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Abstract: Automatic recognition of human emotions is not a trivial process. There are many factors
affecting emotions internally and externally. Expressing emotions could also be performed in many
ways such as text, speech, body gestures or even physiologically by physiological body responses.
Emotion detection enables many applications such as adaptive user interfaces, interactive games,
and human robot interaction and many more. The availability of advanced technologies such as
mobiles, sensors, and data analytics tools led to the ability to collect data from various sources, which
enabled researchers to predict human emotions accurately. Most current research uses them in the
lab experiments for data collection. In this work, we use direct and real time sensor data to construct
a subject-independent (generic) multi-modal emotion prediction model. This research integrates both
on-body physiological markers, surrounding sensory data, and emotion measurements to achieve the
following goals: (1) Collecting a multi-modal data set including environmental, body responses, and
emotions. (2) Creating subject-independent Predictive models of emotional states based on fusing
environmental and physiological variables. (3) Assessing ensemble learning methods and comparing
their performance for creating a generic subject-independent model for emotion recognition with high
accuracy and comparing the results with previous similar research. To achieve that, we conducted
a real-world study “in the wild” with physiological and mobile sensors. Collecting the data-set is
coming from participants walking around Minia university campus to create accurate predictive
models. Various ensemble learning models (Bagging, Boosting, and Stacking) have been used,
combining the following base algorithms (K Nearest Neighbor KNN, Decision Tree DT, Random
Forest RF, and Support Vector Machine SVM) as base learners and DT as a meta-classifier. The results
showed that, the ensemble stacking learner technique gave the best accuracy of 98.2% compared with
other variants of ensemble learning methods. On the contrary, bagging and boosting methods gave
(96.4%) and (96.6%) accuracy levels respectively.

Keywords: ensemble learning; emotion recognition; physiological and environmental; subject inde-
pendent predictive models for emotion; multi-modal emotion recognition

1. Introduction

Emotion is one of the most visual and significant elements of our lives, yet it is also
one of the most complex subjects to explain scientifically. The study of emotions has many
scientific debates in numerous research fields. Emotion is an expression of the cognitive
state of the human mind. The emotional response of the human mind presents itself in
many ways, such as facial expression [1], voice [2], gesture, posture, and bio-potential
signals or physiological reactions [3].

People may disguise their emotions through facial expressions, speech, and physical
gestures, but it is difficult to conceal physiological signs like heart rate (HR). Human-
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Computer Interaction (HCI), adaptive user interfaces, and many more disciplines rely on
emotion recognition. HCI develops more intelligent apps that can respond to user demands
automatically based on their emotional states [4]. The capabilities and accessibility of
less expensive, more delicate, less intruding, and modern sensors for gases, water quality,
noise, and other environmental measurements have increased, enabling researchers to
collect data in unprecedented geographical, temporal, and contextual details. Recently,
there are many studies concerned with the integration of environmental data models
and sensors with human health. Sensors are essential to assess the influence of human
activities on the environment and human health. They are used as tools for understanding
processes, identifying connections, and establishing correlations between environmental
and physiological variables [5].

In this work, we employ a sensor-data-fusion approach to consider the following
questions:

1. How can we combine physiological body data with environmental data for emotion
recognition?

2. Is it possible to create subject independent emotion prediction model with high
accuracy?

3. What is the best algorithm with ensemble learning to use for integrating multi-modal
data to generate subject-independent models using sensor data fusion?

The fundamental reason for the ensemble learning comes from human nature to collect
and weigh multiple viewpoints to make a complex decision. The primary premise is that
evaluating and aggregating multiple individual opinions will be better than choosing only
one view [6].

Ensemble approaches depend on the idea of combining numerous basic models to
produce a powerful learner (or ensemble model) that delivers better results. For many
machine learning problems, ensemble methods are regarded as the state-of-the-art solution.
By training many models and integrating their predictions, such strategies increase the
predictive performance of a single model. The primary concept of ensemble learning is that
by merging many models, the faults of a single inducer will most likely be compensated by
other inducers, resulting in the ensemble’s total prediction performance being better than a
single inducer [6].

Ensemble approaches often increase prediction performance for various reasons (Diet-
terich, 2002; Polikar, 2006):

• Avoid over-fitting: When only a small quantity of data is available, a learning algo-
rithm is prone to discovering several diverse hypotheses that perfectly predict all of
the training data while producing poor predictions for unknown instances. Averaging
different hypothesis reduces the risk of choosing an incorrect hypothesis and also
improves the overall predictive performance.

• Provide a computation advantage: Local searches conducted by single learners may
become stuck in local optima. Ensemble approaches reduce the risk of attaining a local
minimum by mixing numerous learners.

In this work, we collected data from thirty people ’in the wild’ including on-body
and environmental variables. The data collected comprising on-body data such as body
movement, heart rate (HR), electro-dermal activity (EDA), and body temperature, as well
as environmental data such as noise level (Env-noise), air pressure, and ambient light
levels (UV) and movement. Furthermore, we obtained user emotion labels via self-report
input using the 5-step SAM Scale for Valence. We obtained user emotion labels via self-
report input using the 5-step SAM Scale for Valence. GPS data were also acquired during
data collection recording user’s position. During data collection. The collected data were
obtained, cleaned, aggregated, and smoothed. The Self-Evaluation Manikin (SAM) is a
nonverbal visual evaluation instrument that assesses a person’s pleasure, arousal, and
dominance in reaction to various stimuli [7].
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The rest of the article is organized as follows. Section 2 covers previous work related to
emotion detection to quantify the relationship between ambient variables and physiological
parameters, as well as a brief discussion of on-Body sensors and related information
fusion techniques. The methodology is discussed in Section 3 including data collection,
data pre-processing, ensemble predictive models and implementation techniques to create
user-independent emotion recognition model. Section 4 illustrates the obtained results of
emotion detection models and compare their performance. Section 4.4 discusses Hyper-
parameter optimization and provide the optimal parameters of base classifiers for avoiding
over-fitting and under-fitting. Section 5 discusses the findings of the work of and Section 6
presents conclusions and future work.

2. Related Work
2.1. Discussions About Emotion Recognition Using On-Body and Environmental Factors

Smartphones and numerous wearable gadgets, such as smartwatches and wristbands,
have been outfitted with sensors capable of continuously monitoring human physiological
signals (e.g., heart rate, electrodermal activity, body temperature data) and, in some cases,
ambient environment data in recent years (e.g., noise, UV, air pressure, etc.) [8].

Sensors range from customized devices designed for particular purposes those used
for more typical individual gadgets, such as cell phones. Individuals may serve as en-
vironmental sensors in some situations by publicizing what they see, hear, and feel and
participating in public support for environmental factors [9].

In [10] researchers studied the Influence of Weather on affective experience (the link
between negative and good emotions and environmental changes in weather such as
(temperature, relative humidity, barometric pressure, and luminance).

Park, N. K., & Farr, C. A. (2007) investigated the link between lighting and emotions in
a retail setting [11]. Similarly, numerous research projects have investigated emotions and
their link with wellbeing and physiological changes; however, only one [12] of them have
considered integrating physiological and wellbeing sensors alongside ecological sensors in
order to predict and model emotion.

