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ABSTRACT
Immunotherapies are a major breakthrough in oncology, 
yielding unprecedented response rates for some cancers. 
Especially in combination with conventional treatments or 
targeted agents, immunotherapeutics offer invaluable tools 
to improve outcomes for many patients. However, why not 
all patients have a favorable response remains unclear. 
There is an increasing appreciation of the contributions 
of the complex tumor microenvironment, and the tumor- 
immune ecosystem in particular, to treatment outcome. 
To date, however, there exists no immune biomarker 
to explain why two patients with similar clinical stage 
and molecular profile would have different treatment 
outcomes. We hypothesize that it is critical to understand 
both the immune and tumor states to understand how 
the complex system will respond to treatment. Here, 
we present how integrated mathematical oncology 
approaches can help conceptualize the effect of various 
immunotherapies on a patient’s tumor and local immune 
environment, and how combinations of immunotherapy 
and cytotoxic therapy may be used to improve tumor 
response and control and limit toxicity on a per patient 
basis.

SIMPLE MODEL OF TUMOR–IMMUNE DYNAMICS
To effectively use cancer immunotherapies, 
either alone or in combination with other 
treatment approaches, it is necessary to 
understand the dynamics of tumor–immune 
interactions and how the different treatment 
approaches perturb these dynamics. This 
involves the consideration of the immune 
state of a given patient. Just like early- stage 
cancers are treated differently than late- stage 
disease, tumors with different degrees of 
immune involvement may need very different 
therapeutic approaches.1 2 The tools of math-
ematical oncology provide a logical, abstract 
framework to decipher the immunotherapy 
numbers game, wherein the response to 
immunotherapy, and therefore patient 
outcomes, critically depends not only on the 
number of tumor cells, and/or the presence 
of appropriate immune markers (eg, PD- L1, 
etc), but rather on the relative numbers of 
the tumor and relevant immune populations.

In its most abstract simplification, we could 
assume a homogeneous tumor cell popula-
tion that expresses a tumor- specific antigen 
and is susceptible to recognition and elimina-
tion by cancer- specific immune effector cells.3 
Without infiltrating immune cells, tumor cells 
will grow unchecked. Conversely, without 
cancer cells, cancer- specific immune cells 
will decline in numbers. It is conceivable that 
when a million tumor cells are confronted 
by a single immune effector cell, the tumor 
will escape immune surveillance. The 
inverse scenario, when a single tumor cell is 
surveilled by a million immune effector cells, 
results in immune- mediated tumor elimina-
tion. Between these two extremes, there are 
many combinations of population numbers 
that lead either to immune exhaustion and 
tumor growth or tumor eradication—two of 
the three E’s of immunoediting.4 At inter-
mediate numbers, there may be complex 
dynamics that lead to prolonged coexistence 
of both populations, which provides coexis-
tence or tumor–immune equilibria, the third 
immunoediting E.

All possible combinations of tumor and 
immune population numbers and their 
non- linear interactions can be described 
with a mathematical model that simulates 
the number of tumor cells and the number 
of immune cells over time (figure 1A). We 
assume that the tumor cells follow logistic 
growth and can be eliminated at a certain 
rate via interaction with immune effector 
cells. Additionally, immune effector cells 
enter the system through recruitment by 
tumor cells and through a constant back-
ground influx, while they are eliminated 
through immune exhaustion through 
interaction with tumor cells and back-
ground clearance proportional to the 
number of effector cells in the system.3 
In this system, any combination of initial 
tumor and immune cell numbers leads to 
one of two distinct outcomes (figure 1B): 
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immune escape, where the tumor cells grow to the 
carrying capacity, while the effector cells decay to a 
negligible number (red and pink trajectories), or 
immune- mediated tumor control, where the tumor 
and effector cells follow oscillatory dynamics, similar to 
predator–prey dynamics,5 that result in low tumor cell 
numbers (green trajectories). These dynamics can also 
be visualized on a phase plane, that is, the temporal 
evolution of tumor and immune cell numbers plotted 
against each other (figure 1C). This visualizes the sepa-
ration of the two outcomes, tumor escape and tumor 
elimination, based on the numbers of the respective 
populations and the rate constants of their interac-
tions. The boundary between the two outcome regions 
is called a separatrix. A population of any combina-
tion of tumor cells and immune effector cells on the 

left- hand side of the separatrix supports tumor growth, 
whereas tumor–immune population combinations on 
the right- hand side of the separatrix yield transient 
oscillatory dynamics and ultimately immune- mediated 
elimination of tumor cells over time.

