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Abstract

Background: Elderly patients are more likely to suffer from severe ischemic stroke (IS) and have worse outcomes, including
death and disability. We aimed to develop and validate predictive models using novel machine learning algorithms for the 3-
month mortality in elderly patients with IS admitted to the intensive care unit (ICU).

Methods: We conducted a retrospective cohort study. Data were extracted from Medical Information Mart for Intensive Care
(MIMIC)-IV and International Stroke Perfusion Imaging Registry (INSPIRE) database. Ten machine learning algorithms
including Categorical Boosting (CatBoost), Random Forest (RF), Support Vector Machine (SVM), Neural Network (NN),
Gradient Boosting Machine (GBM), K-Nearest Neighbors (KNNs), Multi-Layer Perceptron (MLP), Naive Bayes (NB),
eXtreme Gradient Boosting (XGBoost) and Logistic Regression (LR) were used to build the models. Performance was mea-
sured using area under the curve (AUC) and accuracy. Finally, interpretable machine learning (IML) models presenting as
Shapley additive explanation (SHAP) values were applied for mortality risk prediction.

Results: A total of 1826 elderly patients with IS admitted to the ICU were included in the analysis, of whom 624 (34.2%) died,
and endovascular treatment was performed in 244 patients. After feature selection, a total of eight variables, including min-
imum Glasgow Coma Scale values, albumin, lactate dehydrogenase, age, alkaline phosphatase, body mass index, platelets,
and types of surgery, were finally used for model construction. The AUCs of the CatBoost model were 0.737 in the testing set
and 0.709 in the external validation set. The Brier scores in the training set and testing set were 0.12 and 0.21, respectively.
The IML of the CatBoost model was performed based on the SHAP value and the Local Interpretable Model-Agnostic
Explanations method.

Conclusion: The CatBoost model had the best predictive performance for predicting mortality in elderly patients with IS
admitted to the ICU. The IML model would further aid in clinical decision-making and timely healthcare services by the
early identification of high-risk patients.
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Introduction
Ischemic stroke (IS) accounts for approximately 80% of
strokes and has become the second leading cause of mortal-
ity.1 Previous research has revealed that over 75% of
strokes occur in the elderly, leading to a significant financial
burden.2,3 By 2050, the global population of elderly indivi-
duals will exceed that of individuals under 65 for the first
time in recorded history.4 With prolonged life expectancy,
an aging population leads to significantly increased stroke
rates.5 By 2050, the number of stroke survivors is projected
to exceed 200 million.6 Therefore, it is important to focus
on managing acute stroke in the elderly to decrease the
occurrence and enhance outcomes in this vulnerable
group.7

The risk factors for stroke and mechanisms of ischemic
injury differ between young and elderly patients.
Additionally, elderly patients with ischemic stroke fre-
quently receive ineffective therapy and experience worse
outcomes compared to younger individuals with the condi-
tion.7 Because of the different profiles of risk factors and
different frequencies of stroke etiologies and subtypes,8

the models established from younger cohorts may lead to
suboptimal care for elderly patients,9 and special models
are needed for the elderly. When stroke-related cerebral
impairment impairs the function of other vital organs,
patients may require intensive care unit (ICU) care. There
were significant differences between those admitted to the
ICU and those admitted to the neurological ward. The
ICU group was characterized by higher neurological sever-
ity, measured using validated instruments (e.g. the National
Institutes of Health Stroke Scale, NIHSS10); moderate to
severe impairment of consciousness; need for mechanical
ventilation in many cases11; and high in-hospital mortality.
What’s more, functional outcomes in survivors entering
ICU appear to be poor, especially in elderly patients.12

Except for stroke severity scoring systems, such as
NIHSS, outcome assessment should include the clinical
evolution and the quality of survival, using appropriate
tools.13 Therefore, special models should be constructed
for managing elderly ICU individuals with IS.

Artificial intelligence is increasingly being used in medi-
cine, and clinical decision aid systems that rely on artificial
intelligence have become a research hotspot.14 Recently,
new machine learning algorithms have shown superior per-
formance in various competitions, such as Categorical
Boosting (CatBoost), and eXtreme Gradient Boosting
(XGBoost).15,16 What’s more, the studies using machine
learning (ML) algorithms to predict three-month ICU mor-
tality in elderly stroke patients are limited.

Therefore, the aim of our study was to develop a prog-
nostic model for elderly ICU individuals with IS that
could reliably identify patients at a very high risk of
death. We developed interpretable machine learning
models for predicting three-month in-hospital mortality.

We further analyzed the contribution of each variable of
the interpretable machine learning (IML) Model outcome
using the Shapley Additive exPlanation (SHAP) values.

Methods

Design and participants

Our study was conducted in accordance with the TRIPOD
checklist,17 and details are shown in Supplement
Figure 6. We did a multicenter, retrospective study. For
model training and testing, we used the data from the
Medical Information Mart for Intensive Care (MIMIC).
Data of elderly patients with IS were extracted from the
publicly available critical care database, MIMIC-IV 2.0.18

All data were extracted from MIMIC-IV 2.0 (certification
ID: 43357625). Philips Healthcare provided the
MIMIC-IV database in partnership with Massachusetts
Institute of Technology (MIT) Laboratory for
Computational Physiology. It included de-identified death
data for 23,844 ICU patients admitted between 2008 and
2019. Based on the de-identified patient information, the
database’s official ethics committee approved the public
distribution of these clinical data. Consent was waived
because retrospective patient data were anonymized.

