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Hepatocellular carcinoma (HCC) is a malignant tumor with high morbidity and mortality
worldwide. Many studies have shown that dedicator of cytokinesis 2 (DOCK2) has a crucial
role as a prognostic factor in various cancers. However, the potentiality of DOCK2 in the
diagnosis of HCC has not been fully elucidated. In this work, we aimed to investigate the
prognostic role of DOCK2 mutation in HCC. The Cancer Genome Atlas (TCGA) and the
International Cancer Genome Consortium (ICGC) cohorts were utilized to identify the
mutation frequency of DOCK2. Then, univariate Cox proportional hazard regression
analysis, random forest (RF), and multivariate Cox regression analysis were performed
to develop the risk score that was significantly related to DOCK2 mutation. Moreover,
Gene Set Enrichment Analysis (GSEA), Gene Set Variation Analysis (GSVA), and immune
correlation analysis were conducted for an in-depth study of the biological process of
DOCK2 mutation involved in HCC. The results revealed that the mutation frequency of
DOCK2 was relatively higher than that in non-cancer control subjects, and patients with
DOCK2 mutations had a low survival rate and a poor prognosis compared with the
DOCK2-wild group. In addition, the secretin receptor (SCTR), tetratricopeptide repeat,
ankyrin repeat and coiled-coil domain-containing 1 (TANC1), Alkb homolog 7 (ALKBH7),
FRAS1-related extracellular matrix 2 (FREM2), and G protein subunit gamma 4 (GNG4)
were found to be the most relevant prognostic genes of DOCK2 mutation, and the risk
score based on the five genes played an excellent role in predicting the status of survival,
tumor mutation burden (TMB), and microsatellite instability (MSI) in DOCK2 mutant
patients. In addition, DOCK2 mutation and the risk score were closely related to
immune responses. In conclusion, the present study identifies a novel prognostic
signature in light of DOCK2 mutation-related genes that shows great prognostic value
in HCC patients; and this gene mutation might promote tumor progression by influencing
immune responses. These data may provide valuable insights for future investigations into
personalized forecasting methods and also shed light on stratified precision oncology
treatment.
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INTRODUCTION

Hepatocellular carcinoma (HCC), one of the most common
forms of cancer, ranks as the second leading cause of cancer
death in the world (Zhao et al., 2018; Roderfeld et al., 2020). At
present, the treatments for HCC mainly include liver resection,
hepatic transplantation, ablation, and transarterial
chemoembolization (TACE) (Chen et al., 2020).
Nevertheless, due to the high metastasis and recurrence rate
after surgery, the overall prognosis of HCC patients remains
poor (Li et al., 2021). Usually, liver cancer is not diagnosed
until its advanced stage, which makes the fact that most
patients receive either no treatment or only palliative
treatment (Mittal et al., 2016), indicating that delayed
diagnosis results in low patient survival rates. Although
alpha-fetoprotein (AFP) is commonly applied as a tumor
indicator for the diagnosis of HCC, its low specificity and
accuracy are its shortage, which leads to patients missing the
best treatment period (Liang Y. et al., 2021). Thus, there is an
urgent need to discover new biomarkers to facilitate early
detection and prognostic evaluation of HCC.

Dedicator of cytokinesis 2 (DOCK2), originally known as
KIAA0209, encodes CDM protein and has been discovered to
be linked with a prognostic factor in various cancers (Chen
et al., 2018). Recent research exhibited that a high expression
level of DOCK2 conferred a good prognosis of acute myeloid
leukemia (Hu et al., 2019). In prostate cancer, many
specifically hypermethylated genes were found, including
DOCK2, GRASP, HIF3A, and PKFP, among which DOCK2
is the candidate marker with the greatest potentiality (Bjerre
et al., 2019). In addition, lower DOCK2 expression was
related to a poorer prognosis in colorectal cancer, which
was attributed to the regulation of canonical and
noncanonical Wnt signaling (Yu et al., 2015). Moreover,
the DOCK2 genetic variant caused decreased DOCK2
mRNA transcript levels and might be a prognostic
biomarker of non-small-cell lung cancer survival (Du
et al., 2021). Notably, the mutation of DOCK2 was
discovered to correlate with a high risk of HCC (Huang T.
et al., 2021). However, the potentiality of DOCK2 in the
diagnosis of HCC has not been fully elucidated.

In this work, we intended to investigate the prognostic role of
DOCK2 mutation in HCC. First, The Cancer Genome Atlas
(TCGA) and the International Cancer Genome Consortium
(ICGC) cohorts were utilized to identify the mutation
frequency of DOCK2. After clarifying the characteristic genes
that are most related to DOCK2 mutation, the risk score was
developed, which played an excellent role in predicting the status
of survival, tumor mutation burden (TMB), and microsatellite
instability (MSI) in DOCK2mutant patients. Furthermore, for an
in-depth study of the biological processes involved in HCC, Gene
Set Enrichment Analysis (GSEA), Gene Set Variation Analysis
(GSVA), and immune correlation analysis of DOCK2 were
performed. Our findings may identify a novel risk score
related to DOCK2 mutation for the prognosis of HCC,
contributing to early diagnosis, targeted therapy, and
prognostic assessment of HCC.

MATERIALS AND METHODS

Data Processing
In this study, The Cancer Genome Atlas (TCGA, http://cancerge.
nome.nih.gov/) (Tomczak et al., 2015) and the International
Cancer Genome Consortium (ICGC, www.icgc.org) (Zhang
et al., 2019) were used to download somatic mutation data
(MAF files) of TCGA-LIHC cohort and the LIRI-JP cohort.
The primary objective of the ICGC database was to provide a
comprehensive elucidation of genome changes in multiple
cancers that result in human disease burden. Among the
ICGC database, the tumor data from different cancer types (or
subtypes) were collected, including abnormal gene expression,
somatic mutation, epigenetic modification, and clinical data. The
ICGC database contains 25,000 tumor genomes. Meanwhile, the
clinicopathologic characteristics and the prognostic information
of the patients in TCGA-LIHC cohort, such as gender, age, and
clinical stage, were obtained from the UCSC Xena website (http://
xena.ucsc.edu/) (Goldman et al., 2019). Moreover, RNA
sequencing data (count value), containing mutation data and
survival data of 353 patient samples (TCGA-LIHC), were
downloaded from TCGA database for subsequent analysis and
were annotated by the annotation file of the GRCh38 version
from the Ensembl database (http://ftp.ensembl.org/pub/current_
gtf) (Howe et al., 2021). In addition, the copy number variations
data were obtained from TCGA database. The clinical
characteristics of patients are listed in Table 1.

