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ABSTRACT

The derivation of human induced pluripotent stem cells (hiPSCs) from patient-specific sources has
allowed for the development of novel approaches to studies of human development and disease. How-
ever, traditionalmethodsofgeneratinghiPSCs involve the risksof genomic integrationandpotential con-
stitutive expressionof pluripotency factors andoftenexhibit low reprogrammingefficiencies. The recent
descriptionof cellular reprogrammingusing syntheticmRNAmoleculesmight eliminate these shortcom-
ings; however, the ability of mRNA-reprogrammed hiPSCs to effectively give rise to retinal cell lineages
has yet to be demonstrated. Thus, efforts were undertaken to test the ability and efficiency of mRNA-
reprogrammed hiPSCs to yield retinal cell types in a directed, stepwise manner. hiPSCs were generated
from human fibroblasts via mRNA reprogramming, with parallel cultures of isogenic human fibroblasts
reprogrammed via retroviral delivery of reprogramming factors. New lines of mRNA-reprogrammed
hiPSCs were established and were subsequently differentiated into a retinal fate using established pro-
tocols in a directed, stepwise fashion. The efficiency of retinal differentiation from these lines was
compared with retroviral-derived cell lines at various stages of development. On differentiation, mRNA-
reprogrammed hiPSCs were capable of robust differentiation to a retinal fate, including the derivation
of photoreceptors and retinal ganglion cells, at efficiencies often equal to or greater than their retroviral-
derived hiPSC counterparts. Thus, given that hiPSCs derived throughmRNA-based reprogramming strat-
egies offer numerous advantages owing to the lack of genomic integration or constitutive expression
of pluripotency genes, such methods likely represent a promising new approach for retinal stem cell
research, in particular, those for translational applications. STEM CELLS TRANSLATIONAL MEDICINE

2016;5:417–426

SIGNIFICANCE

In the current report, the ability to derive mRNA-reprogrammed human induced pluripotent stem
cells (hiPSCs), followed by the differentiation of these cells toward a retinal lineage, including pho-
toreceptors, retinal ganglion cells, and retinal pigment epithelium, has been demonstrated. The use
ofmRNA reprogramming to yield pluripotency represents a unique ability to derive pluripotent stem
cells without the use of DNA vectors, ensuring the lack of genomic integration and constitutive ex-
pression. The studies reported in the present article serve to establish a more reproducible system
with which to derive retinal cell types from hiPSCs through the prevention of genomic integration of
delivered genes and should also eliminate the risk of constitutive expression of these genes. Such
ability has important implications for the study of, and development of potential treatments for, ret-
inal degenerative disorders and the development of novel therapeutic approaches to the treatment
of these diseases.

INTRODUCTION

With the ability to differentiate into any cell type
of the body, human induced pluripotent stem
cells (hiPSCs) have received a great deal of atten-
tion in recent years for applications in both basic
and translational fields of research [1–11]. This is
particularly true as it applies to retinal differen-
tiation of hiPSCs, for which a number of studies
have demonstrated the ability to effectively use

hiPSCs as a novel in vitromodel of human retino-
genesis [4, 12–16], including the generation of
retinal-like structures from hiPSCs [13, 17–21].
Furthermore, when derived from patient sam-
ples with known genetic determinants of retinal
disease, hiPSC-derived retinal cells have proved
to be a promising in vitro model for studies of
disease progression [13, 22–26]. Some studies
have also demonstrated the potential of hiPSCs
as an unlimited source for cell replacement
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strategies, particularly in models of retinal degeneration
[27–32].

Despite the considerable advances that have been demon-
strated using hiPSCs, a number of hurdles remain before wide-
spread use of these cells for both basic and translational retinal
research. Among these difficulties includes the method by which
hiPSCs were originally reprogrammed from patient cells. Tradi-
tionally, reprogramming transcription factors were retrovirally
delivered to patient cells to yield colonies of hiPSCs [7, 33–35],
withmany of these cell lines currently widely used in stem cell re-
search [13, 14, 16, 21, 36]. Although theseapproaches established
the proof of principle that hiPSCs could effectively be generated
from somatic cells, they also possessed certain shortcomings,
making them less than ideal candidates for translational applica-
tions. First, owing to the integrating natureof retroviral DNA, con-
cerns exist regarding the integration site within the genome of
the host cell [37–40]. Furthermore, these reprogramming factors
were typically driven by strong constitutive promoters. Although
many studies have demonstrated the silencing of these trans-
genes after the establishment of new lines of hiPSCs [7, 33],
the potential exists for deleterious constitutive expression of
these genes. Efforts have since focused on improving thesemeth-
ods through strategies such as excisable lentiviral vectors or non-
integrating episomal vectors [34, 41–44]. However, these still rely
onDNA transfection or direct protein transduction [45, 46],which
has proved difficult owing to insufficiencies in obtaining the re-
quired quantities of protein, and still results in low reprogram-
ming efficiencies.