The inclusion criteria were as follows: (1) diagnosis of
IS according to ICD-9-CM diagnoses: 434.91 (cerebral
artery occlusion, unspecified with cerebral infarction) or
ICD-10-CM diagnoses of IS: I63.50 (cerebral infarction
due to unspecified occlusion or stenosis of unspecified cere-
bral artery); (2) first-time ICU visit; (3) age ≥65 years. The
exclusion criteria were as follows: (1) ICU stay of less than
24 hours; (2) individuals with missing values of more than
30%.

The external validation set is from the International
Stroke Perfusion Imaging Registry (INSPIRE) dataset
Version 1.2, a publicly accessible research dataset dedi-
cated to perioperative medicine. It encompasses around
130,000 patients, involving patients at a South Korean
academic institution over the period 2011 to 2020. The
inclusion criteria were as follows: (1) diagnosis of IS;
(2) age ≥65 years. Patients with personal data missing
of more than 30% were excluded. Finally, the external
validation set of 515 patients came from the INSPIRE
dataset.

Outcome variables and predictors

The primary outcome was death of elderly stroke patients
within three months after ICU admission, either in or out
of the hospital. Data on deaths in discharged patients
were collected during the follow-up. Clinical information
was gathered within 24 hours of admission. A literature
review was used to identify candidate predictor factors,
with an emphasis on those available in the ICU. The 52
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Table 1. The population demographics and clinical characteristics.

Variables
Total
(n= 1826)

Survival
(n= 1202)

Death
(n= 624) P

Gender, n (%) 0.067

Female 995 (54) 636 (53) 359 (58)

Male 831 (46) 566 (47) 265 (42)

Smoking, n (%) 0.741

No 1283 (70) 841 (70) 442 (71)

Yes 543 (30) 361 (30) 182 (29)

Race, n (%) 0.095

Black 210 (12) 136 (11) 74 (12)

White 1119 (61) 757 (63) 362 (58)

Others 497 (27) 309 (26) 188 (30)

Age, median (Q1, Q3) 78 (71, 85) 76 (70, 83) 81 (74, 87) <0.001

BMI, median (Q1, Q3) 26.6 (22.8, 30.7) 27.2 (23.3, 31.2) 25.6 (21.7, 29.7) <0.001

Myocardial infarction, N (%) 0.002

No 1432 (78) 969 (81) 463 (74)

Yes 394 (22) 233 (19) 161 (26)

Congestive heart failure, n (%) <0.001

No 1203 (66) 854 (71) 349 (56)

Yes 623 (34) 348 (29) 275 (44)

Dementia, n (%) <0.001

No 1643 (90) 1105 (92) 538 (86)

Yes 183 (10) 97 (8) 86 (14)

COPD, n (%) 0.077

No 1426 (78) 954 (79) 472 (76)

Yes 400 (22) 248 (21) 152 (24)

DM, n (%) 1

No 1173 (64) 772 (64) 401 (64)

Yes 653 (36) 430 (36) 223 (36)

(continued)
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Table 1. Continued.

Variables
Total
(n= 1826)

Survival
(n= 1202)

Death
(n= 624) P

Renal disease, n (%) <0.001

No 1373 (75) 934 (78) 439 (70)

Yes 453 (25) 268 (22) 185 (30)

Malignant cancer, n (%) <0.001

No 1670 (91) 1125 (94) 545 (87)

Yes 156 (9) 77 (6) 79 (13)

Severe liver disease, n (%) 0.006

No 1800 (99) 1192 (99) 608 (97)

Yes 26 (1) 10 (1) 16 (3)

APSIII, median (Q1, Q3) 45 (33, 60) 39 (30, 51) 59 (44, 76) <0.001

LODS, median (Q1, Q3) 4 (2, 7) 3 (2, 5) 6 (4, 9) <0.001

SOFA, median (Q1, Q3) 4 (2, 6) 3 (2, 5) 5 (4, 8) <0.001

GCS min, median (Q1, Q3) 12 (8, 14) 13 (10, 14) 9 (6, 13) <0.001

Heart rate, median (Q1, Q3) 81 (70, 95) 80 (69, 92) 85.5 (73, 102) <0.001

SBP, median (Q1, Q3) 138 (118, 155) 139 (119, 156) 135 (115, 155) 0.018

DBP, median (Q1, Q3) 71 (60, 85) 71 (60, 84) 72 (59, 85) 0.88

MBP, median (Q1, Q3) 90 (78, 102.75) 90 (79, 103) 89 (76, 102) 0.291

Respiratory rate, median (Q1, Q3) 18 (16, 22) 18 (16, 22) 19 (16, 24) <0.001

Temperature, median (Q1, Q3) 36.7 (36.4, 37.0) 36.7 (36.5, 37.0) 36.7 (36.4, 37.1) 0.232