Mutation Analysis
With the development of tumor genomics, the mutation
annotation format (MAF) is being widely accepted and used
to store detected somatic mutations. In this study, the maftools
package (Mayakonda et al., 2018) and the GenVisR package
(Skidmore et al., 2016) were utilized to visualize the somatic
mutation data downloaded from TCGA; meanwhile, the
GenVisR package was also used to visualize the somatic
mutation data obtained from ICGC. Moreover, the mutation
of DOCK2 was revealed by the G3viz package (Guo et al., 2019).

TABLE 1 | Summary of patient data sets.

Variable TCGA set (n = 353) ICGC set (n = 258)

Age (years) — —

≤55 119 29
>55 234 229

Gender — —

Female 116 67
Male 237 191

Histologic grade — —

G1 52 39
G2 171 116
G3 113 80
G4 12 23

TNM stage — —

I/II 247 N/A
III/IV 85 N/A

Family history — —

No 199 164
Yes 106 77
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Additionally, to evaluate whether the genes have copy number
variation in liver cancer, GISTIC2.0 in the Genepattern (https://
cloud.genepattern.org/) cloud analysis platform was used to
analyze the copy number variation data of liver cancer in
TCGA database (M. et al., 2006).

Construction of Dedicator of Cytokinesis 2
Mutation Prediction Model
The liver cancer patients were divided into mutation group
(DOCK2-MUT) and wild group (DOCK2-WT) according to
the DOCK2 mutation status of the gene expression data
downloaded from TCGA. A survival analysis was performed
based on the DOCK2 mutation and prognosis information of
liver cancer patients, thus investigating the prognostic difference
between the DOCK2 mutation group and the wild group.
Moreover, the patients’ data obtained from TCGA was
randomly divided into a training set (N = 264) and a testing set
(N = 89) at a ratio of 7:3. The DOCK2 mutation prediction model
was conducted using the random forest (RF) method (Yperman
et al., 2019) in the training set, and the model performance was
quantified via the receiver operating characteristic (ROC) curve.

Construction of the Prognostic Model
The prognostic model was built in light of the gene expression data
of 28 DOCK2mutant liver cancer patients with clinical information.
First, univariate Cox proportional hazard regression analysis was
performed to initially identify overall survival (OS)-related genes
(p-value<0.05). Next, RF and multivariate Cox regression analyses
were conducted to construct a prognostic model. The formula for
calculating the risk score is risk score = exp gene 1 × β gene 1 + exp
gene 2 × β gene 2 + exp gene 3 × β gene 3 + . . . exp gene n × β gene n
(exp gene n indicates the expression level of gene n; β gene n
indicates the regression coefficient of gene n calculated by
multivariate Cox regression). Moreover, correlation analysis was
performed between the DOCK2 mRNA expression and the risk
score, as well as between the DOCK2 mRNA expression and the
characteristic genes mRNA expression in the model.

Assessment of the Prognostic Model
The liver cancer patients in the DOCK2 mutant group with clinical
information were divided into high-risk groups and low-risk groups
in light of the median risk score. The OS analysis was performed
using the Kaplan–Meier (KM) survival curve and time-dependent
ROC, thus evaluating the prediction accuracy of the model. Then,
the univariate Cox regression analysis and the multivariate Cox
regression analysis were conducted in light of the age, gender, clinical
stage, tumor stage, and risk score in DOCK2 mutant liver cancer
patients. Meanwhile, the risk score and clinical characteristics were
analyzed using correlation analysis.

Tumor Mutation Burden and Microsatellite
Instability Analysis
Given that different DOCK2 mutation types may have different
effects on tumorigenesis, the expression data of liver cancer
patients were divided into two subgroups: inactivated mutation

subgroup and other non-silent mutation subgroups. The two
subgroups were assessed via the KM survival curve and time-
dependent ROC.

Tumor mutation burden (TMB) refers to the total number of
somatic mutations in the exon coding region of the genome that
have substitutions, insertions, or deletions perMb base in a tumor
sample. The TMB score of each liver cancer sample is the total
number of somatic mutations (including non-synonymous point
mutations, insertions, and deletions in the coding region of
exons)/target region size, and the unit is mutations/Mb (Chan
et al., 2019). Microsatellite (MS) is defined as a short tandem
repeat (STR) in the human genome including single-nucleotide
repeats, dinucleotide repeats, and even more nucleotide repeats;
microsatellite instability (MSI) refers to the change of any length
of microsatellites due to the insertion or deletion of repeat units in
tumor tissues compared to normal tissues (Hile et al., 2013). MSI
is calculated as the number of insertions or deletions in gene
repeats. In this study, the relationship between the risk score and
TMB and the correlation between the risk score and MSI were
analyzed, respectively.

Differential Analysis
In order to assess the impact of gene expression value on the
DOCK2 mutant type compared to the DOCK2 wild type, the
limma R package (Ritchie et al., 2015) was used to conduct the
discrepant analysis between the DOCK2 mutant group and
DOCK2 wild-type group. The absolute value of log fold
change (logFC) > 0.5 and p-value <0.05 were set as the
threshold for differentially expressed genes. Among them, the
genes with logFC > 0.5 and p-value <0.05 were considered
upregulated differential genes, while the genes with logFC <
−0.5 and p-value <0.05 were regarded as downregulated
differential genes, and the aforementioned results were
displayed with heat maps and volcano maps.