In the past, using wearable sensors in real-world studies was inconvenient and intru-
sive. Despite this, with the advent of wearable sensors and portable technologies, these
sensors have become non-intrusive and acceptable for consumers [13].

Furthermore, many wristbands and wearable devices have sensors that aren’t limited
to health or body statistics. Contamination sensors, for example, are readily accessible in a
variety of sizes and designs, as are temperature stations and other ecological sensors like
light and color sensors [14–16]. Examine the Table 1, which contains a list of health sensors
used in emotion identification.

These sensors could be combined together and used to predict emotion labels. This is called
“data fusion” that is described as “the act of combining numerous data sources to generate more
consistent, accurate, and valuable information than any data source can give” [17,18].
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Table 1. List of some on-body sensors that have been used for emotion detection.

Sensor Signals and Features

Motion

Because modern accelerometers incorporate tri-axial micro-electro-mechanical systems (MEMS) to record
three-dimensional acceleration, the motion equation is as follows:

√
x2 + y2 + z2, where this equation is

the root mean square of all three components. In recent years, authors used the accelerometer to identify
emotions [19].

Body Temperature
Despite its simplicity, we can use body temperature to gauge a person’s emotions and mood shifts [18–20].
Wan-Young Chung demonstrated that variations in skin temperature, known as Temperature Variability

(TV), may be used to identify nervous system activity [21].

Heart Rate
The RR interval refers to the period between 2 successive pulse peaks, and the signal produced by this

sensor consists of heartbeats. According to many researches, authors sometimes use HR to measure
happiness and emotions [20,22,23].

EDA It is sometimes called Galvanic Skin Resistance (GSR) and is associated with emotional and stress
sensitivity [20,24–26].

Also, classifying data fusion procedures into three categories (low, middle, and high)
depends on the processing step at which fusion occurs.

1. Low-level data fusion, also known as “data level” fusion, seeks to gather various
data components from multiple sensors to complement one another. It is possible
to combine external data sources such as user self-reported emotions during data
gathering [13,23].

2. During data analysis, intermediate-level data fusion, also known as “Feature Level”
fusion, is used to determine the optimal collection of features for classification. For ex-
ample, the best combination of features, such as EMG, Respiration, Skin Conductance,
and ECG, has been retrieved using feature-level fusion [18].

3. Finally, high-level data fusion, often known as “Decision Level” fusion, seeks to
enhance decision-making by combining the outcomes of many approaches. Ensemble
learning can be considered a decision level fusion.

Raffaele Gravina has published research about a study of different data fusion ap-
proaches and applications in body sensor networks in [13]. Adrián Colomer Granero* [23]
utilized feature level fusion to identify emotions and discovered that the ECG and EDA
signals are the most important in emotion categorization.

This study [8] used the data-fusion technique to predict emotion labels and discussed
a real-world study using smartphones and wearable devices such that authors used a
deep learning approach for emotion classification through an iterative process of adding
and eliminating a large number of sensor signals from diverse modalities. It merged
the local interactions of three sensor modalities: on-body, environmental, and location,
into a global model that reflects signal dynamics plus the temporal linkages between
each modality. On the raw sensor data, this method used different learning algorithms,
including a hybrid approach that combined Convolutional Neural Network and Long
Short-term Memory Recurrent Neural Network (CNN-LSTM). When utilizing a massive
number of sensors, the results showed that deep-learning approaches were effective in
human emotion classification (average accuracy 95% and F-Measure = 95%), and hybrid
models outperformed traditional fully connected deep neural networks (average accuracy
73% and F-Measure = 73%). The hybrid models also beat previously developed Ensem-
ble methods that use feature engineering to train the model (average accuracy 83% and
F-Measure = 82%).

And this study [12] developed a user-independent emotion model based on fusing or
integrating on-body and environmental sensors using ML algorithms such as: SVM, KNN,
RF, DT and aggregated the results of these classifiers using stacking ensemble method.

Based on this, numerous research have now concentrated on creating multi-modal
emotion recognition models [12,18,27]. See [28], a recent review about multi-modal emo-
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tion detection. Others, looked at creating generic or subject-independent models using
different approaches.

2.2. Discussions about Emotion Recognition Using Physiological Signals and Facial Expressions

Previously, scientific studies concentrated on recognizing and evaluating emotions
by analyzing facial expressions and physiological signals. Some studies used EEG signals
for developing generic emotion detection models using traditional ML algorithms (SVM,
DT, ANN, and many more) such as [29,30]. In addition, physiological signals have been
used for creating subject-independent emotion recognition models in [31,32]. In addition,
others used facial expressions to detect emotion labels, whereas others used a combination
of facial expressions and physiological signals.

Table 2 depicts an overview of the most widely utilized sensor analysis and feature
extraction methods. As a result, the speed of evaluating emotions is highly dependent
not only on the measuring method and sensor utilized but also on the data processing
and analysis methodology used. Researchers employed different measuring methods and
feature extraction techniques based on the next table to evaluate various emotions.

Table 2. Previous Research on Recognizing Emotion from Physiological Signals and Facial Expressions.

Emotions Measurement
Methods Data Analysis Methods Accuracy Ref.

Sadness, anger,
stress, surprise ECG, SKT, GSR SVM

For recognizing three and four
categories, the correct

classification rates were
78.4% and 61.8%, respectively.

[33]

Sadness, anger,
fear, surprise,

frustration, and
amusement

GSR, HRV, SKT KNN, DFA, MBP

KNN, DFA, and MBP could
classify emotions with

72.3%, 75.0%, and 84.1%,
respectively

[24]

Three levels of
driver stress

ECG, EOG, GSR
and respiration

Fisher projection matrix and a
linear discriminant

Three levels of driver stress with
an accuracy of over 97% [34]

Fear, neutral, joy ECG, SKT, GSR,
respiration

Canonical correlation
analysis

The rate of correct categorization
is 85.3%. Fear, neutral, and

happy categorization
percentages were 76%, 94%, and

84%,
respectively

[35]

The emotional
classes identified

are high stress,
low stress, disappointment,

and euphoria

Facial EOG,
ECG, GSR,
respiration,

SVM and adaptive
neuro-fuzzy inference system

(ANFIS)

The total classification
rates for the SVM and the ANFIS
using ten fold cross-validation

are 79.3% and 76.7%,
respectively.

[36]

Fatigue caused
by driving for

extended hours
HRV Neural network The accuracy of the neural

network is 90% [37]
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Table 2. Cont.

Emotions Measurement
Methods Data Analysis Methods Accuracy Ref.