SpO2, median (Q1, Q3) 98 (95, 100) 98 (96, 100) 98 (95, 100) 0.028

Glucose, median (Q1, Q3) 128 (105, 167) 124 (103, 160) 136.5 (112, 187) <0.001

Hematocrit, median (Q1, Q3) 35.1 (31.0, 39.2) 35.7 (31.4, 39.5) 34.1 (29.9, 38.5) <0.001

Hemoglobin, median (Q1, Q3) 11.5 (9.9, 12.9) 11.6 (10.2, 13.2) 11.0 (9.4, 12.4) <0.001

Platelets, median (Q1, Q3) 204 (158, 261) 204 (160, 256) 204 (156, 269) 0.656

WBC, median (Q1, Q3) 9.6 (7.4, 12.8) 9.2 (7.22, 12.1) 10.5 (8, 14.12) <0.001

MCH, median (Q1, Q3) 30.1 (28.4, 31.4) 30.2 (28.6, 31.5) 29.8 (28.1, 31.1) 0.001

MCHC, median (Q1, Q3) 32.6 (31.6, 33.5) 32.7 (31.8, 33.7) 32.3 (31.3, 33.2) <0.001

(continued)
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Table 1. Continued.

Variables
Total
(n= 1826)

Survival
(n= 1202)

Death
(n= 624) P

MCV, median (Q1, Q3) 92 (88, 96) 91 (88, 95) 92 (88, 96) 0.203

RBC, mean± SD 3.84± 0.73 3.89± 0.73 3.73± 0.73 <0.001

RDW, Median (Q1, Q3) 14.1 (13.3, 15.4) 13.9 (13.2, 14.9) 14.6 (13.6, 16.2) <0.001

Albumin, median (Q1, Q3) 3.5 (3.2, 3.7) 3.54 (3.3, 3.78) 3.38 (3, 3.6) <0.001

Anion gap, median (Q1, Q3) 15 (13, 17) 14 (13, 16) 15 (13, 18) <0.001

Bicarbonate, median (Q1, Q3) 23 (21, 26) 24 (21.25, 26) 23 (20, 25) <0.001

BUN, median (Q1, Q3) 20 (14, 29) 19 (14, 26) 22.3 (16, 34.3) <0.001

Calcium, median (Q1, Q3) 8.7 (8.2, 9.1) 8.7 (8.3, 9.1) 8.6 (8.1, 9) <0.001

Chloride, median (Q1, Q3) 104 (100, 107) 104 (100, 107) 104 (100, 107) 0.594

Creatinine, median (Q1, Q3) 1 (0.8, 1.3) 1 (0.8, 1.3) 1 (0.8, 1.5) <0.001

Sodium, median (Q1, Q3) 140 (137, 142) 140 (137, 142) 140 (137, 142) 0.714

Potassium, median (Q1, Q3) 4.1 (3.8, 4.5) 4.1 (3.7, 4.5) 4.1 (3.8, 4.6) 0.032

ALT, median (Q1, Q3) 19 (14, 27) 18.7 (14.4, 25.2) 20.7 (14.0, 30.6) 0.004

ALP, median (Q1, Q3) 78 (64, 94) 76 (63, 89) 84 (65, 107) <0.001

AST, median (Q1, Q3) 26.7 (21, 36) 26.2 (21, 34) 27.0 (21.6, 39.5) 0.006

Total bilirubin, median (Q1, Q3) 0.6 (0.4, 0.71) 0.6 (0.4, 0.7) 0.6 (0.4, 0.8) 0.336

LDH, median (Q1, Q3) 246.6 (218.3, 292.0) 237 .0(210.7, 272.0) 270.4 (234.3, 334.2) <0.001

INR, median (Q1, Q3) 1.2 (1.1, 1.4) 1.2 (1.1, 1.3) 1.21 (1.1, 1.5) <0.001

PT, median (Q1, Q3) 13 (11.83, 15.1) 12.8 (11.7, 14.4) 13.8 (12.2, 16.3) <0.001

PTT, median (Q1, Q3) 29.4 (26.5, 34.3) 29.1(26.5, 34.1) 23.0 (26.5, 34.7) 0.149

Type, n (%) 0.086

None 1582 (86.6) 1024 (85.2) 558 (89.4)

Cerebrovascular thrombectomy 26 (1.4) 19 (1.5) 7 (1.1)

Cerebrovascular thrombolysis 196 (10.7) 144 (12.0) 52 (8.4)

Cerebral artery stenting 22 (1.3) 15 (1.3) 7 (1.1)

