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Abstract

Recent efforts to describe the human epigenome have yielded thousands of epigenomic and transcriptomic
datasets. However, due primarily to cost, the total number of such assays that can be performed is limited.
Accordingly, we applied an imputation approach, Avocado, to a dataset of 3814 tracks of data derived from the
ENCODE compendium, including measurements of chromatin accessibility, histone modification, transcription, and
protein binding. Avocado shows significant improvements in imputing protein binding compared to the top models
in the ENCODE-DREAM challenge. Additionally, we show that the Avocado model allows for efficient addition of new
assays and biosamples to a pre-trained model.

Background
Recently, several scientific consortia have generated large
sets of genomic, transcriptomic, and epigenomic data. For
example, since its inception in 2003, the NIH ENCODE
Consortium [1] has generated over 10,000 human tran-
scriptomic and epigenomic experiments. Similar efforts
include Roadmap Epigenomics [2], modENCODE [3],
the International Human Epigenome Consortium [4],
mouseENCODE [5], PsychENCODE [6], and GTEx [7].
These projects have varied motivations, but all spring
from the common belief that the generation of mas-
sive and diverse high-throughput sequencing datasets can
yield valuable insights into molecular biology and disease.
Unfortunately, the resulting datasets are usually incom-

plete. In the case of ENCODE, this incompleteness is by
design. Faced with a huge range of potential cell lines and
primary cell types to study (referred to hereafter using
the ENCODE terminology “biosample”), ENCODE inves-
tigators made the strategic decision to perform “tiered”
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analyses. Thus, some “Tier 1” biosamples were analyzed
using a large number of different types of sequencing
assays, whereas biosamples assigned to lower tiers were
analyzed in less depth. This strategy allowed ENCODE
to cover many biosamples while also allowing researchers
to examine a few biosamples in great detail. In other
cases, even for a consortium such as GTEx, which aims to
systematically characterize a common set of tissue types
across a set of individuals using a fixed set of assays, miss-
ing data is unavoidable due to the cost of sequencing and
loss of samples during processing. Given the vast space of
potential biosamples to study and the fact that new types
of assays are always being developed to characterize new
phenomena, the sparsity of these compendia is likely to
increase over time.
This incompleteness can be problematic. For exam-

ple, many large-scale analysis methods have trouble han-
dling missing data. Despite the benefit that additional
measurements may offer, many analysis methods discard
assays that have not systematically been performed in the
biosamples of interest. More critically, many biomedical
scientists want to exploit these massive, publicly funded
consortium datasets but find that the particular biosam-
ple type that they study was relegated to a lower tier and
hence is only sparsely characterized.
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Imputation methods address this problem by filling in
the missing data with computationally predicted values.
Imputation is feasible in part due to the structured nature
of consortium-style datasets, in which data from high-
throughput sequencing experiments can be arranged sys-
tematically along axes such as “biosample” and “assay.” The
first epigenomic imputation method to be applied at a
large scale, ChromImpute [8], trains a separate machine
learning model for each missing experiment, deriving
input features from the same row or column in the data
matrix, i.e., training from experiments that involve the
same biosample but a different assay or the same assay
but a different biosample. A second method, PREDICTD
[9], takes a more wholistic approach, first organizing
the entire dataset into a 3D tensor (assay × biosam-
ple × genomic position) and then training an ensemble
of machine learning models that each jointly decompose
all experiments in the tensor into three matrices, one
for each dimension. PREDICTD imputes missing values
by linearly combining values from these three matrices.
Most recently, a third method, Avocado [10], extends
PREDICTD by replacing the linear combination with a
non-linear, deep neural network, and by modeling the
genomic axis at multiple scales, thereby achieving signif-
icantly more accurate imputations without the need to
train an ensemble of models.
All three of these existing imputation methods rely

upon a common dataset. In creating ChromImpute, Ernst
and Kellis utilized what was, at the time, one of the
largest collections of uniformly processed epigenomic
and transcriptomic data, derived from 1122 experiments
from the Roadmap Epigenomics and ENCODE consor-
tia. To allow for direct comparison between methods,
both PREDICTD and Avocado relied upon a subset of
1014 of those experiments. Since 2015, however, the
amount of available data has increased tremendously.

Here, we report the training of Avocado on a dataset
derived from the ENCODE compendium that contains
3814 tracks from 400 biosamples and 84 assays (Fig. 1).
This ENCODE2018-Core dataset is 3.4 times larger than
the original ChromImpute dataset. We demonstrate that
this increase in size leads to a concomitant improvement
in predictive accuracy.
Furthermore, whereas the ChromImpute dataset in-

cluded only chromatin accessibility, histone modification,
and RNA-seq data, the ENCODE2018-Core dataset also
includes ChIP-seq measurements of the binding of tran-
scription factors (TF) and other proteins, such as CTCF
and POLR2A (referred to hereafter, for simplicity, as
“transcription factors,” despite the differences in their bio-
logical roles). Accurate prediction of TF binding in a cell
type-specific fashion is an extremely challenging and well-
studied problem (reviewed in [11]). We demonstrate that
by leveraging the large and diverse ENCODE2018-Core
dataset,Avocadoachieves high accuracy in prediction of TF
binding, outperforming several state-of-the-art methods.
Finally, we demonstrate a practically important fea-

ture of the Avocado model, namely, that the model can
be easily extended to apply to newly or very sparsely
characterized biosamples and assays via a simple trans-
fer learning approach. Specifically, we demonstrate how
a new biosample or assay can be added to a pre-trained
Avocadomodel by fixing all of the existing model parame-
ters and only training the new assay or biosample factors.
We do this using experiments from a second dataset,
ENCODE2018-Sparse, that contains 3056 experiments
from biosamples that are sparsely characterized and from
assays that have been performed in only few biosamples.
We find that the model can yield high-quality imputations
for transcription factors that are added in this manner,
and that these imputations can outperform the ENCODE-
DREAM challenge participants even when trained using a

Fig. 1 The ENCODE2018-Core data matrix. In the matrix, columns represent biosamples and rows represent assays. Colors correspond to general
types of assays (histone modification ChiP-seq in orange, transcription factor ChIP-seq in red, RNA-seq in green, and chromatin accessibility in blue).
Biosamples are sorted by the total number of assays performed in them, and assays are first grouped by their type before being sorted by the
number of biosamples that they have been performed in
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single track of data. Finally, we find that when biosamples
are added using only DNase-seq experiments, the resul-
ting imputations for other assays can still be of high
quality.
As a resource for the community, we have made the

AvocadoENCODE imputations publicly available via the
ENCODE portal (http://www.encodeproject.org).