More recently, the use of synthetic mRNAs for transfection
and reprogramming has been demonstrated to be an effective
and efficient strategy for the generation of hiPSCs [47, 48]; how-
ever, such an approach has yet to be used with the purpose of
retinal differentiation from these cells. Thus, efforts were under-
taken to test the ability of mRNA-reprogrammed hiPSCs to be
effectively differentiated to a retinal lineage. Lines of hiPSCs
were generated via mRNA transfection of pluripotency factors.
In parallel, other lines of hiPSCs were generated through retro-
viral reprogramming strategies from the same source material.
mRNA-reprogrammed hiPSCs (miPS cells) were tested for their
ability togenerate retinal cells aspreviously demonstrated for tra-
ditional reprogramming strategies. These results were compared
with retroviral-derived hiPSCs (riPS cells) to test for the ability of
mRNA-reprogrammed hiPSCs to effectively and efficiently yield
retinal progeny in a predictable temporal and stepwise fashion.
The results presented in this report are the first to explore the
ability of mRNA-reprogrammed hiPSCs to be directed to a retinal
phenotype and support the use of mRNA-reprogrammed hiPSCs
as an effective and important alternative to traditional reprog-
ramming strategies for subsequent retinal differentiation.

MATERIALS AND METHODS

Reprogramming of Fibroblasts to Pluripotent State

Human foreskin fibroblast cells (BJ fibroblasts; Stemgent, Lexington,
MA, http://www.stemgent.com)weremaintained and expanded in
media consisting of Dulbecco’s modified Eagle’s medium (DMEM)
with10%fetalbovineserum,minimalessentialmedium(MEM)non-
essential amino acids, and penicillin-streptomycin. For reprogram-
ming, approximately 50,000 fibroblasts were seeded into each
well of a six-well plate. The next day, the cells were switched to

Pluriton reprogramming medium (Stemgent), and mRNA reprog-
rammingwas initiated via chemical transfectionof syntheticmRNAs
encoding for reprogramming factors with Stemfect transfection re-
agent (Stemgent) beginning on day 1, with daily transfection and
mediumchanges thereafter throughday14.Toenhancereprogram-
ming efficiency via mRNA transfection, a microRNA booster kit was
similarly chemically transfected on day 0 and day 4 as per theman-
ufacturer’s instructions. For retroviral reprogramming, viralparticles
encoding for reprogramming factors (Stemgent) were added to
fibroblasts the day after plating. Fibroblast medium was replaced
the next day and every other day thereafter until day 6, at which
point, themediumwas changed tomTeSR1 (StemCell Technologies,
Vancouver, BC, Canada, http://www.stemcell.com). Typically, 5–10
colonies of newly reprogrammed iPSCs were identifiable within the
first 3 weeks via both methods of reprogramming.

To establish individual lines of hiPSCs from both mRNA and
retroviral reprogramming strategies, the cells were initially live
cell-stained with an antibody against Tra-1-60 (Stemgent), and
pluripotent colonies were visualized via the green fluorophore
conjugated to this antibody. On prospective identification of suc-
cessfully reprogrammed cells, individual colonies were manually
isolated with a pipette and transferred to a Matrigel-coated well
(BD Biosciences, Franklin Lakes, NJ, http://www.bdbiosciences.
com) of a six-well plate. Isolated colonies were maintained in
mTeSR1mediumandpassagedasneeded toexpandandestablish
as new, individual lines of hiPSCs.

Maintenance of Undifferentiated Cells

Three mRNA-reprogrammed lines of hiPSCs (designated miPS-2,
miPS-4, andmiPS-6) and three retroviral-reprogrammed cell lines
(designated riPS-1, riPS-2, and riPS-4) were maintained in the un-
differentiated state, as previously described [14, 16, 49]. In brief,
hiPSCsweremaintainedonsix-well platescoatedwithMatrigel (BD
Biosciences) and supplemented with mTeSR1 medium (StemCell
Technologies). The medium was replaced on a daily basis, and,
on reaching confluence, undifferentiated colonies were passaged
using dispase (2 mg/ml; Life Technologies, Norwalk, CT, http://
www.thermofisher.com). hiPSCs were typically passaged every 5
days at a ratio of 1:6.