BMI: body mass index; COPD: chronic obstructive pulmonary disease; DM: diabetes mellitus; APSIII: Acute Physiology Score III; LODS: Logistic Organ
Dysfunction System; SOFA: Sequential Organ Failure Assessment; GCS min: minimum Glasgow Coma Scale values; SBP: systolic blood pressure; DBP: diastolic
blood pressure; MBP: mean blood pressure; SpO2: pulse oximetry; WBC: white blood cell count; MCH: mean corpuscular hemoglobin; MCHC: mean
corpuscular hemoglobin concentration; MCV: mean corpuscular volume; RBC: red blood cell count; RDW: red blood cell volume distribution width; BUN: blood
urea nitrogen; ALT: alanine aminotransferase; ALP: alkaline phosphatase; AST: aspartate aminotransferase; LDH: lactic dehydrogenase; INR: international
normalized ratio; PT: prothrombin time; PTT: partial thromboplastin time; Type: types of endovascular surgery.
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candidate variables were listed in Table 1. The variables
include: (1) Demographic data: gender, age (years), race,
and smoking. (2) Vital sign data: body mass index (BMI,
kg/m2), heart rate (bpm), systolic blood pressure (SBP,
mmHg), diastolic blood pressure (DBP, mmHg), mean
blood pressure (MBP, mmHg), pulse oximetry (SpO2, %),
respiratory rate (bpm), and temperature (degrees C). (3)
Laboratory test data: glucose (mg/dL), hematocrit (%),
hemoglobin (g/dL), platelets (K/µL), white blood cell
count (WBC, K/µL), mean corpuscular hemoglobin
(MCH, pg), mean corpuscular hemoglobin concentration
(MCHC, %), mean corpuscular volume (MCV, fL), red
blood cell count (RBC, m/µL), red blood cell volume distri-
bution width (RDW, %), blood urea nitrogen (BUN, mg/
dL), alanine aminotransferase (ALT, IU/L), alkaline phos-
phatase (ALP, IU/L), aspartate aminotransferase (AST,
IU/L), LDH (lactic dehydrogenase, IU/L), international
normalized ratio (INR), prothrombin time (PT, seconds),
partial thromboplastin time (PTT, seconds). 4) Disease
information: myocardial infarction, congestive heart
failure, dementia, chronic obstructive pulmonary disease
(COPD), diabetes mellitus (DM), renal disease, malignant
cancer, severe liver disease, and types of endovascular
surgery (Type). 5) Score data: Acute Physiology Score III
(APSIII), Logistic Organ Dysfunction System (LODS),
Sequential Organ Failure Assessment (SOFA), and
minimum Glasgow Coma Scale values (GCS min).
Instead of selecting the extreme value, we chose the
average value of the features recorded multiple times in
the electronic medical record system of a patient’s hospital,
thus mitigating the impact of data fluctuations on the
outcome. Variables with more than 30% missing values
were excluded from analysis to ensure accuracy. Missing
values for the variables of the derivation cohort were
listed in Supplementary Table 3. The K-Nearest Neighbor
(KNN) algorithm was used to fill in the missing values
for the variables with missing values less than 30%,
which was fitted to the train data and applied to both the
train and the test sets. Using the R package “DMwR” and
the function “Knn Imputation”, the remaining variables
with missing values were imputed with default parameters
(including k= 5).

Model training and testing

The entire study population were randomly divided into
training and testing sets at an 8:2 ratio.

Selection procedure

Recursive feature elimination (RFE) was applied to select
the most influential features for predicting outcome events
using the training set. Area under the curve (AUC) values
were then measured using the RFE algorithm.

Machine learning model development

The study employed ten common machine learning algo-
rithms, including CatBoost, Random Forest (RF), Support
Vector Machine (SVM), Neural Network (NN), Gradient
Boosting Machine (GBM), KNN, Multi-Layer Perceptron
(MLP), Naive Bayes (NB), XGBoost, and Logistic
Regression (LR), to predict the three-month mortality in
elderly ICU patients with IS. We employed five-fold cross-
validation on the training set to optimize the parameters.
For each classifier, the hyperparameters that produced the
highest average receiver operating characteristic curve
(AUROC) in the five-fold cross-validations were chosen
and adjusted before model testing. To evaluate the perform-
ance of these algorithms, we used a testing set that included
355 patients who were not part of the model training
process. The AUROC, sensitivity, specificity, positive pre-
dictive value (PPV), negative predictive value (NPV),
accuracy, and F1 score were used to assess the perform-
ance. Additionally, we drew calibration curves and calcu-
lated the Brier score. We also did a decision curve
analysis (DCA) to evaluate the net clinical benefit.

Statistical analysis

Data are expressed as mean± standard deviation (SD) when
normally distributed and as median and interquartile range
(IQR) in the presence of skewed distribution. Categorical vari-
ables were expressed as frequencies and percentages and were
compared using chi-squared analysis or Fisher’s exact test.
Outliers were identified and removed. For univariate analysis,
the R packages “Nortest” and “CBCgrps” were used. The
RFE feature selection was achieved using the rfe function
of the “caret” package, within a cross-validation. The R
package “caret” was used to propose the machine learning
models. The receiver operating characteristic (ROC) analysis
and area under the curve (AUC) calculations were performed
using R package “pROC”. Interpretability analysis based on
SHAP. Local Interpretable Model-Agnostic Explanations
(LIME) was performed by “modelstudio” package, and
“lime” package in R (version 4.2.0). P<0.05 was considered
statistically significant.