Results
Avocado’s imputations are accurate and biosample specific
We first aimed to evaluate systematically the accuracy
of Avocado’s imputed values on the ENCODE2018-Core
dataset. One challenge associated with this assessment
is that no competing imputation method has yet been
applied to this particular dataset, making a direct com-
parison of methods difficult. Further, the size of the
dataset makes training competing methods difficult, with
ChromImpute requiring the training of thousands of dif-
ferent models. However, we have shown recently that the
average activity of a given assay across many biosamples
is a good predictor of that activity in a new biosample
[12]. Admittedly, this predictor is scientifically uninter-
esting, in the sense that it makes the same prediction
for every new biosample and so, by construction, cannot
capture biosample-specific variation. However, we rea-
soned that improvement over this baseline indicates that
the model must be capturing biosample-specific signal.
Furthermore, because the signal from most epigenomic
assays is similar across biosamples, the average activity
predictor serves as a strong baseline that any cross-cell
type predictor must beat. Accordingly, we compare the
predictions made by Avocado to the average activity of
that assay in the training set that was used for model
training.
Overall, we found that Avocado is able to impute sig-

nal accurately for a variety of different types of assays.
We compared Avocado’s imputations to those of the
average activity predictor across 37,249,359 genomic loci
from chromosomes 12–22 using fivefold cross-validation
among epigenomic experiments in the ENCODE2018-
Core dataset. Qualitatively, we observed strong visual
concordance between observed and imputed values
across a variety of assay types (Fig. 2a, Additional file 1:
Figure S2). In particular, the imputations capture the
shape of peaks in histone modification signal, such as
those exhibited in H3K27ac and H3K4me3; the shape of
peaks found in assays of transcription factors like ELF1
and CTCF; and the exon-specific activity in gene tran-
scription assays. As our primary quantitative measure, we
compute the global mean-squared error (MSE) between
the observed and imputed values. This value reduces from
0.0807 to 0.0653 (paired t test p value of 1e−157), a reduc-
tion of 19.1%, between the average activity predictor and
Avocado (Fig. 2b).

We also compute five complementary quantitative mea-
sures. Two measures emphasize the ability of an imputa-
tion method to correctly identify peaks in the data. One of
these (mse1obs), defined as the MSE in the positions with
the top 1% of observed signal, corresponds to a notion of
recall. The complementary measure (mse1imp), defined
as the MSE in position with the top 1% of imputed sig-
nal, corresponds to precision. Three additional measures
focus on theMSE in regions of biological activity: theMSE
in promoters (mseProm), gene bodies (mseGene), and
enhancers (mseEnh). In aggregate, Avocado outperforms
the average activity baseline on all six performance mea-
sures (p values between 8e−65 for mse1imp and 1e−157
for mseGlobal) (Fig. 2b, c).
When grouped by assay, we find that Avocado outper-

forms the average activity in 71 of the 84 experiments in
our test set according to mseGlobal. Further investiga-
tion suggested that these problematic assays were mostly
of transcription, indicating a weakness of the Avocado
model, or assays that may have been of poor quality
(Additional file 2).
The primary benefit of the ENCODE2018-Core dataset,

in comparison to previous datasets drawn from the
Roadmap Compendium, is the inclusion of many more
assays and biosamples. We hypothesized that not only
will this dataset allow us to make a more diverse set
of imputations, but that these additional measurements
will improve performance on assays already included
in the Roadmap Compendium. We reasoned this may
be the case because, for example, previous imputation
approaches have imputed H3K36me3, a transcription
associated mark, but have not utilized measurements of
transcription to do so. A direct comparison to previous
work was not simple due to differences in the process-
ing pipelines and reference genomes, and so we retrained
Avocado using the same fivefold cross-validation strat-
egy after having removed all experiments that did not
originate from the Roadmap Epigenomics Consortium.
Additionally, we removed all RNA-seq and methylation
datasets, as they had not been used as input for previ-
ous imputation methods. This resulted in 1072 tracks of
histone modification and chromatin accessibility.
We found that the inclusion of additional assays and

biosamples leads to a clear improvement in performance
on the tracks from the Roadmap Compendium. The
MSE of Avocado’s imputations dropped from 0.115 when
trained exclusively on Roadmap datasets to 0.107 when
trained on all tracks in the ENCODE2018-Core dataset,
an improvement of 7% (p value of 8e−45). When we
grouped the error by assay, we observed that tracks
appeared to range from a significant improvement to
only a small decrease in performance (Additional file 1:
Figure S3A).When aggregating these performances across
assays, we similarly observe large improvements in the

http://www.encodeproject.org
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Fig. 2 Avocado imputes epigenomic experiments accurately. a Example signal, corresponding imputations, and the average activity of that assay,
for six assays performed in HepG2. The figure includes representative tracks for RNA-seq, histone modification, and factor binding. The data covers
350 kbp of chromosome 20. b Performance measures evaluated in aggregate over all experiments from all biosamples in chromosomes 12 through
22. Orange bars show the performance of the average activity baseline, and green bars show the performance of Avocado’s imputations.
c Performance measures evaluated for each assay, with Avocado’s error (y-axis) compared against the error of the average activity (x-axis). The
number of assays in which Avocado outperforms the average activity is denoted in green for each metric, and the number of assays in which
Avocado underperforms the average activity is denoted in orange

performance of most assays and small decreases in a few
(Additional file 1: Figure S3B/C). These results indicate
that the inclusion of other phenomena does, indeed, aid in
the imputation of the original tracks.