Boredom, pain,
surprise

GSR, ECG, HRV,
SKT

Machine learning algorithms
such as linear discriminate

analysis (LDA),
classification and regression
tree (CART), self-organizing

map (SOM),
and SVM

SVM produced accuracy rate of
100.0% [38]

The arousal
classes were calm, medium

aroused, and activated
and the valence classes

were unpleasant, neutral,
and pleasant

ECG, pupillary
response, gaze

distance
Support vector machine

The optimal classification
accuracies of 68.5% for three

labels of valence and 76.4% for
three labels of arousal

[39]

Sadness, fear,
pleasure

ECG, GSR,
blood volume,

pulse
Support vector regression Recognition rate up to 89.2% [40]

Terrible, love,
hate, sentimental, lovely,

happy, fun, shock, cheerful,
depressing, exciting,
melancholy, mellow

EEG, GSR,
blood volume

pressure,
respiration pattern,

SKT, EMG, EOG

Support Vector Machine,
Multilayer Perceptron (MLP),
K-Nearest Neighbor (KNN)

and Meta-multiclass (MMC),

The average accuracies are
81.45%, 74.37%, 57.74% and

75.94% for SVM, MLP, KNN and
MMC classifiers respectively.

The best result is for ‘Depressing’
with 85.46% using SVM.

[41]

Happiness, sadness,
surprise, stress SKT, EDA, and HR SVM, RSVM, SVM+GA, NN,

DFA

The average accuracies are:
66.95% (SVM), 75.9% (RSVM),
90% (SVM+GA), 80.2% (NN),
84.7% (DFA) of this study and
using Empatica E4 smartwatch
to collect data from participants

[42]

Theoretical emotions EEG signal

KNN, NB, SVM, RF, feature
extraction (e.g., wavelet

transform and non-linear
dynamics), feature reduction

(e.g., PCA, LDA)

This study achieved an average
classification accuracy of over

80% and using wearable sensor
to collect eeg signals

[28]

From Table 3, we can deduce that all physiological signals and facial expressions
signals were acquired from the wearable sensor to measure physiological signals or facial
expressions or wearable smartwatch to measure HR signals, or wearable device to measure
all these signals together such as Empatica E4 smartwatch or wristband 2. Finally, we
presented an overview about previous works that discuss researches associated with
predicting emotions either using environmental and physiological factors or using Facial-
expression and physiological sensors.
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Table 3. Recent Previous Research on Recognizing Emotion from Physiological Signals and Facial
Expressions (2021 and 2022).

Emotions Measurement
Methods

Data Analysis
Methods Accuracy Ref.

Arousal and valence emotions.
Arousal represents inactive

and active emotions
(Annoying, Angry,
Nervous, Excited,

Happy, pleased). Valence
represents negative and

positive emotions (Sad, Bored,
Sleepy, Relaxed,
Calm, Peaceful)

EEG, Facial expressions
ANN, SVM, RF, K-NN,
DT, RNN, CNN, DNN,

DBN, LSTM

ML classification accuracy
ranges from 61.17 to 93% (SVM:
41%, ANN: 18%, RF: 14%, KNN:
9%, DT: 9%) and deep learning
classification accuracy ranges

from 61.25% and 97.56% (LSTM:
50%, DNN: 7%, DBN: 7%, CNN:

36%)

[43]

Arousal and valence (low and
high) emotion levels. EEG Signal

ML classifiers
(KNN, SVM, LDA) and

deep learning
and MG3P (NN, MLP,

ELM)
and Gaussian process,

k-means

This study performed an overall
recognition rate (82.9%) [NN:
85.80%, SVM: 77.80%, KNN:

88.94%, MLP: 78.16%, 87.10%,
78.06%, 71.30%, 71.30%]

[44]

Nagtive and positive emotions EEG signal and Facial
expressions

ML classfiers: RF, KNN,
SVM, DT, LDA and

deep learning
classifiers: CNN+LSTM

This study achieves the
following accuracy levels:

63.33% RF, 63.33% SVM, 61.7%
KNN, 55% DT, 51.7% LDA,

71.67% CNN+LSTM.

[45]

Negative emotions (annonyed,
stressed, angry)

EGG physiological
signals

ML classifiers: LR,
SVM

It achieves accuracy levels:
75.00% LR, 72.62% SVM. [46]

3. Methodology
3.1. System Architecture

In this subsection, we produce our framework used in our paper. In this work, we
adopted information fusion techniques at three key levels. The proposed architecture is
composed of a number of processing steps as shown in Figure 1. First, we identify the
problem to solve, emotion recognition. Second, the relevant data is collected using on-body
sensors from the ‘Microsoft wrist band and user data from the smartphone (e.g., location,
ambient noise, and self-reported emotional states) and then data are combined using data-
level fusion. The data is then cleansed and pre-processed in the third step. Fourth, the
cleaned data is analyzed using descriptive statistical analysis (mean, median, skewness,
kurtosis, and so on), covariance, correlation matrices, and Poincare plots to measure heart
rate functions using feature level fusion.

Fifth, to improve the performance of our model, we extract features from pre-processed
data sensors using decision-level fusion to extract features and select the most informative
attributes and a compact collection of characteristics (feature selection, which eliminates
irrelevant features from our model). Then, we split the data-set into two parts: training
and testing. Finally, stacking model training and testing are performed to obtain predic-
tive model.

Sixth, the predictive model is evaluated and tested by evaluation measures. Finally, op-
timization of hyper parameters is used to improve the results until satisfactory performance
is obtained.
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Figure 1. The proposed system architecture using data fusion.

3.2. Data Collection

Participants’ data were collected using a wearable sensor known as the “Microsoft
wristband 2” and smartphone app software known as ‘EnvBodySens’ which is wirelessly
connected to the Microsoft wristband 2. Data were recorded and stamped with the time
and date. The smart band featuring capabilities includes multiple sensors:

• Monitor your heart rate using an optical heart rate monitor.
• Accelerometer with three axes.
• Sensors for Galvanic Skin Response (GPS).
• Galvanic skin response sensors(EDA).
• UV sensor.
• Skin temperature sensor.

Table 4 depicts the data recorded inside the mobile application.

Table 4. The collected data.

Microsoft Wrist-Band 2 Android Phone 7

Heart Rate (HR) Self-Report of Emotion (1–5)

Body-Temperature (Body-Temp ) Environmental Noise ( Env-Noise )

Electro Dermal Activities (EDA) GPS Location (lat,lon)

Hand Acceleration (Motion as three-axis accelerometer)

Air Pressure

Light (UV)

To organize the persistent labeling procedure, we used the 5-step SAM Scale for
valence derived from [47]. Posters on the walls and word of mouth urged students in the
faculty of Computers and Information to participate in the study. Thirty participants who
are all between the ages of 18 and 22 took part in this study. Minia University Ethical
Committee gave their ethical approval to the study with code [MU-FCI-22-1].
Participants recorded their data while going around the Minia university campus. Before
the data collection session, we provided participants with instructions and data about the
study methodology and how to use and wear the wristband correctly.

Participants were then requested to perform a self-report momentary assessment
using one of the emotional classes (represented by buttons on the app interface) while
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walking around the campus with the mobile screen on during the data collection (the screen
auto-sleep feature was disabled beforehand). The data were gathered over several days.

3.3. Data Pre-Processing

Since this data were collected in a real-time and in-situation setting, there is a need for
data cleaning to remove the following types of data errors.