Results

Population demographics

There were 3115 admissions for IS. The 1826 IS patients
were eligible for further analysis according to the inclusion
and exclusion criteria (Figure 1), of which 54% (995) were
women and 46% (831) were men, with a median age of 78
years (IQR, 71–85 years). A total of 1202 patients with IS
survived for three months in the hospital, and 624 died.
Table 1 shows the characteristics of the survival and mortal-
ity groups.
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Compared to the death group, the BMI, SBP, tempera-
ture, SpO2, hematocrit, hemoglobin, RBC, MCH, MCHC,
albumin, blood calcium, and bicarbonate were significantly

higher in the survival group (P< 0.05). Nevertheless, the
levels of bilirubin, age, heart rate, GCS min, LODS,
SOFA score, respiratory rate, glucose, WBC, RDW,

Figure 1. (a) Flow diagram of the study population. (b) Model development and performance comparison.

Huang et al. 7



anion gap, BUN, creatinine, potassium, ALT, AST, ALP,
LDH, INR, and PT were higher in the death group. The pro-
portion of patients with mild liver disease was higher in the
death group (P<0.05). In addition, we compared the baseline
data of patients who died in-hospital and those who died
out-of-hospital (Supplementary Table 1). The differences in
age, dementia, malignant cancer, glucose, WBC, bicarbonate,
calcium, PT, BMI, GCS, LODS, SOFA, and APSIII in the
two groups were statistically significant (P<0.05).

The external validation set baseline table is shown in
Supplementary Table 2. Compared to the death group, the
BMI, albumin, and GCS min were higher in the survival
group (P< 0.05).

Feature selection

The RFE method was applied for feature selection
(Figure 1), after which the most important eight features
were selected. The prediction models could be built using
features such as GCS min, albumin, LDH, age, ALP,
BMI, platelets, and types of surgery.

Model evaluation and comparison

The prediction models were constructed using several widely
used machine learning algorithms (CatBoost, RF, SVM, NN,
GBM, KNN, MLP, NB, and XGBoost and LR). The ROC
curve, cutoff value, Youden index, F1 score, accuracy, speci-
ficity, sensitivity, PPV, and NPV were used to evaluate the
prediction model. As shown in Figure 2, CatBoost had the
best predictive performance in the testing set, with an AUC

of 0.737, which is better than that of the other models. In
terms of the F1 index and Youden index, as well as the accur-
acy, the CatBoost model also exhibited excellent predictive
performance in the testing set. Comparison of the AUC
values of the CatBoost model with other models by
DeLong test is shown in Supplementary Table 4. In both
the training set and the test set, the P-values are less than
0.05, suggesting that the difference in AUC of CatBoost com-
pared with other models is statistically significant.

The accuracy of the CatBoost mode in the training set was
0.821, which was higher than the accuracy of the LR model.
Table 2 displays all parameters of the models developed using
different algorithms. The AUC value of the model in the
external validation set was 0.709 (Supplementary Figure 3).

In the training set, the CatBoost model had a Brier score
of 0.12, and in the testing set, it had a Brier score of 0.21.
When the Brier score <=0.25, the model was considered
to have favorable calibration.19 In both training and
testing sets, the DCA curve indicated a net benefit and
threshold probability for the CatBoost model (Figure 3(a)
and (b)). According to the calibration plot (Figure 3(c)
and (d)), the CatBoost model adequately predicted mortal-
ity in both training and testing sets. The DCA curves of
the other models in the training sets and testing sets are
shown in Supplementary Figures 7 and 8, respectively.

Model interpretation

As shown in Figure 4, CatBoost analyzes an independent testing
set using the Tree-Explainer class imported from Shapley addi-
tive explanation (SHAP).20 Among the characteristics associated

Figure 2. ROC curve of model. (a) AUC values of all models in the training set. (b) AUC values for all models in the testing set.
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with the three-month mortality in elderly patients with IS
admitted to the ICU, as shown in SHAP summary plots,
GCS min, LDH, type, albumin, age, ALP, platelets, and
BMI had the highest importance scores.

ML explainability results for two patients

The SHAP force plot visualizes the Shapley value, which
indicates whether a prediction increases or decreases from
its baseline.21

Patient 1. Patient 1 was an elderly individual admitted to
the ICU for IS. Indeed, the patient passed away on the
90th day after the admission. The factors identified by the
model that contributed to the higher mortality prediction
for this patient included age, LDH level, platelet count,
ALP, albumin level, and GCS min score. The IML model
predicting that the patient had a high risk of death, the
patient’s actual outcome during the 3 months of follow-up
after ICU admission was death (Figure 4(c)). The SHAP
plot indicates that this patient is at a high risk of poor

Table 2. Model performance metrics in the training set and in the validation set.