Gene Functional and Pathway Enrichment
Analysis
Gene Ontology (GO) enrichment analysis is a common method
for large-scale functional enrichment studies of genes in different
dimensions and levels and generally includes three aspects:
biological process (BP), molecular function (MF), and cellular
component (CC) (Ashburner et al., 2000). The Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Ogata et al.,
1999) is a widely applied database that stores numerous data
about genomes, biological pathways, diseases, and drugs.
Additionally, the clusterProfiler R package (Yu et al., 2012)
was applied to identify significantly enriched biological
processes and pathways by GO functional annotation and
KEGG biological pathway enrichment analysis. A p-value
<0.05 was considered statistically significant.

Gene Set Enrichment Analysis and Gene Set
Variation Analysis
Gene Set Enrichment Analysis (GSEA) is a calculation method to
assure whether a set of predefined genes show statistical
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differences between two biological states, generally applied to
estimate changes in the pathway and bioprocess activity in sample
expression datasets (Subramanian et al., 2005). Based on the gene
expression profile data of DOCK2 mutant group and
DOCK2 wild-type group patients in TCGA-LIHC dataset and
the reference gene sets “c5.go.v7.4.entrez.gmt” and
“c2.cp.kegg.v7.4.entrez.gmt” downloaded from the MSigDB
database (Liberzon et al., 2015), the GSEA method included in
the clusterProfiler R package was used to conduct enrichment
analysis of TCGA-LIHC gene expression profile data, thus
studying the differences in the biological processes of genes
between the DOCK2 mutant group and DOCK2 wild group.
A p-value <0.05 was considered statistically significant.

Gene Set Variation Analysis (GSVA) (Hnzelmann et al., 2013;
Liberzon et al., 2015), a nonparametric unsupervised analysis
method, is widely utilized in the evaluation of metabolic pathways
enriched in different samples by converting the expression matrix
of genes between different samples into the expression matrix of
gene sets between samples. To study the biological process
variation of the DOCK2 mutant group compared with the
DOCK2 wild group, the “GSVA” R package (Hnzelmann
et al., 2013; Liberzon et al., 2015) was used to perform gene
set variation analysis, and the enrichment scores of each sample
in each pathway in the reference gene set “h.all.v7.4.symbols.gmt”
were downloaded from the MSigDB database. Moreover, the
GSVA results were also analyzed for correlation with the risk
scores.

Immunoassay
The immune microenvironment is a comprehensive LoAD
system, which is mainly composed of immune cells,
inflammatory cells, fibroblasts, interstitial tissues, and various
cytokines and chemokines. The infiltration analysis of immune
cells in tissues has an important guiding role in disease research
and treatment prognosis.

ESTIMATE analysis, an algorithm that quantifies the immune
activity (immune infiltration level) in tumor samples on the basis
of gene expression data, can reflect the richness of the gene
characteristics of the matrix and immune cells. The content of
stromal cells and immune cells in TCGA-LIHC was calculated by
an ESTIMATE R package (Yoshihara et al., 2013). The
correlation between the ESTIMATE score and the expression
level of characteristic genes and DOCK2 in the prognostic model
was also evaluated.

CIBERSORT is an algorithm that deconvolves the expression
matrix of immune cell subtypes in light of the principle of linear
support vector regression, making use of RNA-Seq data to assess
the abundance of immune cells in the tissue. In this study, the
proportion of 22 immune cell subtypes in TCGA-LIHC immune
microenvironment was calculated by the CIBERSORT algorithm
(Newman et al., 2019) in the R package. The number of
permutations was 1,000, and a p-value <0.05 was considered
accurate for calculating the content of immune cells. Based on
Pearson correlation analysis, the correlation between the
expression levels of characteristic genes and DOCK2 in the
prognostic model and 22 types of immune cells in liver cancer
was calculated.

To test the biological processes and cell signal transduction
pathways that the characteristic genes of the prognostic model
may be involved in, an immune gene set was obtained from the
ImmPort database (Bhattacharya et al., 2014) (https://www.
immport.org), and the relationship between the characteristic
genes and DOCK2 in the prognostic model and immune genes
was determined. The correlation between the expression of the
HLA family and the risk score of the prognostic model was also
conducted.

Statistical Analysis
All data calculations and statistical analysis were performed using
R programming (https://www.r-project.org/, version 3.6.3).
Multiple testing corrections were determined using the
Benjamini–Hochberg (BH) method, and FDR correction was
conducted using multiple tests to reduce the false-positive rate.
For the comparison of two groups of continuous variables, the
statistical significance of normally distributed variables was
estimated by independent Student’s t test, and the differences
between non-normally distributed variables were analyzed by
using the Mann–Whitney U test (the Wilcoxon rank-sum test).
The survival R package (Durisová and Dedík, 1993) was utilized
in the survival analysis. The Kaplan–Meier survival curve was
used to reveal differences in survival, and the significance of the
difference in survival time between the two groups of patients was
assessed via a log-rank test. Univariate and multivariate Cox
analyses were applied to determine independent prognostic
factors. As for assessing the accuracy of the risk score to
estimate the prognosis, the receiver operator characteristic
(ROC) curve was drawn by the pROC package and ROCR
package, and the area under the curve (AUC) was calculated
(Sing et al., 2005; Robin et al., 2011). All p-values reported from
statistical tests were two-sided, and a p-value <0.05 was
considered statistically significant.

RESULTS

Genes With High-Frequency Mutations
in HCC
First, 54 genes with mutation frequencies greater than 6% in
TCGA-LIHC patients obtained from TCGA were identified
(Figure 1A). Moreover, the 54 genes were further confirmed
using the data downloaded from the ICGC database (Figure 1B).
Among them, the mutation frequency of DOCK2 was relatively
high, and the DOCK2 mutation was visualized (Figures 1C, D).
GISTIC 2.0 was utilized to analyze copy number variation data in
TCGA, identifying obviously amplified or deleted genes, and the
results showed that DOCK2 had no significant amplification or
deletion (Figures 1E, F).