Retinal Differentiation of hiPSCs

Eachof the six lines of hiPSCs, eithermRNAor retrovirally derived,
were directed to a retinal fate using previously established proto-
cols [4, 12–16, 20, 25]. In brief, differentiation was initiated via
the formation of embryoid bodies, which were transitioned into
a neural induction medium (NIM: DMEM/F12, N2 supplement,
MEM nonessential amino acids, and 2 mg/ml heparin) over the
first 3days of differentiation, as previously described [14, 16]. Em-
bryoid bodieswere plated onto six-well plates after 6 total days of
differentiation with the addition of 10% fetal bovine serum to al-
low for attachment. The next day, the fetal bovine serum was
removed, and the cells were maintained in NIM until day 16 of
differentiation. At this point, cell clusterswere lifted as previously
described [13, 14, 16] andmaintained in suspension in retinal dif-
ferentiation medium (RDM: DMEM/F12 with B27 supplement
and antibiotics). Optic vesicle-like (OV-like) structures were read-
ily identifiable after 20 total days of differentiation and manually
isolated according to morphological features, as previously
described. OV-like structures were allowed to further grow in
RDM until a total of 70 days of differentiation, at which point,
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specific retinal cell types could be identified. Alternatively, retinal
pigmentepithelium(RPE)werederived fromhiPSCs, aspreviously
described [13, 14, 16].

Immunocytochemistry Analysis

Sampleswere analyzedby immunocytochemistry, as previously de-
scribed [14, 16]. In brief, sampleswere collected at known stages of
retinaldifferentiationandfixedwith4%paraformaldehyde.Primary
antibodies (supplemental online Table 1) were diluted in a solution
consisting of 0.1% Triton X-100, and 5% donkey serum and cells
were incubated overnight at 4°C. The next day, secondary antibody
was diluted and added to the cells, along with 49,6-diamidino-2-
phenylindole (DAPI) for 1 hour at roomtemperature. The cellswere
visualized and images captured using either a Leica DM5500 fluo-
rescence microscope (Leica, Heerbrugg, Switzerland, http://www.
leica.com) with a Hamamatsu Orca-R2 digital camera (Hamamatsu
Phototonics, Hamamatsu City, Japan, http://www.hamamatsu.
com) or a confocal/two-photon Olympus Fluoview FV-1000 MPE
system (Olympus, Tokyo, Japan, http://www.olympus.com).

Data Quantification

A minimum of three samples from each cell line were plated onto
poly-L-ornithine/laminin-coated coverslips, and immunocytochem-
istry was performed as described at the indicated time points of
differentiation. For each time point, representative images from
random areas of the coverslip were acquired from an average of
at least 2,500 cells per cell line for each marker indicated, and
the number of antibody-stained nuclei was quantified using ImageJ
software (NIH, Bethesda, MD, http://imagej.nih.gov/ij). Cell counts
are expressed as the mean 6 SE, and the percentage of cells
expressing the indicatedmarkerswascomparedwiththe totalnum-
ber of cells as indicated by the total DAPI-stained nuclei. To deter-
mine statistically significant differences between samples, analyses
ofvariancewereperformedusingGraphPadPrismsoftware(Graph-
PadSoftware, Inc., SanDiego,CA,http://www.graphpad.com),with
significant differences identified at a p value of,.05.

Reverse Transcription Polymerase Chain Reaction and
Quantitative Reverse Transcription Polymerase
Chain Reaction

Reverse transcription polymerase chain reaction (RT-PCR) and
quantitative RT-PCR (qRT-PCR) were performed as previously de-
scribed [13, 14, 16]. Inbrief, RNAwasextractedusing thePicoPure
RNA Isolation Kit (Applied Biosystems, Foster City, CA, http://
www.appliedbiosystems.com), followed by cDNA synthesis with
the iScript cDNAsynthesis kit (Bio-Rad,Hercules, CA, http://www.
bio-rad.com). PCRamplificationwasperformedusingGoTaqqPCR
Master Mix (Promega, Madison, WI, http://www.promega.com)
for 35 cycles and analyzed on 2% agarose gels. For qRT-PCR
analysis, cDNA was amplified with predesigned primers (b-ACTIN-
Hs00969077_m1, RAX-Hs00429459_m1, CHX10-Hs01584047_m1,
CRX-Hs00230899_m1) and TaqMan Universal Master Mix II (Life
Technologies). For OCT4, primers were designed using the Na-
tional Center for Biotechnology Information gene sequence
and amplified with SYBR green PCR master mix (Life Technolo-
gies). Each sample was run in triplicate, and a minimum of three
samples were used to quantitatively assess mRNA expression
across all cell lines. A complete list of all primer sequences is pro-
vided in supplemental online Table 2.

RESULTS

Reprogramming of Human Fibroblasts to Pluripotency

The effective reprogramming of somatic fibroblast cells to a pluripo-
tent state has been routinely accomplished through the introduction
andexpressionofacoresetoftranscriptionfactors [6,7,33–35,43,44,
48]. Traditionally, these genes have been delivered through retroviral
methods, although newer nonintegratingmethods, includingmRNA-
based reprogramming, hold tremendous potential for a variety of ba-
sic and translational applications. However, suchmethods have yet to
be described with the subsequent goal of deriving retinal cells. Thus,
effortswereundertaken toestablish theabilityofhiPSCs toeffectively
yield retinal cell types from somatic fibroblasts reprogrammed toplu-
ripotency by mRNA-reprogramming methods.