Database Model Cutoff Value F1 Accuracy Sensitivity Specificity PPV NPV

Training set (n= 1471)

GBM 0.383 0.769 0.853 0.714 0.925 0.833 0.862

KNN 0.291 0.567 0.764 0.450 0.928 0.764 0.764

LR 0.305 0.591 0.751 0.526 0.868 0.674 0.778

MLP 0.427 0.621 0.744 0.613 0.813 0.631 0.801

NB 0.179 0.619 0.782 0.518 0.919 0.770 0.785

NN 0.321 0.608 0.757 0.550 0.866 0.681 0.787

RF 0.363 0.886 0.927 0.827 0.979 0.954 0.916

SVM 0.220 0.618 0.760 0.565 0.861 0.680 0.792

XGBoost 0.474 0.487 0.760 0.330 0.981 0.904 0.739

CatBoost 0.346 0.722 0.821 0.679 0.895 0.770 0.843

Testing set (n= 355)

GBM 0.280 0.560 0.699 0.567 0.766 0.553 0.776

KNN 0.241 0.394 0.679 0.308 0.868 0.544 0.711

LR 0.181 0.477 0.673 0.442 0.791 0.519 0.735

MLP 0.249 0.532 0.687 0.525 0.770 0.538 0.761

NB 0.189 0.471 0.665 0.442 0.779 0.504 0.732

NN 0.284 0.477 0.673 0.442 0.791 0.519 0.735

RF 0.268 0.466 0.690 0.400 0.838 0.558 0.732

SVM 0.343 0.533 0.699 0.508 0.796 0.560 0.760

XGBoost 0.466 0.300 0.685 0.200 0.932 0.600 0.695

CatBoost 0.133 0.528 0.687 0.517 0.774 0.539 0.758
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prognosis after three months, which means a higher short-
term risk of mortality. This is due to the patient’s higher
age, LDH levels, and lower GCS min score at the time of
admission to the ICU. Specifically, the elderly the patient,
the higher the risk of death (as shown in the dependent
plot, Figure 5(e)). LDH levels greater than 300 were fol-
lowed by a SHAP value greater than 0, indicating an
increased risk of death (Figure 5(d)). A GCS min score of
less than 8 was followed by a SHAP value greater than 0,
also indicating an increased risk of death (Figure 5(a)).

Patient 2. This was an elderly patient admitted to the ICU
because of IS. After 90 days, the patient is still alive. The
ML model predicted that the patient had a low risk of
death, which was correct (Figure 4(d)). Given that patient’s
indicators were relatively stable in the ICU, observing this
result of the IS patient in the ICU is reasonable. What’s

more, the patient has lower levels of LDH, platelet, and
age, and higher levels of GCS min score and BMI. These
instructions indicate that the patient has a clearer level of
consciousness, a better physical recovery state, a better
nutritional status of the body, lower level of bodily nerve
damage, and a lighter inflammatory state.

The contribution of the feature to the outcome

Decreased GCS min scores, BMI and albumin, increased
age, LDH, ALP, platelet levels, would have a positive
effect on the occurrence of outcome events (Figure 5).
Figure 5 shows that the minimum GCS score of the
patient was negatively correlated with the SHAP value,
which is consistent with clinical practice. The clearer the
consciousness of the patient, the better is condition of the
patient. Higher ALP, LDH, and age result in more positive

Figure 3. Assessment of CatBoost model. (a) The calibration plot of model in the training set. (b) The calibration plot of model in the testing
set. (c) The DCA curve of model in the training set. (d) The DCA curve of model in the testing set.
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SHAP values, suggesting that higher values of ALP, LDH,
or the patient’s age are associated with a higher SHAP value
and a greater likelihood of mortality. Higher albumin levels
are associated with a smaller SHAP value, which is also
consistent with clinical practice. The contribution of the
features to the outcomes is shown in Supplementary
Figure 1. The plots of feature importance, feature distribu-
tion, Shapley values, accumulated dependence, ceteris
paribus, target versus feature, and break down are shown

in Supplementary Figure 2 (example for age (A) and GCS
min (B) of one positive patient) and Supplementary Web
attachment.

Model performance in different subgroups

Subgroup analyses provide more insight into the diagnostic
performance of models in specific patient populations.
Therefore, model performance was studied in different

Figure 4. (a/b) SHAP summary plot for the eight clinical features contributing to model prediction for mortality, GCS min, LDH, type,
albumin, age, ALP, platelets, and BMI. (c/d) SHAP explanation force plot for two patients from the held-out testing set of the ML model.
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subgroups (age, gender). Previous studies have shown that
age (≥80 years old) is a significant independent predictor of
the three-month mortality,22 so the age subgroups were
divided at the 80-year mark. In the training set, the AUC
values of the CatBoost model in the subgroups aged
greater than 80 years old and aged between 65 and 80
years old were 0.869 and 0.886, respectively
(Supplementary Figure 4(A) and (B)). In the test set, The
AUC values of the CatBoost model in the subgroups aged
greater than 80 years old and aged between 65 and 80
years old were 0.752 and 0.746, respectively
(Supplementary Figure 4(C) and (D)).

In the training set, the AUC values of the CatBoost
model in the subgroups male and female were 0.890 and
0.882, respectively (Supplementary Figure 5(A) and (B)).
In the test set, The AUC values of the CatBoost model in
the subgroups male and female were 0.793 and 0.743
respectively (Supplementary Figure 5(C) and (D)).