EFFECTS OF TREATMENT ON THE TUMOR–IMMUNE DYNAMICS
Cytotoxic treatments
Most patients will present in the clinic with a tumor–
immune ecosystem composition on the left- hand 
side of the separatrix with a growing tumor that 
outcompetes the immune system. Many cancer ther-
apies alter the absolute number of both tumor cells 
and immune effector cells, and the post- treatment 
location of a patient within this phase plane may 

Figure 1 Tumor–immune interactions in a simplified system. (A) Ordinary differential equation representation of a simple model 
of tumor–immune effector cell interactions, which represents the change in number of tumor cells (Ṫ) and immune effector cells 
(Ė) over time. (B) Plots of tumor cells and immune effector cells over time for two initial conditions where the tumor evades the 
immune cells (red and pink) and two where the tumor is controlled by the immune population (green and light green). (C) Phase 
plane representation of the system with trajectories shown for the same four initial conditions from panel B. The gray vector 
field in the background depicts the instantaneous direction of the dynamical system for the respective tumor- immune states; 
the blue dashed curve is the separatrix between the two basins of attraction (immune evasion and immune escape). (D and 
E) Conceptual schematic of the disparate effects of cytotoxic therapies (D) and adoptive cell transfer (E) on the tumor–immune 
system.
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determine the ultimate response and outcome to the 
particular therapy. Surgery and cytotoxic therapeu-
tics like chemotherapy and radiotherapy have histor-
ically focused on complete tumor burden reduction, 
which would translate to a vertical downwards shift 
in the phase plane. However, most chemotherapies 
indiscriminately kill both cancer and immune effector 
cells, although at different rates,6 which translates to 
a downward- left shift towards the (0,0) origin of the 
cancer–immune phase plane (figure 1D). In contrast, 
the effect of radiotherapy is more nuanced. Despite 
being used traditionally as a local cytotoxic thera-
peutic, there is an increasing appreciation of the local 
and systemic immunological consequences of radia-
tion. Due to high inherent radiosensitivity, immune 
effector cells within the irradiated area die at high 
numbers.7 Thus, in the short term, radiation would 
induce a downward- left shift. Immunostimulatory 
radiation schemas would yield a subsequent shift to 
the right towards larger immune numbers. However, 
immunostimulatory and immunosuppressive radiation 
properties are likely dose and dose fractionation as 
well as tumor site specific.8

Cell-based immunotherapies
Adoptive cell transfer (ACT) increases the absolute 
immune effector population, shifting patients to the 
right horizontally within the phase plane (figure 1E). 
This may, for some patients, induce a shift towards 
the phase plane region of immune- mediated tumor 
control and thus boost the number of immune effector 
cells to overwhelm and control the tumor. Despite 
challenges inherent to ACT production and signifi-
cant treatment- associated toxicities, response rates are 
approximately 50% for some cancers.9 This indicates 
that some patients successfully cross to the right- hand 

side of the separatrix with ACT treatment, while the 
induced shift may be insufficient to achieve tumor 
control for others.

Immune-checkpoint inhibitors
In contrast to both cytotoxic therapeutics and ACT, 
immune checkpoint inhibitors (ICIs) would affect the 
system by changing the nature of the population inter-
actions, rather than directly changing the size of either 
population. In the language of our dynamical system, 
this changes the ‘landscape’ of the interaction due to an 
increase in the killing efficiency of the immune effector 
cells.10 Anti- PD- 1 therapies enhance the antitumor effect 
of the immune effector response, which would result in 
fewer immune cells being able to kill larger numbers of 
cancer cells, while anti- CTLA- 4 therapies increase the 
proliferation rate of the effector cells. In the context of 
our dynamical system, we may imagine that there are 
many possible starting tumor–immune states that would 
result in clinical presentation of a tumor (figure 2A) and 
that both anti- PD- 1 and anti- CTLA- 4 change the under-
lying system dynamics, which moves the phase plane 
separatrix leftwards, thereby increasing the set of tumor–
immune number combinations that lead to tumor control 
(figure 2B). This suggests that among patients with clini-
cally presenting tumors, only the subset of patients within 
this ‘reclaimed’ region of the phase plane prior to therapy 
would be controlled by ICIs alone—a visualization consis-
tent with the modest effect of ICIs on increasing the 
antitumor function of immune effector cells and the 
relatively low response rates seen in trials of ICIs.11 In a 
similar fashion, the effects of other immunotherapies 
such as oncolytic virotherapy, dendritic cell vaccines, or 
immune system modulators such as interleukins would 
either shift patients horizontally to the right, or shift the 

Figure 2 Model realizations of immune checkpoint inhibitor (ICI) therapy. (A) Examples of potential tumor–immune states 
resulting in immune- escaped tumors, where each circle represents different possible pretreatment states for individual patients. 
(B) Depiction of the effect of ICI therapy shifting the separatrix between the regions of tumor control and escape. Patients 
who would benefit from ICI therapy (green circles) due to their tumor–immune state in the ‘reclaimed region’ and those that 
would not (red circles). The ICIs induced ‘reclaimed region’ of tumor control is indicated in light green shading. (C) Potential 
combination therapy routes for patients that would not experience tumor control from ICI therapy alone.
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separatrix to the left, increasing the set of tumor- immune 
combinations that may lead to tumor control.