• incomplete
• incorrect
• irrelevant data
• outliers outliers in data can be identified using a boxplot or a histogram. We define

the first quartile of the data as Q1 = X[n/4] and the third quartile of the data as
Q3 = X[3n/4]. We can compute IQR (Interquartile Range). We also remove columns
With Low Variance to eliminate columns with few unique values by filtering columns
to be eliminated from the dataset using variance statistics or the variance threshold of
each column using specific threshold values ranging from (0.0 to 0.5). Based on these
methods, features were reduced from 22 to 18 features. Table 5 represents the extracted
and removed features. Figure 2 depicts the connection between the threshold (the
x-axis) and the number of filtered features (the y-axis) using Variance Threshold in
the modified data-set. Then, we spilled the cleaned data into training and testing sets,
with the features scaled using normalization or standardization.

Table 5. Extracted and removed features.

Features Extracted Meaning Removed Features

EDA
It’s called Elctro-Dermal Activity, skin
conductance and galvanic skin
response (GSR).

FLightofStairsAscended,
FLightofStairsDescended,
Lat, Lng (Location)

HR Heart Rate (Also called pulse)
is the number of times the heart beats.

Air-Pressure The pressure of the air.

bTemp It’s called Body temperature.

Env-Noise Represents Environmental Noise.

UV UV means Ultra-violet radiation.

Motion An accelerometer with three axes.
It’s a combination of (X, Y, Z) axes.

X Participant’s Motion in X-axis.

Y Participant’s Motion in Y-axis

Z Participant’s Motion in Z-axis

Total-Gain The overall gain achieved by the participant.

Total-Loss The amount of calories lost.

Stepping-Gain Steps achieved or gained during travel.

Stepping-Loss The steps in which a loss of calories occurred.

Steps-Ascended Number of steps in ascending order.

Steps-Descended Number of steps in descending order.

Rate The rate of movement in X, Y, and Z directions.

Label The target emotion labels can be (1–5)
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Figure 2. Line Plot of Variance Threshold (X) Versus Number of Selected Features to be removed (Y).

3.4. Ensemble Learning Methods

Since our research is investigating the integration of ecological and on-body char-
acteristics using sensor data fusion and ensemble methods. Various ensemble learning
methods have been implemented as a decision level fusion method and compared their
performance.

So, it was necessary to explain why Ensemble learning methods were used. These ap-
proaches were used to improve model predictability by integrating numerous models into
a single, highly dependable model. Ensemble approaches reduce bias and variance while
increasing model accuracy. In most ensemble systems, base learning is performed with a
single algorithm, producing homogeneity among all base learners. Homogeneous base
learners share similar properties and are of the same type. In other methods, heterogeneous
base learners are used, resulting in heterogeneous ensembles. Different sorts of learners
make up heterogeneous base learners [6]. Ensemble learning with meta learners has not
been well investigated in the literature, especially for sensor data fusion and emotion
recognition. The most popular ensemble methods are boosting, bagging, and stacking as
shown in Figure 3.

Single classifiers can sometimes give undesirable results. Furthermore, the amount of
data we may evaluate is just too large and complex for a single classifier to handle, as in
this study. We employed ensemble models to reduce variance for the bagging (Bootstrap
Aggregating) technique, reduce bias for the boosting method, and improve predictive
performance of the stacking strategy.

Figure 3. Types of ensemble methods.

These are machine learning paradigms in which several models (commonly referred
to as “weak learners”) are trained to address the same problem and then combined to get
better results.
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3.4.1. Bagging (Bootstrap Aggregation)

The concept behind bagging is straightforward. They fit several separate models and
“average” their predictions to produce a model with lower variance. In practice, they can’t
utilize independent models since they need too much data. To fit almost separate models,
they rely on the good “approximate qualities” of bootstrap samples (representatively and
independently) [6,48]. First, they produce several bootstrap samples such that each of
them acts as a separate (nearly) independent data set chosen from the genuine distribution.
Then, for each of these samples, they fit a weak learner and aggregate them such that they
can “average” their outputs and create an ensemble model with fewer variance than its
components. The learned base models are roughly independent and identically distributed
(i.i.d.), as the bootstrap samples are also roughly independent and identically distributed
(i.i.d.). Finally, by “averaging” the weak learners’ outputs, the predicted answer is not
changed, but the variance is reduced.

In other words, Bagging involves fitting several base models to diverse bootstrap
samples and constructing an ensemble model that averages the outputs of these weak
learners, as shown in Figure 4.

Figure 4. Explanation of Bootstrap Aggregating Method (Bagging).

3.4.2. Boosting

Because the several combined weak models are no longer fitted independently from
the other in sequential techniques. So, the goal is to train models iteratively such that the
training of a specific model is dependent on the models trained at previous steps. The most
well-known of these methods is “boosting”, which results in an ensemble model that is less
skewed than the weak learners that make it up.

Boosting techniques, like bagging techniques, create a family of models that are then
blended to create a learner who is more capable and performs better. When fitting each
model in the series, the observations in the dataset that the prior models did a poor job
of handling are given greater weight. Boosting is a strategy for placing numerous weak
students in a very flexible sequence. Each successive model concentrates its efforts on the
most challenging data to fit, resulting in a powerful learner with less bias in the end (even
if we can notice that boosting can also have the effect of reducing variance).

Finally, Boosting entails fitting a weak learner continuously, aggregating it to the
ensemble model, and updating the training data-set to better account for the current
ensemble model’s strengths and shortcomings when fitting the next base model, as shown
in Figure 5 [49].
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Figure 5. Illustration of Boosting Algorithm Architecture. “Adapted from [50]. (2021), Li, Y et al.”

Weak learners can be successively fitted and aggregated once they’ve been chosen de-
pending on two essential boosting algorithms: adaptive boosting and gradient boosting.

During the sequential process, these two meta-algorithms differ in how they construct
and aggregate the weak learners. Ada-boost or Adaptive Boosting updates the weights
linked to each of the training data-set observations at each iteration. In comparison to
weights of incorrectly categorised observations, weights of well-classified samples decline.
The final ensemble model gives more weight to the models that perform better. As seen in
Figure 6 [51], the most popular Ada-boost algorithms are random forest classifiers and de-
cision tree classifiers, whereas gradient boosting changes the value of these observations
at each iteration. As shown in Figure 7, weak learners are trained to fit the pseudo-residuals
that show which direction to adjust the present ensemble model predictions in order to
lower the error. Gradient boosting progressively increases the ensemble’s predictors, allow-
ing earlier forecasters to correct later ones, improving the model’s accuracy. To offset the
consequences of errors in the earlier models, new predictors are fitted. The gradient booster
can discover and address issues with learners’ predictions thanks to the gradient descent.
Decision trees with boosted gradients are used in xgboost, which offers faster performance.

Figure 6. Illustration of Ada-boost Architecture Steps. “Adapted from [51]. (1997), Sodhi, A.”.
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Figure 7. Flow Chart of Gradient boosting Algorithm.