Comparison to ENCODE-DREAM participants
Predicting the binding of various transcription factors is
particularly important due both to these proteins’ criti-
cal roles in regulating gene expression and the sparsity

with which their binding has been experimentally char-
acterized across different biosamples. For example, of the
43 transcription factors included in the ENCODE2018-
Core dataset, only 9 have been performed in more than 10
biosamples. The most performed assay measures CTCF
binding and has been performed 136 times, which is
almost twice as high as the next most performed assay,
measuring POLR2A binding, at 70 assays. In contrast, 13
of the 25 histonemodifications in the ENCODE2018-Core
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dataset have been measured in more than 10 biosamples,
and the top six have all been performed in more than
200 biosamples. The sparsity of protein binding assays is
exacerbated in the ENCODE2018-Sparse dataset, where
additional 704 assays measuring protein binding have
been performed in fewer than five biosamples.
A recent ENCODE-DREAM challenge focused on the

prediction of transcription factor binding across biosam-
ples and phrased the prediction task as one of clas-
sification where the aim is to predict whether bind-
ing is occurring at a given locus (https://www.synapse.
org/#!Synapse:syn6131484). The challenge involved train-
ing machine learning models to predict signal peaks using
nucleotide sequence, sequence properties, and measure-
ments of gene expression and chromatin accessibility. The
participants trained their models on a subset of chro-
mosomes and biosamples, and were evaluated based on
how well their models generalized both across chromo-
somes and in new biosamples. We acquired predicted
probabilities of binding from the top four teams, Yuan-
fang Guan [13], dxquang [14], autosome.ru, and J-TEAM
[15], for 13 tracks of epigenomic data. Four of the assays,
E2F1, HNF4A, FOXA2, andNANOG, were excluded from
the ENCODE2018-Core dataset because they had been
performed in fewer than five biosamples. Consequently,
Avocado could not make predictions for these four assays.
Thus, we used only nine tracks for this evaluation.
We compared Avocado’s predictions of transcription

factor binding to the predictions of the top four models
from the ENCODE-DREAMchallenge to serve as an inde-
pendent validation of Avocado’s quality. We used both the
average precision (AP) and the point on the precision-
recall curve where precision and recall are equal (EPR) to
evaluate the methods. In order to provide an upper limit
for how good Avocado’s predictions could be after the
conversion process, we included as a baseline the experi-
mental ChIP-seq data that the peaks were called from

(called “Same Biosample”). Additionally, we compared
against the average activity of that assay in Avocado’s
training set for that prediction. This baseline serves to
show that Avocado is learning to make biosample-specific
predictions. Further, when we investigated the training
sets for the various experiments, we noted that there were
two liver biosamples, male adult (age 32) and female child
(age 4), that had similar assays performed in them. To
ensure that Avocado was not simply memorizing the sig-
nal from one of these biosamples and predicting it for
the other liver biosamples, we compare against the sig-
nal from the related biosample as well (denoted “Similar
Biosample”).
We observed that Avocado’s predictions outperform all

of the challenge participants in all tracks except for CTCF
in iPSC and FOXA1 in the liver (Table 1, Additional file 1:
Table S1). The most significant improvement comes in
predicting REST, a transcriptional factor that represses
neuronal genes in biosamples that are not neurons, and
the highest overall performance is in predicting CTCF
binding. This high performance is due in part to the large
number of CTCF binding sites, but is likely also because
CTCF binding is similar across most biosamples. Impor-
tantly, the REST assay for both liver biosamples was in the
same fold, and TAF1 was only performed in one of the
liver biosamples, so Avocado’s good performance on those
tracks is a strong indicator of its performance. Visually,
we observe that some of the participants models appeared
to overpredict signal values, suggesting that a source of
error for these models is their lack of precision, corre-
sponding to rapid drop in precision for predicting REST
(Additional file 1: Figure S4). Interestingly, Avocado
appears to underperform using the related liver biosample
as the predictor for FOXA1, suggesting that perhaps the
factors for FOXA1 are poorly trained. However, this result
is further evidence that Avocado is not simply memoriz-
ing related signal. We also note that in the case of CTCF

Table 1 Comparison of methods on ENCODE-DREAM challenge test set

Biosample iPSC PC-3 Liver Liver Liver Liver Liver Liver Liver

Assay CTCF CTCF EGR1 FOXA1 GABPA JUND MAX REST TAF1

Method

Yuanfang Guan 0.729 0.600 0.397 0.282 0.353 0.533 0.441 0.319 0.281

dxquang 0.866 0.783 0.274 0.400 0.347 0.260 0.330 0.312 0.264

autosome.ru 0.778 0.486 0.331 0.243 0.342 0.416 0.384 0.264 0.221

J-TEAM 0.812 0.747 0.363 0.462 0.344 0.415 0.377 0.196 0.272

Avocado 0.723 0.791 0.530 0.354 0.396 0.660 0.574 0.477 0.384

Similar biosample – – 0.363 0.389 0.226 0.568 0.446 0.408 –

Same biosample 0.741 0.878 0.648 0.716 0.573 0.731 0.622 0.622 0.556

Average activity 0.574 0.735 0.240 0.299 0.253 0.223 0.349 0.124 0.140

The average precision (AP) computed across nine epigenomic experiments in the ENCODE-DREAM challenge test set in chromosome 21. For each track, the score for the
best-performing predictive model is in boldface

https://www.synapse.org/#!Synapse:syn6131484
https://www.synapse.org/#!Synapse:syn6131484
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in iPSCs, the ChIP-seq signal from iPSC appears to under-
perform two challenge participants, suggesting that the
conversion process may limit Avocado’s performance.
We did our best to ensure a fair comparison between