Construction of Dedicator of Cytokinesis 2
Mutation Prediction Model
Survival analysis was conducted based on the DOCK2 mutation
data and prognostic information of liver cancer patients, and the
results revealed that the mutation of DOCK2 had an essential
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FIGURE 1 | Analysis of somatic mutation and copy number variation in patients with HCC. (A) 54 genes with the highest mutation frequency in LIHC patients in
TCGA cohort. (B)Mutations of 54 genes in ICGC. The panels on the left of the twowaterfall charts show genes with high-frequencymutations in different cohorts, and the
order was based on their mutation frequency; The panels on the right side of the two waterfall charts reveal different types of mutations represented by various color
modules. (C) DOCK2 mutation in TCGA cohort. (D) DOCK2 mutation in the ICGC cohort. (E,F) Identification of significantly amplified and deleted genes. The
mRNA located at the focal CNA peak was related to LIHC. The false discovery rate (Q value) and the change score of GISTIC2.0 (x-axis) corresponded to the genome
position (y-axis). The dotted line indicates the centromere. The green line represents the significant cutoff (q value of 0.25).
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impact on the prognosis and survival of patients (Figure 2A). In
the training set, the RF method was used to construct a DOCK2
mutation prediction model in the mRNA data (Figures 2B, C).
The ROC curve was used to evaluate the performance of the
model, and AUC scores close to 1 indicated that the model had
high sensitivity under a very low false-positive rate. The model
AUC value in the training cohort was 1.00 and that in the
validation cohort was 80.4% (Figure 2D), which demonstrated
that the performance of this model was sufficient to effectively
predict DOCK2 mutation in other transcription cohorts.

Construction of the Prognostic Model
Univariate Cox proportional hazard regression analysis was
carried out in the gene expression data of 28 DOCK2 mutant
LIHC patients with clinical information and 641 genes related to
OS were discovered (p-value <0.05) (Figure 3A). Then, we
conducted the RF method to find out the most important
features connected with prognosis, and 15 genes were screened
out (Figure 3B). Finally, a multivariate Cox proportional hazard

regression analysis identified the five genes associated with OS,
which are secretin receptor (SCTR), tetratricopeptide repeat,
ankyrin repeat and coiled-coil domain-containing 1 (TANC1),
Alkb homolog 7 (ALKBH7), FRAS1-related extracellular matrix 2
(FREM2), and G protein subunit gamma 4 (GNG4). Cox
regression coefficients of the characteristic genes were
calculated, and the risk score of each sample was defined as
the sum of the expression of each characteristic gene multiplied
by its regression coefficient. To assess the predictive power of the
prognostic model, the risk scores of DOCK2 mutant and
DOCK2 wild-type patients were calculated and ranked, the
survival status of each patient was displayed on the dot chart,
and the expression of characteristic genes was shown on the heat
map (Figures 3C, D). Meanwhile, the correlation between
DOCK2 expression and risk score and characteristic gene
expression was analyzed, respectively. The expression of
DOCK2 was dramatically negatively correlated with the risk
score (Figure 3E). DOCK2 expression was significantly
positively correlated with SCTR (r = 0.293, p-value = 9.6e-10),

FIGURE 2 | DOCK2 mutation survival analysis and model construction. (A) Effect of DOCK2 mutation on OS and its significance. Blue indicates the DOCK2 wild
type; red indicates the DOCK2 mutant type. (B) Relationship between the model error and the number of decision trees. (C) Importance of DOCK2 mutation model
variables. (D) Performance of the DOCK2 mutation model in the test set.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8722246

Huang et al. DOCK2 Mutation-Related Gene Signature in HCC

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 3 | DOCK2 mutation prognostic model. (A) Forest plot of the top 20 prognostic-related genes obtained by univariate regression analysis. The left side of
the vertical red line is the protective gene, and the right side is the dangerous gene. (B) 14 important features selected based on RF. (C,D) Risk score, survival status, and
characteristic gene expression of DOCK2 mutant and DOCK2 wild type, respectively. (E) Scatter plot of the correlation between DOCK2 expression and risk score. (F)
Correlation between DOCK2 and characteristic genes. The size of the dot represents the strength of the correlation between DOCK2 and the characteristic gene;
the size of the point is proportional to the correlation. The color of the dot represents the p-value; the greener the color, the smaller the p-value, and the pinker the color,
the greater the p-value. p-value ≤ 0.05 was considered statistically significant.
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TANC1 (r = 0.607, p-value = 1.8e-43), and FREM2 (r = 0.252,
p-value = 1.8e-07), whereas the expression of DOCK2 had a
significant negative correlation with ALKBH7(r = −0.162, p-value
= 0.0009) (Figure 3F).

Assessment of the Prognostic Model
According to the median risk score, DOCK2 mutant liver cancer
patients with clinical information were divided into the high-risk
group and low-risk group. The results of survival analysis showed
that there was a significant difference in OS between the two risk
groups of 28 DOCK2 mutant samples (Figure 4A). The 1- and 3-
year AUCs on the basis of the risk score obtained by the
prognostic model were 0.791 and 0.822, respectively
(Figure 4B). Additionally, the correlation analysis results of
the risk score and the clinical characteristics of 28 DOCK2
mutant samples revealed that there were no significant
differences in risk scores, different ages, genders, clinical
stages, and tumor stages (Figures 4C–F). Then, univariate Cox
analysis and multivariate Cox analysis were performed based on
the age, gender, clinical stage, tumor stage, and risk score of
DOCK2 mutant liver cancer patients, thus building a clinical
prediction model, the efficacy of which in 28 DOCK2 mutant
samples was 85.8% (Figure 4G). Meanwhile, the calibration curve
showed both good discrimination ability and calibration
(Figure 4H).

Tumor Mutation Burden and Microsatellite
Instability Analysis
Given that different DOCK2 mutation types may have different
effects on the occurrence of liver cancer, this study further divided
the gene expression data of 28 DOCK2 mutant LIHC patients
into two subgroups: the inactivated mutation subgroup (n = 8,
containing nonsense mutation and silent mutation) and other
non-silent mutation subgroups (n = 20). Survival analysis showed
that significant differences in OS were observed between the two
risk groups of samples in other non-silent mutation subgroups
(Figures 5A, B). The time-dependent ROC analysis showed that
in the subgroup of inactivated mutations, the 1- and 3-year AUCs
of the risk score were both 0.833 (Figure 5C); moreover, in other
subgroups of non-silent mutations, the 1- and 3-year AUCs of
risk scores were 0.651 and 0.665, respectively (Figure 5D),
suggesting that the risk score could still maintain good
predictive performance in subgroups with different mutation
types. After acquiring the total number of mutations to obtain
TMB and assessing the relationship between the risk score and
the TMB, we found that there were obvious differences in TMB
between samples with different risk scores (p-value＜0.05)
(Figure 5E). In addition, MSI between samples with different
risk scores also had a significant difference (p-value＜0.05)
(Figure 5F).