3.4.3. Stacking

Stacking is an ensemble learning strategy that uses a meta-classifier to merge numerous
classification models. Individual classification models are trained using the entire training
set, and the meta-classifier is then fitted using the outputs (meta-features) of the individual
classification models in the ensemble. The meta-classifier can be trained using either the
predicted class labels or the ensemble probabilities. Stacking is a term used to describe
another ensemble method known as a stacked generalization, as shown in Figure 8.

Stacking has been successfully employed in regression, density estimations, distance
learning, and classifications.

Stacking differs from bagging and boosting primarily in two ways: first, it frequently
examines heterogeneous weak learners (various learning algorithms are merged), whereas
bagging and boosting primarily consider homogeneous weak learners. Second, stacking
uses a meta-model to combine the underlying models, whereas bagging and boosting use
deterministic methods to combine weak learners. Finally, we can compare method of these
three ensemble methods as in Figure 9 [52]. Table 6 depicts a summarizing of the difference
and characteristics for each ensemble learning method.
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Figure 8. Flow Chart of Stacking Classification ensemble.

Figure 9. A comparison between ensemble learning methods: (a) Bagging Method. (b) Boosting
Method. (c) Stacking Method. “Adapted from [52]. (2020), Kiyak, E.O.”
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Table 6. A comparison between the differences and characteristics of three ensemble methods
(Bagging, Boosting and Stacking).

Bagging Boosting Stacking

Differences

Bagging often considers
homogeneous weak learners,
learns them independently
from each other in parallel,
and combines them following
some kind of deterministic
averaging process.

Boosting frequently takes into
account homogeneous weak
learners, trains them
sequentially in a highly
adaptive way (a base model
depends on the preceding
ones), and combines them by
a deterministic method.

Stacking frequently takes into
account diverse weak learners,
trains them concurrently, and
then combines them by
training a meta-model to
produce a prediction based on
the output of the many weak
models.

Characteristics

Bagging enables a group of
weak learners to work
together to outperform a
single good student.
Additionally, it aids in
variance reduction, hence
preventing the over-fitting of
models during the process.

Boosting models could be
improved with the help of
several hyper-parameter
variables. Boosting algorithms
iteratively combine several
weak learners and enhance
observations. It might lessen a
high bias that frequently
appeared in models like
decision trees and logistic
regression. With Boosting
Algorithms, characteristics are
only chosen that have a large
impact on the target,
potentially reducing
dimensionality and improving
computational efficiency.

Stacking can harness the
capabilities of a range of
well-performing models on a
classification or regression
task and make predictions
that have better performance
than any single model in the
ensemble.

3.5. Implementation
3.5.1. Feature Extraction

After cleaning, prepossessing, and analyzing data statistically, We used descriptive
statistics to derive physiological characteristics For:

• HR, EDA, bTemp representing in (mean, median, max, min, std and quartiles) [24].
• For HR, we used a Poincare plot to extract distributions of HRV features and was used

to test normality defined in time series and frequency domains [18].

We computed the SD1 parameter based on time series as follows: SD1 =
√

1
2 SDSD2,

where SD1 is the standard deviation along the minor axis. On the other hand, SDSD is
the standard deviation of successive differences (Time Domain Parameter). Addition-

ally, the SD2 parameter may be calculated as follows: SD2 =
√

2SDNN2 − 1
2 SDSD2,

where SD2 is the standard deviation on the major axis. And SDNN is the standard
deviation of the NNI series(). Thus, a higher heart rate of HRV or a lower heart rate of
HRV depends on (SD1/SD2) [53]
We also derive frequency domain that indicates the power spectrum of order 12 by
integration of low frequency (LF) heartbeats (0.04 to 0.15 Hz) and high-frequency (HF)
(0.15 Hz to 0.4 Hz) [54].

• For Motion: We combined the X, Y, and Z characteristics into a single component
called Motion.

Motion =
√

X2 + Y2 + Z2 (1)

3.5.2. Feature Fusion Level

We concatenated feature sets from several modalities in this technique to produce
two spaces that reflect (the environmental and on-Body modalities). As shown in the
data-preprocessing section and the previous section, We extracted 18 features from our
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data-set. However, not all of these features are important to emotional responses, such that
there are features correlated with each other. So, we removed some of them to simplify the
model via reducing correlated features. Finally, the model will include the most significant
features necessary to explain the emotional response.

3.5.3. Feature Selection

We develop a prediction model in that section to see if we can accurately anticipate a
user’s affect state based on contextual and physiological parameters.

We decided to decrease the dimension of characteristics by selecting the most efficient
features from 18 features from total of 22 features to make the emotion identification process
more effective. We chose the SelectKBest feature selection method, which returned the top
k features under an evaluation parameter setting of ‘mutual-info-classif’ or changing the
‘score-func’ parameter (classification problem). SelectKBest was a library function of the
sklearn machine learning library implemented in Python.

Furthermore, based on the results of the ‘SelectKBest’ feature selection, we decided to
create a predictive model with 12 features that have a strong relationship with the label.
Figure 10a depicts the most significant features retrieved from the SelectKBest feature-
selection technique. Figure 10b shows the importance of selected features, and we can see
that the cumulative significance grows until n = 12 (where n is no. of Features).

Figure 10. (a) Importance of Physiological and Environmental Features. (b) Cumulative Importance
of These Variables.

3.5.4. Building and Optimizing Classification Models

In this research, we chose the KNN classifier, DT, RF, and SVM as weak learners and
decided to use DT as a meta-model. The Decision Tree classifier took as inputs the outputs
of the four weak learners and will return the final predictions based on it.
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To fit a stacking ensemble composed of L weak learners. We have to follow the steps:

• Separate the training data into three groups.
• select L weak learners and fit them to first-fold data
• evaluate each of the weak learners for second-fold
• make predictions for third-fold observations for each of the L weak learners
• fit the meta-model on the third fold, using the weak learners’ predictions as inputs.

Finally, Stacking consists of training a meta-model to produce outputs based on the
outputs returned by lower-layer weak learners as shown in Figure 8 [54].

If the model has several hyper-parameters, we must look for the best combination
of hyper-parameter values in a multi-dimensional space. That’s why hyper-parameter
tuning, or determining the appropriate hyper-parameter values, is such a difficult and
time-consuming task. K-fold cross-validation is the most popular type of cross-validation.
It’s an iterative method for dividing train data into k divisions. One division is saved for
testing in each iteration, while the remaining k-divisions are used to train the model. The
test data will be assigned to the suffix division in the next cycle, and the train data to the
last k-1, and so on. It will track the model’s performance in each iteration and then average
the correctness of the findings. As a result, it’s a lengthy procedure. In our study, we will
measure performance using 10-fold cross-validation, which involves training and testing
the model 10 times with each set of hyper-parameter data. As a result, utilizing Grid-Search
and cross-validation to find the best hyper-parameters takes a long time. If we have a large
enough training set, we can get away with only utilizing a single independent validation
set, but cross-validation is a better strategy to avoid over-fitting.