Avocado and the challenge participants, but the com-
parison is necessarily imperfect, for several reasons. Two
factors make the comparison easier for Avocado. First,
Avocado is exposed to many epigenomic measurements
that the challenge participants did not have available,
including measurements of the same transcription factor
in other cell types. Second, as an imputation approach,
Avocado is trained on the same genomic loci that it makes
predictions for, whereas the challenge participants had
to make predictions for held-out chromosomes. On the
other hand, three factors skew the comparison in favor
of the challenge participants. First, unlike the challenge
participants, Avocado was not directly exposed to any
aspect of nucleotide sequence or motif presence. Second,
Avocado makes predictions at 25 bp resolution in hg38,
whereas the challenge was conducted at 200 bp resolution
in hg19. We were able to use liftOver to convert between
assemblies, followed by aggregating the signal from 25 bp
resolution to 200 bp resolution, but both steps blurred
the signal. Third, Avocado is trained to predict signal val-
ues directly, whereas the challenge participants are trained
on the classification task of identifying whether a posi-
tion is a peak. Evaluation is done in a classification setting.
In particular, Avocado is penalized for accurately predict-
ing high signal values in regions that are not labeled as
peaks, exemplifying the discordance between the regres-
sion and classification settings. For all these reasons,
Avocado would not have been a valid submission to the
challenge. Finally, it is perhaps worth emphasizing that
whereas the challenge was truly blind, our application
of Avocado to the challenge data is only blind “by con-
struction.”We emphasize that we did not adjust Avocado’s
model or hyperparameters based on looking at the chal-
lenge results: the comparison presented here is based
entirely on a pre-trained Avocado model.
We investigated the effect that these differences may

have had on predictive performance. First, we evaluated
the performance of Avocado and the challenge partici-
pants at predicting the test set challenge tracks on chro-
mosome 17, whose loci were used for training the chal-
lenge models. This evaluation resulted in similar trends
as in Table 1 (Additional file 3) and suggests that the loci
used for evaluation are not a significant factor for Avo-
cado’s improved performance over the challenge partici-
pants. Next, we removed from Avocado’s training set all
experiments from biosamples which appeared in the chal-
lenge test set, except for those experiments that the chal-
lenge participants had—namely, DNase-seq and RNA-seq
experiments. This restricted Avocado to only being able to
make predictions on the challenge tracks using the same

epigenomic information that the participants had. In this
setting, we observed poor performance of Avocado on the
liver test set tracks, but even better performance on the
CTCF tracks in iPSC and PC-3 than the original Avo-
cado model. However, as described in Additional file 3, it
was difficult to ensure a fair comparison on the biosam-
ples noted as being from the liver, and these reasons may
potentially explain the poor results. Finally, we trained
an Avocado model using only DNase-seq and RNA-seq
from the biosamples used in the challenge, as well as the
transcription factor binding tracks available in the train-
ing set. Again, performance on liver biosamples was poor.
While performance also degraded on the CTCF tracks,
it was still competitive with the top four participants.
These results indicate that a source of Avocado’s power
is leveraging the diverse data in the massive ENCODE
compendium.

Extending avocado to more biosamples and assays
Adding new assays
Despite including 3814 epigenomic experiments, the
ENCODE2018-Core dataset does not contain all biosam-
ples or assays that are represented in the ENCODE com-
pendium. Specifically, the dataset does not include 667
biosamples where fewer than five assays had been per-
formed, and it does not include 1281 assays that had been
performed in fewer than five biosamples. The missing
biosamples primarily include time courses, genetic mod-
ifications, and treatments of canonical biosamples, such
as HepG2 genetically modified using RNAi. However,
several primary cell lines and tissues, such as amniotic
stem cells, adipocytes, and pulmonary artery, were also
not included in the ENCODE2018-Core dataset due to
lack of sufficient data. The majority of the missing assays
corresponded to transcription measurements after gene
knockdowns/knockouts (shRNA and CRISPR assays) or
to binding measurements of eGFP fusion proteins. Yet,
some transcription factors, such as NANOG, FOXA2, and
HNF4A, were excluded as well. We collect these exper-
iments into a separate dataset, called ENCODE2018-
Sparse (see the “Methods” section).
We constructed the ENCODE2018-Sparse dataset to

attempt to address some of the problems of missingness
in ENCODE2018-Core. This sparse version of the data
has 99.7% missing entries, in comparson to 88.6% missing
in ENCODE2018-Core.Within ENCODE2018-Sparse, we
identified fourmain groups of biosamples: (1) 417 biosam-
ples that only had DNase-seq performed on them, with 58
additional biosamples that had DNase and one or more
other assays performed in it; (2) 112 biosamples that
had various measurements of transcription performed in
them; (3) 7 biosamples that were well characterized by at
least 50 sparsely performed assays of transcription fac-
tor binding; and (4) biosamples derived from HepG2 and
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K562 that were well characterized by various knockouts
(Additional file 1: Figure S1).
In general, handling sparsely characterized assays or

biosamples in a model like Avocado is challenging.
Hence, we designed a three-step process that we hypoth-
esized would allow us to make accurate imputations
for additions with few corresponding tracks (Additional
file 1: Figure S5). This approach is conceptually simi-
lar to our main approach for training Avocado. First, we
trained the Avocado model on all 3814 experiments in
ENCODE2018-Core. Second, we froze all of the weights
in the model, including both the neural network weights
and all five of the latent factor matrices. Third, we fit the
new biosample or assay factors to the model using only
the experimental signal derived from the ENCODE pilot
regions. This resulted in a model whose only difference
was the inclusion of a set of trained assay or biosam-
ple factors that were not present in original model. This
training strategy has the benefit of allowing for quick addi-
tion of biosamples or assays to the pre-trained model,
without requiring retraining of any of the existing model
parameters.
In order to test the effectiveness of this approach,