Discussion
Ischemic stroke is the most common type of stroke, pre-
dominantly affecting elderly individuals. Short-term mor-
tality rates after stroke hospitalization are particularly
high. To stratify elderly patients with IS admitted to the
ICU, a death prediction model is essential and helps
improve healthcare quality and clinical decision-making
by early identification of high-risk patients.

This is the first interpretable machine learning prediction
model for the three-month mortality in patients with IS in an
ICU cohort in the United States. In addition, the influence
of endovascular treatment on the occurrence of outcome

events was analyzed, and the contribution of thrombectomy
and thrombolysis to the occurrence of outcome events is
presented in the figure.

Among the ten models used in this study, the CatBoost
model demonstrated the best overall performance, followed
by SVM. RF, XGBoost, LR, NN, GBM, KNN, MLP, and
NB showed lower performance levels. LR is the most com-
monly used model to describe the relationship between a
dependent variable and one or more explanatory variables.
Our research shows that the LR model does not perform as
well as the CatBoost model. This may be due to the imbal-
ance in our data outcome variables and the non-linear
nature of the prediction results and features. Therefore,
we resampled the data and used cross-validation to adjust
for overfitting. KNN can be extremely valuable in improv-
ing prediction accuracy when outcomes and interrelation-
ships between variables may be non-linear or unknown.
In this study, the performance of the KNN model was
slightly worse, which may be attributed to the poor per-
formance of the Euclidean distance metric used by KNN.
The SVM model can be affected by sample imbalance,
which may cause the model to be biased toward the class
with a large sample number, thereby reducing the model’s
prediction efficiency. In this study, when the outcome
event is a binary classification problem, GBM typically uti-
lizes the Logistic Loss function and applies the sigmoid
function to convert the continuous predicted value into a
probability value at the final output. We dedicated a signifi-
cant amount of time to the GBM model, which is a limita-
tion of this algorithm. The performance of the RF model
and the CatBoost model varies considerably, despite both
being tree-based models. Although the specificity of the

Figure 5. The level of the feature corresponds to the SHAP value. (a) GCS min, (b) ALP, (c) albumin, (d) LDH, (e) age.
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RF model is high, its sensitivity is low, which leads to
unsatisfactory prediction results. The CatBoost model is
significantly better than the RF model, demonstrating the
effectiveness of the CatBoost model in identifying
stroke-related deaths in the elderly. CatBoost is a compre-
hensive new algorithm based on gradient boosting of deci-
sion trees. Previously, the two mainstream algorithms in the
Boosting family were XGBoost and LightGBM. According
to official evaluations, the CatBoost model, a new addition
to the Boosting family, outperforms the two algorithms
mentioned above. In this study, the CatBoost model outper-
forms the XGBoost model. In addition, as an emerging
algorithm, CatBoost has unique advantages. It can automat-
ically handle categorical features, requires minimal hyper-
parameter adjustment, improves model stability, and
reduces the risk of overfitting.

By analyzing demographic data, biochemical tests, ICU
scores, and surgical treatment of patients, machine learning
algorithms were used to fill in the missing values and
extract the most important features. A total of eight features
(GCS min, albumin, LDH, age, ALP, BMI, platelets, and
types of surgery) were finally used for model construction.
Machine learning models were used for the first time to
predict the three-month mortality in elderly patients with
IS admitted to the ICU, allowing the identification of critic-
ally ill elderly patients with IS earlier. We evaluated dif-
ferent supervised machine learning algorithms and
compared them with classic LR approaches to identify
the best model for predicting short-term death in
elderly patients with IS. In the testing set, the prediction
performance of each model was similar to its training set
performance, indicating that the model was robust and
generalizable. Finally, the AUC of CatBoost model
used to identify patients who died was 0.737 in the
testing set, better than ten models (such as the LR
model with an AUC of 0.729). The CatBoost model
achieved better accuracy than the traditional LR
method and other machine learning methods.

Li et al.23 analyzed 30-day stroke mortality using the
MIMIC database. However, since outcomes are typically
more severe in elderly individuals, models based on indivi-
duals aged 18 and older may not be directly applicable to
elderly populations,8,9,22 potentially resulting in suboptimal
care. What’s more we included types of surgery, which was
also the feature in the final model. Additionally, we have an
external dataset. Someeh et al.24 predicted mortality in brain
stroke patients. We are focusing on elderly stroke patients
in the ICU and have utilized the neural network model,
but NN does not perform as well as the CatBoost model.
This may be because functional outcomes in survivors
entering the ICU appear to be poor, especially in elderly
patients.12 The lack of interpretability of machine learning
models for IS patients25 is a major barrier and has limited
clinical applications. We used the SHAP method to
enhance the interpretability of the CatBoost model. The

SHAP summary plot provides a global explanation of the
dataset’s prediction results, whereas the SHAP force plot
provides an explanation of each individual patient’s predic-
tion results.