Differential Analysis and Functional
Enrichment
To analyze the effect of gene expression values on the DOCK2
mutant samples compared with the DOCK2 wild-type samples,
we conducted a limma discrepant analysis to obtain differentially
expressed genes. The gene expression profile data of 28 DOCK2
mutant samples and 325 DOCK2 wild-type samples were
included in TCGA-LIHC, from which 12 upregulated
differential genes (p-value <0.05, logFC > 0.5) and 4

FIGURE 4 | Analysis of the prognostic model and clinical prediction
model. (A) The impact of risk score on patients’ OS and its significance. Blue
meant a low-risk score, and green meant a high-risk score. (B) Time-
dependent ROC analysis of risk score. (C–F) Correlation analysis of risk
score with age, gender, tumor stage, and clinical stage. (G) ROC curve of a
clinical prediction model in 28 DOCK2 mutant samples. (H) Calibration curve
of the clinical prediction model. The X-axis was the outcome probability
predicted by the model. The Y-axis was the value obtained by actual
observation, and the calculation was repeated 1,000 times. The blue solid line
is the calibration curve, and the diagonal line is the ideal curve. The closer the
calibration curve was to the ideal curve, the better the predictive ability of
the model.
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FIGURE 5 | Assessment of risk score. (A,B) Impact of risk score on OS in the subgroup of inactivated mutations and other subgroups of non-silent mutations and
its significance, respectively. Blue means a low-risk score, and green means a high-risk score. (C,D) Time-dependent ROC analysis of the risk score in the subgroup of
inactivated mutations and other subgroups of non-silent mutations. (E) Analysis of the correlation between TMB and risk score. Pink represents the high-risk group, and
green represents the low-risk group. (F) Correlation analysis between MSI and risk score. Pink represents the high-risk group, and green represents the low-
risk group.
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FIGURE 6 | Differential gene and its functional enrichment analysis. (A) Abscissa is log2FoldChange, and the ordinate is −log10 (adjust p-value). The red nodes
indicates upregulation, the blue nodes indicate downregulation, and the gray nodes represent insignificant expression. (B) Abscissa is the patient ID, and the ordinate is
the differential gene. Red represents high gene expression, and blue represents low gene expression. The green comment bar indicates the DOCK2 mutant sample,
while the red comment bar indicates the DOCK2 wild-type sample. (C–F) GO function enrichment analysis of differential genes and display of BP, MF, and CC.
(D–F)Color of the node indicates the level of gene expression value. Blue represents that the expression value was downregulated, and red indicates that the expression
value was upregulated. The middle quadrilateral represents the effect of genes on the enriched GO terms. Light color means inhibition; dark color means activation. (G)
KEGG pathway enrichment analysis. The abscissa is the gene ratio, and the ordinate is the pathway name. The size of the node indicates the number of genes enriched in
the pathway, and the color of the node indicates −log10 (p-value). (H) Display of the first five items in the KEGG enrichment analysis of differential genes.
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downregulated differential genes (p-value <0.05, logFC < −0.5)
were screened out, and the volcanic map and heat map of the
differential genes were shown in Figures 6A,B. To determine the
value of the differential genes, the biological processes, the cellular
components, and the molecular functions were performed. GO
functional enrichment analysis was first assessed on the 16
differential genes (Figure 6C and Table 2), and the results
showed that these genes were mainly enriched in biological
processes such as antimicrobial humoral response,
antimicrobial humoral immune response mediated by
antimicrobial peptides, regulation of cardiac muscle
contraction, humoral immune response, regulation of striated
muscle contraction, regulation of membrane potential, cardiac
muscle contraction, and skeletal muscle tissue development

(Figure 6D); in cellular components including fascia adherens,
transport vesicle membrane, GABA-A receptor complex, GABA
receptor complex, mast cell granule, integral component of
synaptic vesicle membrane, postsynaptic membrane, and
dendrite membrane (Figure 6E); and in molecular functions
including benzodiazepine receptor activity, secondary active
monocarboxylate transmembrane transporter activity, GABA-
gated chloride ion channel activity, amino acid:sodium
symporter activity, oligosaccharide binding, inhibitory
extracellular ligand-gated ion channel activity, peptidoglycan
binding, and amino acid:cation symporter activity (Figure 6F).
Then, pathways significantly affected by 16 differential genes
were also performed (Figure 6G and Table 3), and the data
revealed that the 16 differential genes were involved in

TABLE 2 | GO enrichment analysis.