we extended Avocado to include assays that were
in the ENCODE-DREAM challenge but not in the
ENCODE2018-Core dataset. For the four assays that we
did not compare against (HNF4A and FOXA2 in the
liver, NANOG in iPSC, and E2F1 in K562), all but E2F1
had been performed in a biosample other than the one
included in the challenge. Accordingly, we fit these three
new assay factors using the procedure above. This fit-
ting was done using HNF4A and FOXA2 from HepG2,
and NANOG from h1-hESC. We then used the new assay
factors, coupled with the pre-trained network, genome
factors, and relevant biosample factors, to impute three
remaining tracks in the challenge.
We observed that Avocado’s imputed tracks for HNF4A

and FOXA2 in the liver were of high quality and outper-
formed several baselines (Fig. 3). Most notably, both of

these tracks outperformed all four challenge participants
in their respective settings according to both EPR and
AP. Second, both Avocado tracks outperformed simply
using the track that they were trained on as the predic-
tor, indicating that the model is leveraging the pre-trained
biosample latent factors to predict biosample-specific
signal.
However, we also observed that Avocado’s imputations

for NANOG in iPSCs are of particularly poor quality.
Avocado’s predictions underperform all four challenge
participants. Notably, Avocado also underperforms using
the signal from h1-hESC that it was trained on as the pre-
dictor. One potential reason for this poor performance is
that relevant features of the NANOG binding sites are not
encoded in the genomic latent factors. Alternatively, given
that Avocado also underperformed the challenge partic-
ipants at predicting CTCF in iPSC, it may be that the
iPSC latent factors are not well trained, leading to poor
performance in predictions of any track.

Adding new biosamples
We then tested the ability of the three-step process in
Additional file 1: Figure S5 to make accurate predictions
for biosamples that the model was not originally trained
on. To do so, we began by training biosample factors for
475 biosamples not in the ENCODE2018-Core dataset
that had DNase-seq performed in them. We then eval-
uated Avocado’s ability to predict other assays that were
performed in these biosamples. A large number of these
biosamples had only DNase-seq performed in them, so
we also evaluated Avocado’s ability to predict DNase-seq
as well. We reasoned that because the biosample factors
were trained using the ENCODE pilot regions, but the
predictions were evaluated in chromosome 20 without
retraining the corresponding genomic latent factors, this
would be a fair evaluation.
We observed good performance of the imputations for

these biosamples. Visually, we noticed the same concor-
dance between the imputed and the experimental signal,

Fig. 3 Avocado’s performance when adding new transcription factors to a pre-trained model. Precision-recall curves for three transcription factors
that were added to a pre-trained model using a single track of data each from the ENCODE2018-Sparse dataset. Similar to the previous comparisons
against the ENCODE-DREAM participants, the evaluation was performed in chromosome 21



Schreiber et al. Genome Biology           (2020) 21:82 Page 8 of 13

Fig. 4 Imputations and performance when adding biosamples to a pre-trained model. a Imputations for two tracks of data in the ENCODE2018-
Sparse dataset on chromosome 20 after fitting the biosample factors using only DNase-seq signal from the ENCODE pilot regions. b Performance of
Avocado at imputing tracks on chromosome 20 after fitting the biosample factors using only DNase-seq signal from the ENCODE pilot regions

and we observed that biosample-specific elements are
being captured (Fig. 4a). We then evaluated the perfor-
mance of Avocado on the mseGlobal metric compared to
the average activity baseline for each assay. We observed
that Avocado appears to produce high-quality predic-
tions for several assays, including CTCF, H3K27ac, and
POLR2A (Fig. 4b). However, for other assays, such as
H3K9me3 and H3K36me3, the average activity domi-
nates. It is possible that this phenomenon speaks to the
ability of DNase to recover these other approaches. Over-
all, we observe a decrease in error from 0.027 when using
the average activity to 0.024 when using the imputations
from Avocado.
While these evaluations have thus far used only DNase-

seq to fit new biosamples to the model, it is not necessarily
the case that performing a single assay is sufficient to
optimally fit new biosamples to a model. Unfortunately, it

would be computationally expensive to identify the com-
bination of assays that yielded optimal performance. To
investigate whether there was a general trend that biosam-
ples fit with more assays performed better than those fit
with fewer assays, we partitioned the 3814 experiments
from the fivefold cross-validation on ENCODE2018-Core
by the number of assays performed in the biosample of the
experiment (Additional file 1: Figure S6). When we plot-
ted the average error of each type of activity, we did not
observe a noticable trend between the number of assays
used to fit biosample factors and performance at imputing
experiments. This evaluation is limited by not consid-
ering the composition of experiments used to fit each
biosample or by considering experiments that had fewer
than four assays performed in the respective biosample.
However, these results do not suggest that simply per-
forming more experiments will yield better performance
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Table 2 Comparison of approaches for extending Avocado to new cell types and assays

Test set Retrain from scratch Fine-tune Freeze Fivefold

ENCODE2018-Sparse 0.058 0.056 0.091 –

ENCODE2018-Sparse (w/o shRNA) 0.069 0.068 0.080 –

ENCODE2018-Core 0.049 0.050 0.051 0.050

The MSE of three approaches for adding new biosamples or assay on three test sets. The test sets are half of the experiments in the ENCODE2018-Sparse dataset, that same
dataset with shRNA experiments removed, and the fifth fold from the ENCODE2018-Core dataset. The MSE from the fivefold cross-validation is shown for the
ENCODE2018-Core test fold as a reference

overall, or that biosamples with many experiments per-
formed in them will necessarily have better imputations
than those that are more sparsely assayed.