4. Results
4.1. Descriptive Statistics

This subsection contains two important types of statistical analysis:

• Standard statistical procedures: include the following:

1. Descriptive Statistics: Descriptive statistics describe the basic and essential vari-
ables of the data, such as mean, standard deviation (std), median (Med), mini-
mum (min), 1st Quartile, or Q1 (25%), 2nd Centile, or Q2 (50%), 3rd Centile or
Q3 (75%), maximum (100%), and skewness and kurtosis (kur). Table 7 depicts
these statistics of the various body and environmental sensor signals for all
participants.

Table 7. Descriptive statistics for the collected signals.

Min Q1 Med Q2 Mean Q3 Max skw kur std

EDA 0.0 0.0 340,330 340,330 221,954 340,330 340,330 −0.6 −1.7 165,736
HR 0.0 0.0 70.0 70.0 45.7 70.0 70.0 −0.6 −1.7 34.1
UV 78.0 80.0 82.0 82.0 82.5 85.0 89.0 0.6 −1.0 3.7
X −0.1 0.0 0.0 0.0 0.0 0.0 0.0 −0.6 −0.5 0.0
Y 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.2 −1.7 0.1
Z 0.9 0.9 1.0 1.0 1.0 1.0 1.1 −0.1 1.5 0.0

EnvNoise 49.0 52.0 52.0 52.0 52.6 53.0 56.0 0.2 −0.2 1.6
AirPressure 0.0 0.0 1010.6 1010.6 703.1 1010.7 1010.7 −0.8 −1.4 475.5
bTemp 0.0 0.0 22.8 22.8 15.8 22.8 22.8 −0.8 −1.4 10.7

2. Correlation Matrix: Correlation is a statistical approach for determining if and
how strongly two independent variables are connected. The correlation coeffi-
cient (or “r”) is an indicator of the strength of the linear relationship between
two variables and is the principal outcome of a correlation. It has a range of −1.0
to +1.0. The closer r is near +1 or −1, the closer the two variables are linked and
calculated as follows:

r = cov(x,y)
σxσy



Sensors 2022, 22, 5611 18 of 29

If r is near 0, it implies that the variables have no connection. If r is positive,
it indicates that when one variable grows, the other gets bigger as well. If r is
negative, it implies that while one gets bigger, the other shrinks (this is known
as an “inverse” correlation). Figure 11 depicts a graphical representation of a
correlation matrix.

Figure 11. Correlation Matrix of all independent features according to dependent variable (Label).

3. Covariance Matrix: covariance matrix on the other hand, is a square matrix that
depicts the covariance between each pair of variables in a random vector. If the
covariance is positive, it implies that the frequency of the two variables is increas-
ing. However, if the correlation is negative, it indicates that the two variables
are often falling. Finally, if the covariance is 0, there is no relationship between
the two variables as shown in Table 8, EDA has a negative correlation with (HR,
UV, bTemp) and a positive relationship with (HR, UV, b-Temp) (EnvNoise, Air
pressure) and Motion has a negative relation with (bTemp) and positively related
with (EDA, HR, UV, EnvNoise, air pressure) and so on according to (HR, UV,
EnvNoise, Air-Pressure, bTemp).

Table 8. Covariance Matrix of all on-body and environmental variables.

EDA HR UV Motion EnvNoise AirPressure bTemp

EDA 26,655,597,441 −1,012,733 −202,362,467 3430.42 95,587 33,144.6 −648,616
HR −1,012,733 293.4 32,554.2 0.67 −7.4 2.104 51.51
UV −202,362,467 32,554.2 11,783,951.32 40.46 −1174.20 516.51 9288.6

Motion 3430.4 0.57 40.46 0.13 0.016 0.032 −0.046
EnvNoise 95,587.03 −7.40 −1174.20 0.016 4.82 0.15 −3.40

AirPressure 33,144.58 2.10 516.51 0.032 0.15 0.31 −0.58
bTemp −648,616 51.51 9288.58 −0.046 −3.39 −0.58 22.79

4. PCA: PCA (Principle component analysis) was also used to identify the relation
between features included in the multiple regression analyses. The principal
component analysis (PCA) is an example of a regression component analysis
system (PCA). Figure 12 depicts: the first PCA component of (b-Temp, HR) on-
body features exhibits positive correlations with environmental variables since
they are both oriented towards the same right side of the plot (UV). On-body
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variables (EDA) and Motion, on the other hand, have positive coefficients with
external variables (AirPressure, Env-Noise) because they are both oriented to
the plot’s left-top side and have a negative relationship with b-Temp. Because
(Motion, Air-Pressure) features are oriented on the top y-axis and negatively
linked to bTemp, they have negative coefficients with (UV, HR, bTemp) features,
whereas (EDA, EnvNoise) features have positive coefficients with (UV, HR).
Consequently, we must comprehend the link between environmental and on-
body factors and their influence on human emotions.

Figure 12. PCA plot of Body features with environmental variables.

• Analysis of the Poincare plot: this is a scattergram technique that isn’t linear. A
poincaré plot is a graph that shows NN(i) on the x-axis and NN(i + 1) (the next NN
interval) on the y-axis, with NN intervals in between (the distance between each
heartbeat). We utilized poincaré plots to display and evaluate heart rate variability
(HRV) normality, excluding those with noisy heart rate patterns and assessing heart
health [55].
The standard deviation of the instantaneous beat-to-beat NN interval variability
(minor axis of the SD1), the standard deviation of the continuous long-term RR
interval variability (major-axis of SD2), and the axis ratio (SD2/SD1) based on the
analysis of this plot [54]. A higher or lower heart rate variability (HRV) is determined
by the ratio (SD1/SD2), with a higher proportion indicating excellent health and a
lower rate indicating poor health.
Given a time series, this visualisation can be calculated as follows:

Xt + Xt+1 + Xt+3 + .......

Following that, return plots (Xt, Xt+1), then plots (Xt+1, Xt+2), and so on. We used
Poincare plots to verify the common examples of noisy and regular HR data patterns
of participants as shown in Figure 13.
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Figure 13. (a) Shows Noisy HR patterns using poincare plot. (b) Shows Normal HR of user after data
transformation.

After applying feature-extraction to extract features for each independent variable in
our data set, feature fusion to explain three fusion levels applied on the data set and feature
selection to select the most important features with which we could get higher accuracy
levels for users. We spilt the data set into two parts: train and test data using ‘train-test-split’
function included in the Sklearn library. The data were trained using previous supervised
ML models obtaining training model from each algorithm. After that, these algorithms are
combined or ensembled using the stacking ensemble method. Then, this model is trained
and then evaluated using new data (test-data) to obtain testing model. Finally, we test this
model to obtain a predictive model with a specific accuracy.

4.2. Emotion Ensemble Predictive Models

In this section, we present results of Emotion predictive models that depend on com-
bining environmental and physiological data of senors using ensemble learning. Because
our features are multi-model, we applied different classifiers of ensembles techniques.