Ontology ID Description p-value

BP GO:0019730 Antimicrobial humoral response 0.00011696
BP GO:0061844 Antimicrobial humoral immune response mediated by antimicrobial peptides 0.001532039
BP GO:0055117 Regulation of cardiac muscle contraction 0.001927973
BP GO:0006959 Humoral immune response 0.002637965
BP GO:0006942 Regulation of striated muscle contraction 0.002684261
BP GO:0042391 Regulation of membrane potential 0.004609488
BP GO:0060048 Cardiac muscle contraction 0.005272199
BP GO:0007519 Skeletal muscle tissue development 0.007122358
BP GO:0035821 Modification of morphology or physiology of other organisms 0.007470229
BP GO:0060538 Skeletal muscle organ development 0.007915771
BP GO:1900426 Positive regulation of defense response to bacterium 0.008007218
BP GO:0006937 Regulation of muscle contraction 0.0080973
BP GO:0006941 Striated muscle contraction 0.008373123
BP GO:0033148 Positive regulation of intracellular estrogen receptor signaling pathway 0.008804639
BP GO:0048742 Regulation of skeletal muscle fiber development 0.008804639
CC GO:0005916 Fascia adherens 0.008087095
CC GO:0030658 Transport vesicle membrane 0.012058338
CC GO:1902711 GABA-A receptor complex 0.015313019
CC GO:1902710 GABA receptor complex 0.016112846
CC GO:0042629 Mast cell granule 0.017710673
CC GO:0030285 Integral component of synaptic vesicle membrane 0.027246665
CC GO:0045211 Postsynaptic membrane 0.027593411
CC GO:0032590 Dendrite membrane 0.031982049
CC GO:0098563 Intrinsic component of synaptic vesicle membrane 0.037479348
CC GO:0030133 Transport vesicle 0.039367589
CC GO:0014704 Intercalated disc 0.039826362
CC GO:0,034,707 Chloride channel complex 0.039826362
CC GO:0031252 Cell leading edge 0.041396752
CC GO:0032589 Neuron projection membrane 0.045281879
CC GO:0097060 Synaptic membrane 0.04693445
MF GO:0008503 Benzodiazepine receptor activity 0.008670141
MF GO:0015355 Secondary active monocarboxylate transmembrane transporter activity 0.008670141
MF GO:0022851 GABA-gated chloride ion channel activity 0.010239011
MF GO:0005283 Amino acid:sodium symporter activity 0.011022581
MF GO:0070492 Oligosaccharide binding 0.011805575
MF GO:0005237 Inhibitory extracellular ligand-gated ion channel activity 0.012587993
MF GO:0042834 Peptidoglycan binding 0.013369837
MF GO:0005416 Amino acid:cation symporter activity 0.014151105
MF GO:0004890 GABA-A receptor activity 0.014931799
MF GO:0099095 Ligand-gated anion channel activity 0.015711918
MF GO:0016917 GABA receptor activity 0.017270437
MF GO:0030552 cAMP binding 0.018048836
MF GO:0004190 Aspartic-type endopeptidase activity 0.019603918
MF GO:0005328 Neurotransmitter:sodium symporter activity 0.020380602
MF GO:0070001 Aspartic-type peptidase activity 0.020380602
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GABAergic synapse, nicotine addiction, endometrial cancer,
adherens junction, and bacterial invasion of epithelial cells
(Figure 6H).

Gene Set Enrichment Analysis and Gene Set
Variation Analysis
GSEA biological function enrichment analysis of DOCK2-MUT
and DOCK2-WT genes was performed, and the results showed
that the genes in DOCK2-MUT and DOCK2-WT were enriched
in biological processes including coagulation and regulation of
cytosolic calcium ion concentration (Figures 7A, B and Table 4).

Next, the results of GSEA biological pathway enrichment
analysis suggested that biological pathways such as
complement and coagulation cascades, glycosphingolipid
biosynthesis, and ganglio series were identified among the
targets in DOCK2-MUT and DOCK2-WT (Figures 7C, D
and Table 4).

Furthermore, in order to comprehensively evaluate the roles of
the targets in DOCK2-MUT and DOCK2-WT in liver cancer, the
GSVA was conducted. The data showed three hallmarks:
reactive_oxygen_species_pathway, spermatogenesis, and
uv_response_dn (Figure 7E). Among them, spermatogenesis was
significantly negatively correlated with risk score (p-value <0.05);
uv_response_dn was obviously positively related with risk score
(p-value <0.05); however, reactive_oxygen_species_pathway had no
significant correlation with risk score (Figures 7F–H).

Immunoassay
As liver cancer is considered an immunogenic tumor, the
relationship between the expression of DOCK2, SCTR,
TANC1, ALKBH7, FREM2, and GNG4 and the levels of
immune cells and stromal cells was assessed (Figures 8A, B).
The data showed a positive correlation between stromal cells and
DOCK2, SCTR, TANC1, and FREM2, and a negative correlation
between stromal cells and ALKBH7 and GNG4. Moreover,
immune cells had a positive correlation with DOCK2 and
TANC1 and a negative correlation with ALKBH7 (p-value <0.05).

In addition, the six target genes, DOCK2, SCTR, TANC1,
ALKBH7, FREM2, and GNG4, were significantly correlated with
specific immune-related genes. For example, DOCK2 was
significantly related to the immune gene of SEMA3F; SCTR
was correlated with SEMA3F and FGR; and the same situation

occurred between GNG4 and SEMA3F and NFYA, FREM2 and
FGR, NFYA and MPO, ALKBH7 and SEMA3F, FGR, NFYA and
CALCR (p-value <0.05) (Figure 8C).

More importantly, the six target genes were obviously
interrelated with the infiltration of numerous immune cells.
DOCK2 gene expression was distinctly related to the
infiltration of 11 immune cells; SCTR gene expression was
dramatically correlated with the infiltration of 7 immune cells;
TANC1 gene expression was obviously interrelated with the
infiltration of 10 immune cells; FREM2 gene expression was
distinctly related to the infiltration of one immune cell; ALKBH7
gene expression was dramatically correlated with the infiltration
of 4 immune cells; GNG4 gene expression was markedly
interrelated with the infiltration of 7 immune cells (p-value
<0.05) (Figure 8D). Furthermore, the expression value of
HLA-DOA was statistically significant in different risk groups
(Figure 8E).

DISCUSSION

It is worth noting that genetic mutation plays an essential role in
HCC. Some reports showed that the genetic mutation of some
important genes, including TP53, CTNNB1, and AXIN1, was
relevant to poor outcomes for patients with HCC (Zhan et al.,
2013; Schulze et al., 2015). It is suggested that exploring genomic
instability is a great way to discover promising prognostic
biomarkers for the treatment of HCC. DOCK2 has been
discovered to be linked with a prognostic factor in various
cancers such as acute myeloid leukemia, prostate cancer,
colorectal cancer, and non-small-cell lung cancer (Du et al.;
Yu et al., 2015; Bjerre et al., 2019; Hu et al., 2019).
Nevertheless, research on the diagnosis ability of DOCK2 in
HCC remains insufficient. In the present study, a high mutation
of DOCK2 was found in TCGA-LIHC cohort, which was further
verified in the LIRI-JP cohort, indicating that DOCK2 mutation
was significantly frequent in HCC. Moreover, survival analysis
showed that patients with DOCK2 mutation had a low survival
rate and a poor prognosis compared with the DOCK2 wild-type
group, suggesting that DOCK2 might exhibit a great value in the
prognosis of HCC.