Combination therapies
This abstraction allows us to conceptualize how cytotoxic 
and immune- modulating therapies may be rationally 
combined to leverage an individual patient’s tumor–
immune state towards immune- mediated tumor control 
(figure 2C). For example, a patient for whom ICI therapy 
alone is insufficient to achieve tumor control may benefit 
from the addition of an ACT and/or neoadjuvant chemo-
therapy or radiation. For patients with multiple viable 
treatment options, the (combination) therapy that yields 
the shortest path across the separatrix may be the optimal, 
least toxic approach. For example, rather than a large 
cytotoxic dose of chemotherapy or radiation, a smaller 
cytotoxic dose combined with an ICI treatment may be 
used to push the tumor–immune state over the separa-
trix, where the antitumor immune cells can take over and 
drive cancer to extinction. Additionally, emerging therapy 
options that have both cytoreductive and immunostimu-
latory properties, such as stereotactic body radiotherapy 
or photodynamic therapy, may enable such moves in the 
phase space. Thus, understanding the tumor–immune 
dynamics may allow us to increase response and reduce 
treatment- associated toxicities for individual patients and 
improve outcomes for the patient population as a whole.

Of course, tumor–immune dynamics are much more 
complex than the simple model presented here. A more 
complex model could account for the effect of regulatory 
immune cells among other factors12 that will then span 
a three- dimensional space with the separatrix becoming 
a curved surface separating tumor control and escape. 
Further complicating matters are the evolutionary 
dynamics of tumor adaptations to treatments and immune 
predation, yielding a time- varying separatrix and an ever- 
moving target. Additional dimensions and nuances will 
likely need to be incorporated moving forward. Even 
though chemotherapies and radiotherapy have tradi-
tionally been considered mainly cytotoxic, their impact 
on the immune system—both immune kill and immune 
stimulation—is well known and needs to be considered 
in modeling and harnessing tumor–immune dynamics.13

Additionally, the nature of the parameters underlying 
such mathematical models need to be considered care-
fully. For instance, the underlying assumptions that all 
immune effector cells within the tumor immune micro-
environment are cancer specific and can recognize 
cancer cells due to sufficient major histocompatibility 
class 1 expression levels are not always true. However, the 
relaxing of these assumptions can be allowed for via the 
adjustment of the cytotoxicity and efficacy parameters 
within the model, or via the addition of additional param-
eters describing heterogeneous tumor and immune popu-
lations. In addition, the expansion of T cells following the 
recognition of tumor- associated mutations can easily be 
incorporated into the existing model. The exact shape 
and location of the separatrix are highly dependent on 

the model parameters, which may themselves be specific 
to a particular cancer site, cancer type or even unique for 
every patient.

CLINICAL TRANSLATABILITY
For this type of quantitative modeling to be translated 
into the clinic and applied to predict response to treat-
ment and recommend optimal, patient- specific therapies, 
there must be systematic characterization and measure-
ment of the model parameters. Additionally, a method 
to measure a patient’s tumor–immune state must be 
developed before a model of tumor–immune dynamics 
can be applied. The tumor state may be approximated by 
measurements of tumor stage or size, while new metrics 
may be needed to determine the immune state. There are 
already some promising metrics using sequencing12 14 15 
or imaging16 that could be leveraged for this purpose. If it 
is possible to assess a patient’s tumor–immune state over 
time, either through serial radiology imaging or solid/
liquid biopsies, we may begin to understand how a patient 
moves in the tumor–immune phase space in response 
to a particular therapy. This could ultimately lead to a 
dynamic staging of the disease and pave the way for an 
era of response- informed adaptive therapies.

Many of the biological and clinical factors are yet to 
be fully studied and characterized in order to appropri-
ately calibrate and validate this or any model of tumor–
immune dynamics.17 It may even be possible to calibrate 
model parameters for individual patients to strengthen 
the connection to individual patient outcome, if appro-
priate mapping of clinical measurements to parameter 
values can be established. For instance, it may be possible 
to incorporate measures of T cell function using measure-
ments of PD- L1 levels to inform the effector cell efficacy 
parameter. A detailed roadmap for model translation 
has been laid out in previous work.13 Despite all the crit-
ical theoretical and experimental work that remains to 
be done before any such model can be deployed in the 
clinic, mathematical oncology abstraction provides a 
novel and promising way to conceptualize the effect of 
various cancer treatments on a patient’s tumor and the 
local immune environment and gives us an opportunity 
to rethink the immunotherapy numbers game.
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