Evaluating alternate trainingmethods
Our strategy for incorporating new biosamples and assays
into a pre-trained Avocado model involves first freezing
almost all of the parameters of the model. In practice,
large consortia and other providers of imputations are
likely to be interested in this approach because it would
allow for continuous incorporation of new biosamples
and assays without affecting the imputations that have
already been released. However, it is unlikely that keeping
these parameters frozen during training would yield per-
formance as high as updating them using the new data,
because the new experiments may point to interesting
loci, novel forms of activity, or important cell type-specific
signatures that are not captured in the frozen parameters.
To test this hypothesis, we compared the performance of
our strategy for incorporating new biosamples and assays
to two alternate approaches: retraining Avocado from
scratch and fine-tuning a pre-trained Avocado model (see
the “Incorporating new experiments” section).
We first simulated the setting where one has trained a

model on a set of “original” experiments and would now
like to extend the model to include assays and biosamples
contained in a set of “additional” experiments. We used
four of the five folds used in the “Avocado’s imputations
are accurate and biosample specific” section from the
ENCODE2018-Core dataset as the original experiments,
and half of the experiments from ENCODE2018-Sparse,
after filtering, as the set of additional experiments. This
filtering step consisted of removing all experiments where
the assay or biosample had only been performed once. We
created two separate test sets: the first was the second half
of the experiments in the ENCODE2018-Sparse dataset,
and the second was the fifth fold from the ENCODE2018-
Core dataset to use as validation that the models were
still performing well on the original data. The experiments
from ENCODE2018-Sparse were split such that, for each
assay, the biosamples were evenly partitioned into the
training and test sets.
Overall, we found that our strategy of freezing

parameters underperformed both retraining Avocado and

fine-tuning a pre-trained model (Table 2). In particular,
we observed a large difference in performance between
the freezing strategy and the other two strategies on the
ENCODE2018-Sparse test set. However, upon inspecting
the errors more closely, we observed that the major-
ity of errors on the second half of the Sparse datasets
come from short-hairpin RNA-seq (shRNA) experiments
(Additional file 1: Figure S7). These experiments involve
knocking out a target gene using RNA interference
and are not present at all in the ENCODE2018-Core
dataset. Thus, it makes sense that a model that had been
trained on ENCODE2018-Core and then had most of
its parameters frozen would perform poorly at imputing
shRNA experiments, because neither the genome factors
nor the neural network was trained using this type of
activity. When we remove these experiments from the
ENCODE2018-Sparse test set, we find that the gap in per-
formance between the different methods diminishes sig-
nificantly. Further, we observe that the error of the frozen
model decreases, whereas the errors of the other models
increases, confirming that models that were able to train
on this type of activity could capture it well. We then vali-
dated the resulting models by checking their performance
on the fifth fold of the ENCODE2018-Core dataset that
had been held out. We observed that the models all per-
formed similarly both to each other and to the split in the
original fivefold cross-validation when the fold used here
as the test set was held out.

Discussion
To our knowledge, we report here the largest imputation
of epigenomic data that has been performed to date. We
applied the Avocado deep tensor factorization model to
3814 epigenomic experiments in the ENCODE2018-Core
dataset. The resulting imputations cover a diverse set of
biological activity and cellular contexts and are publicly
available at http://www.encodeproject.org. Due to the cost
of experimentation and the increasing sparsity of epige-
nomic compendia, we anticipate that imputations of this
scale will serve as a valuable community resource for
characterizing the human epigenome.
We usedmultiple independent lines of reasoning to con-

firm that Avocado’s imputations are both accurate and
biosample specific. First, we compared each imputed data

http://www.encodeproject.org
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track to the average activity of that assay and found that
for almost all assays, Avocado’s imputations were more
accurate. A current weakness in Avocado’s imputations
is imputing transcription, likely due to the sparse, exon-
level activity of these assays along the genome. Second,
we compared imputations of transcription factor binding
tracks to the predictions made by the top four models
in the recent ENCODE-DREAM challenge. In almost all
cases, the Avocado imputations were significantly more
accurate than the imputations produced by the chal-
lenge participants. Notably, Avocado is not exposed to
nucleotide sequence at all during the training process, and
so its ability to correctly impute transcription factor bind-
ing is based entirely on local epigenomic context, rather
than binding motifs.
Ongoing characterization efforts regularly identify new

biosamples of interest and develop assays to measure pre-
viously uncharacterized phenomena. These efforts aid in
understanding the complexities of the human genome but
pose a problem for imputation efforts that must be trained
in a batch fashion. Given that it took almost a day to fit
the Avocado genomic latent factors for even the smallest
chromosome, retraining the model for each inclusion is
not feasible. We demonstrated that by leveraging param-
eters that had been pre-trained on the ENCODE2018-
Core dataset, new assays and biosamples could be quickly
added to the existing Avocado model. In contrast, extend-
ing imputations to cover a single new assay using
ChromImpute would require training a new model for
each of the 400 biosamples in the ENCODE2018-Core
dataset, or each of the >1000 biosamples in the combined
ENCODE2018-Core/ENCODE2018-Sparse dataset. Our
observations suggest that not only is the Avocado
approach computationally efficient, with three new assays
taking only a fewminutes to add to the model, but that the
resulting imputations are highly accurate.
One potential reason that this pre-training strategy

works well is that the genomic latent factors efficiently
encode information about regions of biological activity.
For example, rather than memorizing the specific assays
that exhibit activity at each locus, the latent factors may
be organizing general features of the biochemical activity
at that locus. We have previously demonstrated the util-
ity of Avocado’s latent genomic representation for several
predictive tasks [10]. Investigating the utility and meaning
of the latent factors from this improved Avocado model is
an ongoing work.
Notably, however, the encoding of relevant information

in the latent factors may lead to a potential weakness
in Avocado’s ability to generalize to novel biosamples or
assays. Specifically, if the signal in a novel biosample or
assay is not predictable from the tracks that were used to
train the initial genomic latent factors, then it is unlikely
that Avocado will make good imputations for the new

data. For example, if a transcription factor is dissimilar to
any factors in the training set, then the genomic latent fac-
tors may not have captured features relevant to the novel
factor. This may explain why Avocado fails to generalize
well to NANOG.
A strength of large consortia, such as ENCODE, is that

they are able to collect massive amounts of experimen-
tal data. This amount of data is only possible because
many labs collect it over the course of several years.
Inevitably, this results in some data that is of poor qual-
ity. While quality control measures can usually identify
data that is of very poor quality, they are not perfect,
and the decision of what to do with such data can be
challenging. Unfortunately, data of poor quality poses a
dual challenge for any large-scale imputation approach.
When an imputation approach is trained on low-quality
data, then the resulting imputations may be distorted
by the noise. Furthermore, when the approach is eval-
uated against data that is of poor quality, imputations
that are of good quality may be incorrectly scored poorly.
Thus, when dealing with large and historic data sources,
it is important to ensure the quality of the data being
used.