Given the frequency of DOCK2 mutation in HCC, it is
essential to conduct an in-depth study of an effective method

TABLE 3 | KEGG enrichment analysis.

Ontology ID Description p-value

KEGG hsa04727 GABAergic synapse 0.000356208
KEGG hsa05033 Nicotine addiction 0.014756278
KEGG hsa05213 Endometrial cancer 0.021348965
KEGG hsa04520 Adherens junction 0.026092015
KEGG hsa05100 Bacterial invasion of epithelial cells 0.028275936
KEGG hsa05412 Arrhythmogenic right ventricular cardiomyopathy 0.028275936
KEGG hsa04721 Synaptic vesicle cycle 0.028639606
KEGG hsa04742 Taste transduction 0.031545693
KEGG hsa05032 Morphine addiction 0.033359051
KEGG hsa04670 Leukocyte transendothelial migration 0.041671347
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for predicting the prognosis of DOCK2 mutant HCC patients.
Thus, we calculated the risk score on the basis of the five most
relevant prognostic genes including SCTR, TANC1, ALKBH7,

FREM2, and GNG4. The risk score exhibited great predictive
ability in different DOCK2 mutation statuses, risks, and types.
Moreover, the risk score showed an excellent correlation with

FIGURE 7 |GSEA andGSVA. (A,B)Results of GSEA biological function enrichment. (C,D)Results of biological pathway enrichment. (E)Heatmap of the significant
hallmark analyzed by GSVA. (F,H) Scatter plot of correlation between significant hallmark and risk score.
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TABLE 4 | GSEA.

ID Description ES p-value

go_coagulation go_coagulation −0.409069157 0.001672241
go_regulation_of_cytosolic_calcium_ion_concentration go_regulation_of_cytosolic_calcium_ion_concentration −0.373853775 0.001692047
go_ventricular_cardiac_muscle_cell_action_potential go_ventricular_cardiac_muscle_cell_action_potential −0.635035665 0.001769912
go_cell_cell_adhesion_via_plasma_membrane_adhesion_molecules go_cell_cell_adhesion_via_plasma_membrane_adhesion_molecules −0.432720305 0.00177305
go_negative_regulation_of_execution_phase_of_apoptosis go_negative_regulation_of_execution_phase_of_apoptosis -0.756145207 0.001785714
go_negative_regulation_of_myoblast_differentiation go_negative_regulation_of_myoblast_differentiation −0.729056439 0.001785714
go_regulation_of_execution_phase_of_apoptosis go_regulation_of_execution_phase_of_apoptosis −0.642047088 0.001785714
go_regulation_of_inflammatory_response_to_antigenic_stimulus go_regulation_of_inflammatory_response_to_antigenic_stimulus -0.726196139 0.001798561
go_negative_regulation_of_synapse_organization go_negative_regulation_of_synapse_organization -0.72808206 0.001801802
go_negative_regulation_of_inflammatory_response_to_antigenic_stimulus go_negative_regulation_of_inflammatory_response_to_antigenic_stimulus −0.827265127 0.001805054
go_lipid_translocation go_lipid_translocation −0.601531891 0.001808318
go_cytokine_receptor_activity go_cytokine_receptor_activity −0.540903843 0.001828154
go_blood_microparticle go_blood_microparticle -0.531068688 0.001838235
go_homophilic_cell_adhesion_via_plasma_membrane_adhesion_molecules go_homophilic_cell_adhesion_via_plasma_membrane_adhesion_molecules −0.531976492 0.001848429
go_complement_activation go_complement_activation −0.566062924 0.001865672
go_immune_receptor_activity go_immune_receptor_activity −0.526876463 0.001872659
go_organophosphate_ester_transport go_organophosphate_ester_transport −0.455964352 0.001879699
go_dna_replication_independent_nucleosome_organization go_dna_replication_independent_nucleosome_organization 0.584583627 0.002118644
go_odorant_binding go_odorant_binding 0.524374367 0.002132196
go_digestion go_digestion 0.456798178 0.002145923
go_diencephalon_development go_diencephalon_development 0.542992829 0.002159827
go_ear_morphogenesis go_ear_morphogenesis 0.482732218 0.002164502
go_neuron_fate_commitment go_neuron_fate_commitment 0.623987975 0.002164502
go_endocrine_system_development go_endocrine_system_development 0.486005649 0.002169197
go_appendage_morphogenesis go_appendage_morphogenesis 0.489850317 0.002178649
go_keratinization go_keratinization 0.454250476 0.002178649
go_cornification go_cornification 0.531790615 0.002188184
go_embryonic_skeletal_system_development go_embryonic_skeletal_system_development 0.503417996 0.002188184
go_skeletal_system_morphogenesis go_skeletal_system_morphogenesis 0.440722934 0.002188184
go_embryonic_appendage_morphogenesis go_embryonic_appendage_morphogenesis 0.475526703 0.002192982
go_cell_fate_specification go_cell_fate_specification 0.504467657 0.002197802
go_divalent_inorganic_anion_homeostasis go_divalent_inorganic_anion_homeostasis 0.825664161 0.002202643
go_embryonic_skeletal_system_morphogenesis go_embryonic_skeletal_system_morphogenesis 0.578909723 0.002207506
go_anterior_posterior_pattern_specification go_anterior_posterior_pattern_specification 0.475479352 0.002222222
go_proximal_distal_pattern_formation go_proximal_distal_pattern_formation 0.65212998 0.002227171
go_appendage_development go_appendage_development 0.473257146 0.002247191
go_cornified_envelope go_cornified_envelope 0.629843229 0.002252252
go_hindlimb_morphogenesis go_hindlimb_morphogenesis 0.642853948 0.002252252
go_negative_regulation_of_response_to_extracellular_stimulus go_negative_regulation_of_response_to_extracellular_stimulus 0.795788231 0.002252252
go_muscle_cell_fate_commitment go_muscle_cell_fate_commitment 0.824992566 0.002277904
go_neuron_fate_specification go_neuron_fate_specification 0.68805324 0.00228833
go_cell_fate_commitment go_cell_fate_commitment 0.400964549 0.002309469
go_monovalent_inorganic_anion_homeostasis go_monovalent_inorganic_anion_homeostasis 0.667695897 0.002309469
go_sensory_organ_morphogenesis go_sensory_organ_morphogenesis 0.430365367 0.002309469
go_embryonic_organ_morphogenesis go_embryonic_organ_morphogenesis 0.424037318 0.002364066
kegg_complement_and_coagulation_cascades kegg_complement_and_coagulation_cascades −0.533293095 0.001824818
kegg_glycosphingolipid_biosynthesis_ganglio_series kegg_glycosphingolipid_biosynthesis_ganglio_series 0.773222168 0.004329004
kegg_propanoate_metabolism kegg_propanoate_metabolism −0.574271735 0.018248175
kegg_renin_angiotensin_system kegg_renin_angiotensin_system −0.660325041 0.023897059
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TMB and MSI. Moreover, the clinical prediction model based
on age, gender, clinical stage, tumor stage, and risk score
revealed both good discrimination ability and calibration,
suggesting that these clinical features could independently
predict the prognosis of patients with HCC. In addition to
providing prognostic information, these five genes can also
be used in precise oncology as biomarkers to guide targeted
therapy.