We developed a predictive model for assessing the
in-hospital mortality risk for elderly IS patients admitted
to the ICU and presented a user-friendly interface to
improve healthcare quality and clinical decision-making
by early identification of high-risk patients. Our model
was better than the THRIVE score in predicting 90-day out-
comes among stroke patients undergoing endovascular
treatment, with an AUC of 0.709.26 Compared with other
studies, this study included the GCS score, which reflects
the degree of coma in patients and can improve the effect
of laboratory examination indicators in predicting the
outcome of stroke patients.27,28

We found that GCS min, LDH, types of surgery,
albumin, age, ALP, platelets, and BMI were tested and
selected for the three-month mortality prediction model.
The Glasgow Coma Scale was used to predict the 90-day
mortality in patients with IS.29 Some studies have also
reported the application of GCS in predicting 30-day mor-
tality30 and 10-year stroke mortality.31 Wang et al. reported
that in individuals with acute ischemic stroke or transient
ischemic attack, increased lactate levels are associated
with adverse outcomes.32 Albumin increases the risk of
death after a stroke.33 You et al. reported that a low platelet
count upon admission was independently related to the
three-month mortality and pneumonia in patients with
acute IS.34 According to Uehara et al., patients with transi-
ent ischemic attacks caused by intracranial atherosclerosis
have higher serum ALP levels at admission.35 In patients
with symptomatic intracranial atherosclerosis, elevated
serum ALP levels can predict early neurological
decline.35 ALP level was an independent predictor of all-
cause and vascular death after ischemic or hemorrhagic
stroke.36 Among patients with IS treated with intravenous
or endovascular therapy, elderly age is associated with
poor outcomes.37 Age ≥80 years is a significant independ-
ent predictor of 90-day mortality.22 BMI has been reported
to be associated with ICU.36,38 Our machine learning algo-
rithm also underlines the significance of BMI. A higher
BMI implies a better nutritional status of the body, which
is more advantageous in resisting disease invasion.

This study also analyzed the correlation between each
variable (GCS min, platelet, age, and albumin) and the
outcome (Supplementary Figure 1). This study also ana-
lyzed the local interpretability of the CatBoost model.
Taking three patients as examples, the results of feature
importance, feature SHAP value, feature accumulated
dependence, ceteris paribus, break down, and so on were
analyzed. Interpretable machine-learning models can be
viewed by clinicians through the web, making it easier
for clinicians to use these models to develop treatment strat-
egies. See Supplementary Appendix.

Huang et al. 13

https://journals.sagepub.com/doi/suppl/10.1177/20552076241280126


In routine clinical practice, when elderly ischemic stroke
patients are admitted to the ICU on the first day, the model
can be used to predict the mortality rate of elderly ischemic
stroke patients in the ICU within three months. This model
may have a positive impact on improving patient outcomes
in the following ways: First, it provides individual three-
month mortality risk assessments. Interpretable machine
learning models can provide an intuitive understanding of
patient mortality risk, including factors associated with
poor prognosis within three months. The interpretability
of the model makes it easier for doctors to understand the
causes of mortality risk, which helps improve doctors’
understanding of the disease and enables better prevention
and treatment strategies. Second, it assists in clinical
decision-making and optimizing patient management. It
helps provide early warning of the risk of death for
elderly ischemic stroke patients with more severe condi-
tions, enabling timely intervention measures to reduce mor-
tality. For instance, if the model predicts a high risk of
mortality for a patient, doctors can opt for a more proactive
treatment plan. This plan may include more frequent mon-
itoring, comprehensive care, or other interventions that
could impact patient outcomes. Third, it improves coordin-
ation among healthcare teams. By predicting the level of
risk using the model, the healthcare team can enhance
their collaboration to ensure that the patient receives
optimal medical and nursing care. This can help healthcare
professionals rationalize the allocation of resources, allo-
cate healthcare staff and equipment inputs according to
patients’ priorities, and improve the efficiency and quality
of healthcare services.

Despite their relative newness, machine learning
methods outperform the currently available tools for health-
care applications. The outcomes of acute ischemic stroke
have been predicted using machine learning methods with
a better AUC for deep neural network models.39 Using arti-
ficial neural networks, stroke mimics have been distin-
guished from strokes, and patients at high risk for TIAs
and minor strokes have been identified.40 Prediction model-
ing employing machine learning shows promise but
requires further investigation for different applications.

There are some shortcomings in this study. Due to its
retrospective observational design, selection bias could
not be eliminated. The selection bias can be caused by non-
participation or exclusion because of missing values in our
main variables. These biases may affect the results in the
following ways. Firstly, selection bias resulting from a
retrospective observational design may lead to incomplete
and unrepresentative samples. This implies that our
sample may not be entirely representative of the entire
target population, as certain groups might be more prone
to exclusion, or the representativeness of the sample
could be compromised due to missing data. Secondly, if
certain specific types of participants are more likely to par-
ticipate in the study, our estimates of these factors may

favor the former, leading to biased results. This incomplete-
ness or bias can affect the ability to generalize our findings.
Validation in various populations or settings evaluates the
generalizability of the findings.

Conclusions
We offer a user-friendly predictive model for the three-
month mortality in elderly patients with IS admitted to
the ICU. This model helps improve healthcare quality and
clinical decision-making by early identification of high-risk
patients. The early warning of the high risk of death for
elderly ischemic stroke patients with more severe condi-
tions provides the opportunity for early intervention to
reduce mortality.
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