Conclusion
In this work, we describe the training of an impu-
tation approach that can predict a variety of epige-
nomic phenomena, including histone modification, pro-
tein binding, transcription, and chromatin accessibil-
ity, across hundreds of human biosamples. The result-
ing model is capable of imputing 33,600 genome-wide
epigenomic experiments, representing the largest impu-
tation effort performed to date both in terms of the
number of tracks imputed and in terms of biological
phenomena that are jointly modeled. We found that
these tracks were of high quality, with a 19.5% decrease
in overall error when compared to the strong average
activity baseline. Empirically, the imputations of tran-
scription factor binding significantly outperformed the
top participants in a recent ENCODE-DREAM transcrip-
tion factor binding challenge, further indicating their
quality.
We anticipate that this work will be impactful in sev-

eral ways. The simplest application of these imputations is
to enable analyses or prediction in biosamples where the
required epigenomic experiments have not yet been per-
formed. Another approach is to look for inconsistencies
between the imputed and primary data for experiments
that have been performed, with the anticipation that these
regions may prove biologically interesting. Further, one
could use imputed tracks where there is no corresponding
experimental data to determine what experiments should
be performed next, priotizing imputed tracks that appear
to encode interesting phenomena.
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The imputation approach offered by Avocado has great
potential to be extended both to precision medicine and
to single-cell datasets. In the precision medicine setting,
a biosample is sparsely assayed in a variety of indi-
viduals, and the goal is to correctly impute the inter-
individual variation, particularly in regions associated
with disease. We anticipate that Avocado could be either
applied directly in this setting, with biosamples includ-
ing the annotation of the individual they came from,
or extended to accommodate a 4D data tensor, where
the fourth dimension corresponds to distinct individu-
als. In the single-cell setting, the biosample axis would
be replaced with a cell axis where each entry would cor-
respond to a single cell. This approach could potentially
be used as a computational co-assay, leveraging a shared
genomic axis to impute multiple types of experiments in
each individual cell.

Methods
Avocado
Avocado topology
Avocado is a multi-scale deep tensor factorization model.
The tensor factorization component comprised five
matrices of latent factors that encode the biosample,
assay, and three resolutons of genomic factors at 25 bp,
250 bp, and 5 kbp resolution. Having multiple resolutions
of genomic factorsmeans that adjacent positions along the
genome may share the same 250 bp and 5 kbp resolution
factors. We used the same model architecture as in the
original Avocado model [10], with 32 factors per biosam-
ple, 256 factors per assay, 25 factors per 25-bp genomic
position, 40 factors per 250-bp genomic position, and 45
factors per 5-kbp genomic position. The neural network
model has two hidden dense layers that each have 2048
neurons, before the regression output, for a total of three
weight matrices to be learned jointly with the matrices
of latent factors. The network uses ReLU activation func-
tions, ReLU(x) = max(0, x), on the hidden layers, but no
activation function on the prediction.

Avocado training
Avocado is trained in a similar fashion to our previous
work [10]. This procedure involves two steps, because the
genome is large and the full set of genomic latent fac-
tors cannot fit in memory. The first is to jointly train all
parameters of the model on the ENCODE pilot regions,
which comprise roughly 1% of the genome. After training
is complete, the neural network weights, the assay factors,
and the biosamples are all frozen. The second step is to
train only the three matrices of latent factors that make up
the genomic factors on each chromosome individually. In
this manner, we can train comparable latent factors across
each chromosome without the need to keep then all in
memory at the same time.

Avocado was trained in a standard fashion for neural
network optimization. All initial model parameters and
optimizer hyperparameters were set to the defaults in
Keras. In this work, Avocado was trained using the Adam
optimizer [16] for 8000 epochs with a batch size of 40,000.
This is longer than our original work, where the model
was trained for 800 epochs initially and 200 epochs on the
subsequent transfer learning step. Empirical results sug-
gest that this longer training process is required to reach
convergence, potentially because of the large diversity of
signals in the ENCODE2018-Core dataset. When adding
in additional biosample or assay factors, due to the small
number of trainable parameters, the model was trained
for only 10 epochs with a batch size of 512. Due to the
large dataset size, one epoch is defined as one pass over
the genomic axis, randomly selecting experiments at each
position, rather than one full pass over every experiment.
The model was implemented using Keras (https://keras.

io) with the Theano backend [17], and experiments were
run using GTX 1080 and GTX 2080 GPUs. For further
background on neural network models, we recommend
the comprehensive review by Schmidhuber [18].

Data and evaluation
ENCODE dataset
We downloaded 6870 genome-wide tracks of epige-
nomic data from the ENCODE project (https://www.
encodeproject.org). These experiments were all processed
using the ENCODE processing pipeline and mapped to
human genome assembly hg38, except for the ATAC-
seq tracks, which were processed using an approach that
would later be added to the ENCODE processing pipeline.
The values are signal p value for ChIP-seq data and ATAC-
seq, read-depth normalized signal for DNase-seq, and
plus/minus strand signal for RNA-seq. When multiple
replicates were present, we preferentially chose the pooled
replicate; otherwise, we chose the second replicate. The
experimental signal tracks were then further processed
before being used for model training and evaluation. First,
the signal was downsampled to 25 bp resolution by taking
the average signal in each 25 bp bin. Second, an inverse
hyperbolic sin transformation was applied to the data.
This transformation has been used previously to reduce
the effect of outliers in epigenomic signal [9, 19].
We divided these experiments into two datasets,