To evaluate the results of ensemble methods including these ML algorithms (SVM,
KNN, DT, RF), we used cross-validation for estimating model’s performance. In subject-
independent training, this processing was performed by K-fold cross-validation to evaluate
the performance of the model. Cross-validation is a technique for determining how well
a model generalizes to a new data set. In k-fold cross-validation, the number of folds is
k. Cross-validation is used to train the model ten times (CV= 10). As a result, the k value
would be 10. The classifier’s accuracy is calculated by scoring = ‘accuracy’.

Using this technique, we could get the following results mentioned in Figure 14 that
depict a comparison of accuracy levels between these three ensemble methods bagging,
boosting and stacking using (KNN, SVM, RF, DT) as weak learners with parameters
mentioned in Section 4.4 and also using Decision Tree Classifier as a meta-model to combine
predictions of weak learners with specific parameters Meta-model DT (max-depth = 200,
max-leaf-nodes = 800).

Stacking ensemble method outperforms bagging and boosting methods. Such that,
stacking produces an accuracy of (98.2%) with the parameters representing weak learn-
ers (KNN, RF, SVM, DT) as a first parameter and DT as a meta-classifier as a second
parameter, whereas bagging and boosting methods gave (96.4%),(96.6%) accuracy levels
respectively with parameters: Meta-model DT first parameter and (n-estimators = 100,
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random-state = 2020) as second and third parameters for Bagging method and Meta-model
DT first parameter and (n-estimators = 200) as second parameter for Boosting method.

Figure 14. Accuracy levels comparison of Bagging, Boosting and Stacking Ensemble Methods.

So, to create a predictive model for emotion recognition after using the feature selec-
tion approach. We decided to employ an Ensemble method called “stacking” to create
an accurate predictive model based on this methodology (multi-learner approach) and
Figure 14 [56]. We used this model to make predictions on the test set.

Stacking is distinguished from bagging in that the models are often distinct (for
example, not all decision trees) and fit on the same data set (for example, instead of samples
from the training data set) [57]. Rather than a series of models that correct prior models’
predictions, stacking employs a single model to learn how to best aggregate predictions
from the contributing models (rather than a series of models that correct past models’
predictions) [58].

Thus, as mentioned above, to create a predictive model based on the stacking en-
semble method we employed Support Vector Machine (SVM), Decision Tree Classifier
(DT), K-Nearest Neighbors (KNN), and RandomForest Classifier (RF) as weak learners
to train and model our labeled data set. We stacked the combination of these methods
and used Decision Tree Classifier (DT) as the Stacking Model Learner with parameter
(max-depth = 200, max-leaf-nodes = 800) to achieve better results. These algorithms have
all been proved to be effective in identifying emotional reactions based on on-body and
ambient sensors.

Figure 15 represents the Accuracy levels between all base learners of two modalities (Physio-
logical with parameters: [knn(n-neighbors = 5, p = 2, weights = ‘uniform’), svm(C = 100, gamma
= 0.1), DT(max-depth = 70, max-leaf-nodes = 440), RF(n-estimators = 100, max-depth = 13)]
and Environmental with parameters: [knn(n-neighbors = 5, weights = ‘distance’), svm(C = 100,
gamma = 0.1), DT(max-depth = 100, max-leaf-nodes = 4000), RF(n-estimators = 750, max-
depth=100)]) and also accuracy levels of base classifiers based on the entire data-set with
parameters: [knn(n-neighbors = 4, weights = ‘distance’), svm(C = 100, gamma = 0.01), DT(max-
depth = 16, max-leaf-nodes = 800), RF(max-depth = 15, n-estimators = 100)] according to the
overall stacking model of all data-set with parameters mentioned in Table 11. It’s clear that the
Stacking model yielded excellent results with four classifiers and outperformed the individual
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classifiers of two modalities and entire data-set with an Accuracy of 98.2% (validation) and
prediction accuracy (98%).

And Figures 16 and 17 depict accuracy levels between base classifiers of each modality
and stacking learner.

Figure 15. Accuracy Levels Comparison between Base classifiers Based on only Environmental,
Physiological factors and those based on entire data-set with Stacking Ensemble Method Accuracy.

Figure 16. Accuracy Levels Comparison between Base classifiers of Environmental Modality and the
Stacking Learner.
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Figure 17. Accuracy Levels Comparison between Base classifiers of Physiological modality and the
Stacking Learner.

4.3. Performance Evaluation

In this subsection, we evaluated the training model using specific performance metrics
to measure model’s Performance such as Accuracy, Precision and Recall and F1-Score.

Based on this, the results showed the improvement in the classification accuracy of the
emotion prediction method by combining decision fusion and feature fusion dependent on
the Stacking ensemble Learner. Table 9 displays the classification report of the Stacking
Model that shows the essential classification metrics precision, recall, and F1-score and
support for the five labels.

Table 9. Classification Report of the Stacking Model.

Precision Recall F1-Score Support

1 0.94 0.98 0.96 666
2 0.98 0.97 0.98 1661
3 0.99 0.99 0.99 2532
4 0.99 0.98 0.99 1813
5 0.98 0.99 0.99 1415

Accuracy 0.98 8087
macro avg 0.98 0.98 0.98 8087
weighted avg 0.98 0.98 0.98 8087

Finally, to check whether the results of the classifiers used in our research are relevant
or not we used statistical tests to ensure if the results are true or not. We used t-test method
to determine if there is a statistically significant difference between each modality and
entire data accompanied with results of classifiers used in research.

Table 10 depicts results of classifiers for each modality and entire data-set. We also
calculated a t-test paired between environmental modality and all data and a t-test paired
between two modalities to test the significant difference between them. We found that the
p-value was less than 0.05 (p-value < 0.05), so we rejected the null hypothesis. Thus, there
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is a significant difference between each modality and all data for (SVM, DT, RF, KNN) and
stacking learners.

Table 10. A Comparison between results of classifiers for (each modality and entire data) and the
stacking learner of them.

Classifier Body + Environmental Body Environmental

KNN 93% 89% 87%
SVM 94% 91% 88%
DT 97% 91% 89.50%
RF 97.50% 91.40% 88%
Stacking 98.20% 93% 91%

4.4. Hyper-Parameter Optimization

Following feature extraction to extract features for each independent variable in our
dataset, feature fusion to explain three fusion levels applied to the dataset, and feature
selection to select the most important features with which we could achieve higher accuracy
levels. However, there were times when applying the classifiers in our study to our
preprocessed dataset with those significant features resulted in over-fitting at default
classifier parameters, so we decided to use the gridsearchcv optimization method as in
Section 4.4 for each classifier in ML algorithms, by which we could reach the optimal
hyper-parameters for each classifier, and N-fold cross-validation over the data of all users
was performed, and then the results over each classifier were compared. This processing
was performed using K-fold cross-validation to evaluate the performance of participant’s
data in subject-independent training.

Four classifiers were evaluated: KNN (k-Nearest Neighbor) [59], RF (Random
Forests) [60], DT (Decision Tree) [61,62], SVM (Support Vector Machine). These categoriza-
tion models were created using the sklearn library, which combined standard machine
learning methodologies [63]. We decided to categorize the current emotional state of all
people into one of five categories: 1, happy; 2, extremely pleased; 3, neutral; 4, angry; and 5,
very angry [64].