SCTR, encoding the protein named G protein-coupled
receptor, belongs to the glucagon–VIP–secretin receptor family
(Bayliss and Starling, 1902). It has been reported that in colorectal
cancer, hypermethylation of SCTR had a diagnostic value (Li
et al., 2020). Moreover, SCTR was also found to be a predictor of
the risk for breast cancer and pancreatic ductal adenocarcinoma
(Zheng et al., 2018; Park et al., 2020). TANC1 has an ankyrin
repeat (AR) domain that participates in many cell functions,
especially tumorigenesis (Yang et al., 2019). Through Ingenuity
Pathway Analysis (IPA), genes regulated by TANC1 were
enriched in hepatic inflammation and HCC (Wu et al.,
2021). ALKBH7, a mitochondrial ketoglutarate dioxygenase,
decreases ROS formation to regulate programmed necrosis
(Meng et al., 2019; Kulkarni et al., 2020). A single-nucleotide
polymorphism (SNP) of ALKBH7 was clarified as a new
prostate cancer biomarker in 2017 (Walker et al., 2017).
FREM2 belongs to an extracellular matrix protein located in
the dense layer of the epithelial basement membrane (Wang
et al., 2021). In prostate adenocarcinoma, FREM2 was found to
be one of the most recurrently mutated genes (Zhao et al.,
2019). Upregulated FREM2 protein expression was
demonstrated in glioblastomas compared to normal samples
(Jovcevska et al., 2019). GNG4 is one of the fourteen γ-subunit
proteins of the G protein-coupled receptor (Kishibuchi et al.,
2020). As a tumor suppressor gene, abnormal expression of
GNG4 was reported in multiple cancers containing colorectal
cancer, bladder cancer, and glioblastoma (Pal et al., 2016;
Zhang et al., 2018; Liang L. et al., 2021). To sum up,
evidence has shown that the five genes clarified in this work
all have essential roles in malignant development, indicating
that developing corresponding targeted therapies for high-risk
DOCK2-mutant HCC was feasible.

To understand the role of DOCK2 mutation in HCC from
multiple angles, its potential mechanism in this disease should be
focused on. Through the analysis of GO, KEGG, GSEA, and
GSVA, we found that DOCK2 mutation could influence humoral
immune response, transport vesicle membrane, mast cell granule,
adherens junction, complement and coagulation cascades, and
reactive oxygen species pathway. More importantly, these
biological processes and pathways are closely correlated with
immune function. Immunity plays an essential role in tumor
development including tumor proliferation, invasion, and
metastasis. A significantly important reason for tumor
initiation and progression is that the tumor microenvironment
(TME) changes from immune activation to immune suppression,
thereby avoiding immune surveillance (Han et al., 2019). In
addition, increasing evidence showed that genetic mutation
was not adequate to start tumors, and TME acted as the
second hit that might be needed to drive tumor developmentT
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(Sahoo et al., 2018). The TME consists of the stromal and
immune cells (Huang H. et al., 2021). Both stromal cells and
immune cells were found to be significantly correlated with

DOCK2 and the characteristic genes of the prognostic model,
indicating that DOCK2 might regulate the immune process to
promote the development of HCC. There are many immune cells

FIGURE 8 | Immune correlation analysis. (A,B) Correlation of DOCK2 and characteristic genes with the content of immune cells and stromal cells. (C) Correlation
between DOCK2 and characteristic genes and immune genes. (D)Correlation of DOCK2 and characteristic gene expression with immune cell infiltration. (E) Correlation
between HLA family expression and the risk score.
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involved in tumorigenesis and progression. For the in-depth
investigation, SEMA3F, FGR, NFYA, MPO, and CALCR
showed a high correlation with DOCK2 and its
characteristic genes. In addition, the expression level of
HLA-DOA revealed a significant difference in different
DOCK2 risk groups. Thus, the six immune genes, namely,
SEMA3F, FGR, NFYA, MPO, CALCR, and HLA-DOA, might
be the targets of DOCK2 immune-related treatments in the
future.

Although the current work sheds new light on the
relationship between DOCK2 and HCC, there were still
some limitations. First of all, the number of cohorts with
both TCGA-LIHC and LIRI-JP was restricted, and multi-
center large sample research is needed. Second, given that
the data were obtained from public resources, the bias of the
analyzed profile could not be ignored. Finally, all the results in
this work came from in silico analyses, and further clinical
validations and experiments are required to promote the
clinical application of our findings, which will be our next
research content in the near future.

In conclusion, the present study identifies a novel prognostic
signature based on DOCK2 mutation-related genes that shows
great prognostic value in HCC patients, and this gene mutation
might promote tumor progression by influencing immune
responses. These data provide valuable insights for future

investigations into personalized forecasting methods and also
shed light on stratified precision oncology treatment.
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