plaque instability. Besides, miR-122-5 p could 
also reflect an adverse metabolic profile increases 
the risk for atherosclerosis. The miRNAs miR-146-3 p, 
miR-155-5 p and miR-145-5 p might also be able to iden-
tify unstable CAD, however, the data were less robust, 
especially miR-233-3 p seems a promising biomarker 
for individuals at risk for an acute coronary syndrome. 
MiR-122-5 p could be used to identify individuals with 
an adverse metabolic profile, such as insulin resistance 
at risk for unstable CAD.

This study does not aim to unravel the biochemical 
process underlying these candidate miRNAs but merely 
tries to robustly show the epidemiological evidence that 
they are promising biomarkers. We show that miR-223-3 p 
both in tissue and in serum as well as in multiple inde-
pendent cohorts show similar results. Many investigators 
have shown the relation between plaque- derived miRNAs 
or serum miRNAs in relation to CAD, but most of this 
research fails when it comes to validation, because of 
small sample errors and change finding. We managed to 
improve our miRNA measurement and analytical tech-
niques as such22 that we were able to robustly validate the 
findings of miR-223-3 p. We only show that miR-223-3 p 
is related to the acute phase of CAD, while others have 
shown that miR-223-3 p could be released from vascular 
endothelial cells23 24 and that it might play a role in endo-
thelial cell dysfunction, atherosclerotic lesion initiation, 
progression and possibly plaque rupture.25 26 Therefore, 
miR-223-3 p and maybe also miR-122-5 p, might originate 
from plaque tissue and directly reflect damaged endo-
thelial cells of the plaque, on the edge of rupture. On 
the other hand, miR-122-5 p was the only miRNA that 
was also upregulated in SCAD. Therefore, miR-122-5 p 
might rather be a marker of the atherosclerotic process 
or even the unfavourable metabolic profile underlying 
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atherosclerosis. In line with these results, Niculescu et al 
also found a significant upregulation of miR-122-5 p in 
patients with stable and unstable angina compared with 
controls.27 Besides, we were able to confirm the relation-
ship of miR-122-5 p as a highly conserved liver miRNA 
regulating lipid metabolism28 29 and has been associated 
with liver diseases such as metabolic syndrome and type 
2 diabetes, major risk factors for atherosclerosis. Its eleva-
tion among both the patients with SCAD and UCAD 
might reflect underlying liver pathology such as hepatic 
steatosis, which is related to atherosclerosis,30 31 but we did 
not investigate this. Whether miR-122-5 p has a direct or 
indirect effect on atherosclerosis is still unknown, since it 
has also been suggested that miR-122-5 p is released from 
both the liver and endothelial cells.32 33

strengths and limitations
One might argue that our findings are contradictory to 
the claim the studies make, we selected our candidate 
literature miRNAs from. Namely, these studies claim to 
have investigated miRNAs related to SCAD instead of 
UCAD. On the other hand, the cohorts we selected our 
candidate literature miRNAs from, did not truly represent 
SCAD. In some of these cohorts, blood was drawn at the 
time that these patients had complaints of angina27 34–36 
and interestingly, in one of these studies, CK- MB and 
troponin levels were even higher in the group of SCAD 
as compared with the group with UCAD.34 On the other 
hand, one might argue that also in our study, these 
markers simply reflect acute ischaemia, since blood was 
taken in the acute phase of an acute coronary syndrome. 
For most of our candidate miRNAs, this might very well 
be true, since miR-223,37 38 miR- 133a- 3p,20 miR-146- 3p27 39 
and miR-155- 5p39 are known to be related to myocar-
dial damage as could be shown by an elevation in the 
ischaemia markers miR-499-5 p and hsTnI levels. On the 
other hand, miR-122-5 p was apart from its upregulation 
in patients with UCAD also upregulated in patients with 
SCAD, and could not simply reflect ischaemia, since 
the miRNA-499-5 p and hsTnI levels were low in these 
patients.

Another limitation of our study is that the discovery 
phase was a comparison between miRNAs of plaque tissue 
of patients with SCAD and UCAD and not compared with 
the healthy vessel wall of controls. This is not possible, 
but on the other hand, this unique set- up is able to iden-
tify markers of plaque instability in a background of 
atherosclerosis. Regarding miR-223-3 p, this was the only 
miRNA that could be validated from the discovery phase, 
and might, therefore, reflect a true marker of plaque 
instability.

Most miRNAs form the discovery phase and could 
not be validated in the validation cohorts. This could be 
because miRNAs concentration is much higher in tissue 
as compared with blood and that the level in the circu-
lation, although this might be higher as compared with 
controls, could still be too low to measure it reliably. If 
the lack of validation was due to technical differences in 

the measuring method, none of the miRNAs could have 
been measurable in the validation cohorts, which was not 
the case.

Another limitation comes from the fact that we used 
different source populations. Therefore, samples might 
differ, since they were handled differently and since the 
age of the source populations were different. We do not 
think this has affected the outcomes substantially since 
the expression levels of miR-125-5 p, miR-193-3 p and 
miR-126-3 p were quite similar among all the four groups. 
Besides, miRNAs are known for their stability. Therefore, 
longer storage times or slightly different handling of the 
samples are unlikely to affect miRNA expression levels. 
Finally, our data handling protocol takes into account 
technical differences.

One of our major strengths is that miRNA data 
handling is extremely thorough and handles missing 
values and technical difficulties in a systematic way, 
leading to more robust results.40 For instance, all miRNAs 
were measured in triplicates and interplate variance was 
taken into account as an extra normalisation procedure 
by the second validation study. Besides, normalisation 
was performed taking into account three endogenous 
miRNAs as well as two technical normalisers. Further-
more, extra quality checks were carried out by a prespec-
ified data handling pipeline, which has been shown to 
increase both accuracy and precision when analysing 
circulating miRNAs.40 We think that the robust methods 
and large sample sizes used in this study make this one 
of the most extensive circulating miRNA studies in the 
cardiovascular research field so far. Moreover, the differ-
ences in miRNA expression between the multiple valida-
tion phases underscore the small sample error issues that 
circulating miRNA research often encounters and under-
scores the robustness of the miRNAs that could indeed 
be validated. Also in our study, validation of previous 
findings was difficult. In contrast, we were able to confirm 
most of the literature picked candidate miRNAs and we 
showed a consistent upregulation of miR-223-3 p from 
discovery to second validation, again underscoring the 
robustness of the results in this study.

Finally, we would like to emphasise that we did not 
include speculations on the mechanism since we believe 
many other studies are prone to small sample error and 
therefore, the quality and robustness of many experi-
mental small miRNA studies is questionable. For true 
mechanistic investigations, animal experiments are the 
preferred method thereafter to be validated in sufficiently 
large enough human studies. Therefore, this study was 
planned as a clinical study investigating biomarkers for 
UCAD.

ConClusIons
In conclusion, miR-223-3 p was the only miRNA that 
could be validated in both the validation cohorts and 
seems a promising marker for UCAD. Furthermore, 
miR-122-5 p and miR-223-3 p might even be markers 
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of plaque instability and miR-122-5 p could also reflect 
an adverse metabolic profile that increases the risk for 
atherosclerosis.
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