Tweaking hyper-parameters can be performed in a variety of ways. Grid search and
random search are two of them. Model parameters having pre-programmed values are
known as hyper-parameters [65]. For example, in a random forest, the number of trees or
the penalty intensity in a Lasso regression. They’re all numbers that impact the model’s
behavior and are set before the training procedure. Because we don’t know their best
values in advance, we should tweak a model’s hyper-parameters. Because each hyper-
parameter is different, a model with multiple hyper-parameters may perform worse or
produce over-fitting or under-fitting.

Utilizing the default KNN and SVM values resulted in under-fitting, whereas using the
default DT,RF values resulted in over-fitting, according to our results. Such that, KNN and
SVM training and prediction results were: (72%) training, (70%) testing for KNN algorithm
and (93%) training, (34%) testing for SVM algorithm. Note that these models didn’t train
our data-set using default parameters enough well resulted in under-fitting. Whereas, DT
and RF training and testing accuracy levels were: (97%) training, (100%) testing for DT
algorithm and (96.7%) training, (100%) testing for RF algorithm. Based on this, a large
amount of data get trained to these models resulted in over-fitting.

Because the model is inaccurate in both cases, we should have used this technique to
determine the intermediate number of trees that leads to the best performance.

Table 11 shows the parameter information and definitions for each classifier for thirty-
users in our dataset after applying Hyper-parameter optimization.
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Table 11. Parameters of Classifiers Definition used in the Stacking Model after applying Hyper-
parameter Tuning.

Classifier Parameter Parameter Explanation

KNN KNN parameters
(weights = distance, p = 2, n-
neighbors = 4, leaf-size = 30,
algorithm = ’auto’)

Explanation:-
Weights: weight function used in prediction;
p: power parameter for the Minkowski metric;
n-neighbors: number of neighbors to use;
leaf-size: leaf size passed to algorithm;
algorithm: used to compute the nearest neighbors

SVM SVM Parameters
(C = 100, gamma = 0.01)

C: Regularization parameter. The strength of
the regularization is inversely proportional to
C. Must be strictly positive. The penalty is a
squared l2 penalty. C can be each value from this
[1,10,100,1000].
Gamma: gamma is a parameter for non linear hy-
perplanes. The higher the gamma value it tries to
exactly fit the training data set. Gamma values can
be in range of [0.0001,100]. We can see that increas-
ing gamma leads to overfitting as the classifier tries
to perfectly fit the training data.
Kernel function: Kernel Function is a method used
to take data as input and transform into the re-
quired form of processing data. “Kernel” is used
due to set of mathematical functions used in Sup-
port Vector Machine provides the window to ma-
nipulate the data. Kernel can be sigmoid or poly
or rbf. Usually kernel function is RBF(radial-bias
function).

RF RF Parameters
(n-estimators = 700,
max-depth = 100)

n-estimators: the number of trees in the forest;
max-depth: the maximum depth of the tree.

DT DT Parameters
(max-depth = 300,
max-leaf-nodes = 900,
splitter = ‘best’)

max-depth: the maximum depth of the tree
max-leaf-nodes: maximum number of leaf nodes
Grow a tree with max-leaf-nodes in best-first fash-
ion. Best nodes are defined as relative reduction in
impurity. If None then unlimited number of leaf
nodes.
splitter: the strategy used to choose the split at
each node.

5. Discussion

As previously mentioned, we presented a real-world study modeling emotions fusing
environmental and physiological variables. The difference between our research and
previous research [12] is the experimental settings such as place, environment, culture
and context. Our experiments were conducted in Minia University campus, whereas
the others were conducted in Nottingham city centre and participants were shopping.
Despite the differences in the working environment, it is feasible that this study has been
compared to our research because the methodology (information fusion, feature fusion,
decision fusion) and environmental, physiological sensor data employed are similar to us.
When comparing our findings to previous research [12], we discovered that our research
outperformed previous study that developed a user-dependent prediction emotion model
with a prediction accuracy 98.2%, whereas previous one achieved an accuracy 86% with the
same classifiers (KNN,DT,RF,SVM) as base classifiers and the stacking ensemble method
and also outperformed this study [8] that used deep learning methods (CNN-LSTM) to
create a predictive emotion model based on integrating on-body and ambient sensors. So,
we discovered that no other study predicted this level of accuracy based on integrating
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environmental and on-body sensors to produce a user-independent stacking emotional
predictive model of all participants employing two modalities.

As a result, this work has obtained better results for physiological and environmental
components for the entire data-set and the Stacking model to build a general predictive emo-
tion model using feature selection and stacking model withe hyper parameter optimization.
In addition to building a subject-independent model for emotion detection.

The physiological modality shows higher accuracy levels among most of the base
classifiers of all participants, and the environmental modality depicts lower accuracy levels,
as in Figure 15. However, accuracy levels of entire data-set outperformed results of these
two modalities.

As a result, the accuracy levels vary depending on the base learners [12]. In addition,
we found that the stacking model of combined data of all participants exceeds the accuracy
levels of single two modalities (physiological and environmental) factors and accuracy
levels of the whole data-set. One of the limitations of the self-report of the user for the
emotion. It can envy the data in the algorithm training.

Finally, researchers use ensemble learning when the quantity of the data to be analyzed
is too large and complex for a single classifier to handle. As a result, training a classifier with
a large amount of data is impractical, and finding a single technique that works effectively
for all testing data is challenging [12]. In this work, the staking ensemble learning gave the
best performance compared to the other classifiers for the ensemble methods.

6. Conclusions and Future Work

Emotion recognition is considered a vital task in HCI applications. There are many
ways to express emotions. Many factors affect human emotions. Researchers used many
methods to automatically detect emotions such as facial expressions, gestures, physiological
reactions and many more. In this paper, we presented an information fusion approach
for combining on-body and ecological sensing, which offers new possibilities for data
collection and analysis. To do so, we conducted a real-world “in the wild” study that
included on-body and mobile sensors. We collected data from thirty participants walking
around Minia University campus.

The collected data were cleaned and aggregated, and feature fusion and feature
engineering were conducted (feature extraction and feature selection). Then, predictive
models were created using different combinations of body and environmental variables.
Different ensemble methods such as boosting, bagging and staking of SVM, DT, KNN,
RF were used to train and test the predictive model. The stacked combination of these
methods using DT Classifier as the Stacking Model Learner with parameter tuning achieve
the best results.

Results suggested that stacked ensemble model gave the best results for emotion
recognition yielding 98.2% accuracy compared to 86% achieved in [12], the only similar
data set.

Future research will add other sensor modalities such as pollution, weather conditions,
and social context, to improve our understanding of the underlying links between the
environment, health, and body responses. Similarly, we will look at modeling these
parameters in real settings. Moreover, XAI methods can be used for providing explanations
for the models. In addition, deep learning methods can also be applied for automating the
feature engineering process.
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