the ENCODE2018-Core dataset and the ENCODE2018-
Sparse dataset. The ENCODE2018-Core dataset contains
3814 experiments from all 84 assays that have been per-
formed in at least five biosamples, and all 400 biosam-
ples that have been characterized by at least five assays.
Hence, ∼ 88.6% of the data in the ENCODE2018-Core
data matrix is missing. The ENCODE2018-Sparse dataset
contains 3056 experiments, including 1281 assays that
have been performed in fewer than five biosamples and

https://keras.io
https://keras.io
https://www.encodeproject.org
https://www.encodeproject.org
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667 biosamples that have been characterized by fewer
than five assays, yielding a matrix that is ∼ 99.7% missing.
We adopted a similar strategy to Durham et al. for par-

titioning these experiments into folds for cross-validation.
Specifically, we partitioned entire genome-wide experi-
ments into five folds such that a model would be trained
on all genomic loci and then evaluated on its ability
to predict entirely held-out experiments, because this is
the most realistic evaluation setting. However, randomly
assigning tracks to each fold may inadvertently leave some
folds without seeing some assays or some biosamples,
meaning that the model would not learn anything for
those embeddings and thus perform poorly on imputa-
tion. Unfortunately, even after only keeping experiments
from assays and biosamples where five experiments had
been performed, it is not always possible to partition a
set of experiments into folds such that each assay and
biosample are seen. Thus, Durham et al. adopted a simple
optimization approach that randomly assigned experi-
ments to partitions and evaluated each partition by the
total number of biosamples and assays covered by each
partition. We empirically found that this approach under-
performed a simple greedy approach that uses a counter
to sequentially assign folds to random experiments within
biosamples, one biosample at a time, preserving the loca-
tion in the cycle from one biosample to the next.

ENCODE-DREAM challenge datasets
For our comparisons with the ENCODE-DREAM chal-
lenge participants, we acquired from the challenge orga-
nizers both genome-wide model predictions from the
top four participants and the binary labels (https://www.
synapse.org/#!Synapse:syn6112317). The predictions and
labels were defined at 200 bp resolution, with a stride
of 50 bp, meaning that each 50 bp bin was included in
four adjacent bins. The labels corresponded to conserva-
tive thresholded irreproducible discovery rate (IDR) peaks
called from multiple replicates of ChIP-seq signal.

Comparison to ENCODE-DREAM predictions
Avocado’s predictions had to be processed in several
ways to make them comparable with the data format
for the challenge. First, because Avocado’s predictions
are in hg38 and the challenge was performed in hg19,
the UCSC liftOver command (https://genome.ucsc.edu/
cgi-bin/hgLiftOver) was used to convert the coordinates
across reference genomes. Unfortunately, many of the 25-
bp bins in hg38 mapped to the middle of bins in hg19,
blurring the signal. Further, ∼ 27% of positions on chro-
mosome 21 of hg38 could not be mapped to positions in
hg19, so those positions were discarded from the analy-
sis. Lastly, because the challenge was performed at 200
bp resolution, the average prediction in the 200-bp region
was used as Avocado’s predictions for that bin. We then

filtered out all regions that were marked as “ambigu-
ous”’ by the challenge organizers. These regions included
both the flanks of true peaks as well as regions that were
considered peaks in some, but not all, replicates.
The evaluation of each model was performed using

both the average precision, which roughly corresponds
to the area under a precision-recall curve, and the point
along the precision-recall curve of equal precision and
recall (EPR). The EPR corresponds to setting the decision
threshold so that the number of positive predictions made
by the model is equal to the number of positive labels in
the dataset. This is also called the “break-even point.” A
strength of EPR, in comparison to taking the recall at a
fixed precision, is that it accounts for the true sparsity in
the label set. For example, if it is known beforehand that
an experimental track generally has between 100 and 200
peaks across the entire genome, then a reasonable user
may use the top 150 predictions from a model. However,
if an experimental track had between 10,000 and 20,000
peaks, then a user may use the top 15,000 predicted peaks.

Calculation of average activity
In several of our experiments, we compared model per-
formance against the average activity of an assay. In
all instances involving the ENCODE2018-Core dataset,
“average activity” refers to the average signal value at each
locus across all biosamples in the training set for that
particular experiment. Because the predictions across the
entire ENCODE2018-Core dataset are made using five-
fold cross-validation, the training set differs for tracks
from different folds. This approach ensures that the track
being predicted is not included in the calculation of
average activity which would make the baseline unfair.
In instances involving the ENCODE2018-Sparse dataset,
“average activity” refers to the average activity across
all tracks of that assay that were present in the entire
ENCODE2018-Core dataset.

Incorporating new experiments
We evaluated the performance of three approaches for
handling the incorporation of additional biosamples or
assays into a model: retraining the model from scratch,
fine-tuning the parameters of a pre-trained model,
and freezing most parameters of a pre-trained model
and training the remaining subset. These approaches
were evaluated using four of the five folds from the
ENCODE2018-Core dataset as the set of “original” exper-
iments and half of the experiments in the ENCODE2018-
Sparse dataset as the “additional” experiments. When
training Avocado from scratch, the model was trained on
both the original and additional experiments for a total
of 8000 epochs, just like our normal training approach.
When fine-tuning a pre-trained model, we first created a
pre-trained model by training Avocado for 6000 epochs

https://www.synapse.org/#!Synapse:syn6112317
https://www.synapse.org/#!Synapse:syn6112317
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
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on just the original experiments and then training on both
the original and the additional experiments for additional
2000 epochs. This ensured that differences in perfor-
mance between the retrained model and the fine-tuned
model did not arise simply due to a different number of
epochs of training. Lastly, we trained Avocado for 8000
epochs on just the original experiments, froze the neu-
ral network and genomic position parameters, and pro-
ceeded with training the assay and biosample factors using
only the additional experiments for 100 epochs.
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