Human fibroblast cells were grown in culture and either trans-
fected with synthetic mRNA or, as a control and point of compari-
son, infected with retroviral particles encoding for pluripotency
transcription factors. In addition, these pluripotency cocktails in-
cluded a nuclear green fluorescent protein (nGFP) reporter for
mRNA reprogramming or a green fluorescent protein (GFP) re-
porter for retroviral reprogramming (Fig. 1A, 1B) to identify properly
transfected/infected cells. Within the first 3 days after transfection/
infection, nGFP expression was observed in nearly all fibroblasts
(95.46% 6 2.81%) transfected with mRNA, and a fraction of fibro-
blasts in parallel cultures exhibited GFP (28.67%6 4.14%) after in-
fection with retrovirus (Fig. 1C, 1D), compared with untransfected
cells as a negative control.Within the first 3weeks after transfection/
infection, profoundmorphological changeswereapparent in a subset
of fibroblasts, inwhich the elongated, spindle-likemorphology typical
of fibroblasts was lost in favor of a more compact, rounded appear-
ance, typical of pluripotent cells (Fig. 1E, 1F). To further identify these
presumptive hiPSCs as pluripotent, live cell staining confirmed the ex-
pression of the cell surfacemarker Tra-1-60 specifically on these com-
pact colonies of cells (Fig. 1G, 1H).

To establish discrete, individual lines of hiPSCs, colonies of Tra-1-
60-expressing cells were manually isolated and expanded in culture,
and three new lines of hiPSCs were generated from each reprogram-
ming method, designated as either miPS (mRNA-reprogrammed in-
duced pluripotent stem) cells or their control counterparts, riPS
(retrovirus-reprogrammed induced pluripotent stem) cells. Efforts
were initiallyundertaken todemonstrate a full complementofpluripo-
tency factors in each of these newly established lines of hiPSCs. Each
cell line exhibited robust expression of pluripotency-associated tran-
scription factors, such as OCT4, SOX2, and NANOG, and cell surface
markers SSEA-4, Tra-1-60, and Tra-1-81 (Fig. 2A), with little variability
observedbetweeneachofthenewlygeneratedlinesofhiPSCs(Fig.2B).

Beyond the expression of characteristic pluripotency factors,
truepluripotent cells possess theability to give rise to all cell types
of the body. To further demonstrate the pluripotent nature of
these newly generated hiPSCs, each line was allowed to sponta-
neously differentiate as embryoid bodies, as previously docu-
mented for newly established lines of hiPSCs [6, 7, 13, 33, 35].
After 3 weeks of growth and differentiation under these condi-
tions, the cell types of each of the three germ layers were ob-
served, as evidenced by the expression of b-III tubulin, smooth
muscle actin, and a-fetoprotein, representing the ectoderm, me-
soderm, and endoderm, respectively (Fig. 3).

Neuroretinal Differentiation From hiPSCs

The derivation of retinal cell types from a pluripotent cell source
such as hiPSCs necessitates a stepwise progression through

Sridhar, Ohlemacher, Langer et al. 419

www.StemCellsTM.com ©AlphaMed Press 2016

http://stemcellstm.alphamedpress.org/lookup/suppl/doi:10.5966/sctm.2015-0093/-/DC1
http://www.leica.com
http://www.leica.com
http://www.hamamatsu.com
http://www.hamamatsu.com
http://www.olympus.com
http://imagej.nih.gov/ij
http://www.graphpad.com
http://www.appliedbiosystems.com
http://www.appliedbiosystems.com
http://www.bio-rad.com
http://www.bio-rad.com
http://www.promega.com
http://stemcellstm.alphamedpress.org/lookup/suppl/doi:10.5966/sctm.2015-0093/-/DC1


various stages of development, including the acquisition of aneye
field phenotype, followed by the optic vesicle stage of develop-
ment, before eventually yielding themajor cell types of the retina.
Previous studies have demonstrated that not only are each of
these stages of retinogenesis achievable during the differentia-
tionof hiPSCs, but also that this differentiation occurs in amanner
such that each of these major stages of retinogenesis occur in a
predictable and readily identifiable fashion [4, 13, 20, 21, 50].
Thus, the ability of mRNA-derived hiPSCs to differentiate in such
a manner that closely recapitulates these major stages of retino-
genesis was further explored.

All lines of hiPSCs derived throughmRNA and retroviral reprog-
rammingmethodsweredirectedtodifferentiatetoaneye field fate,
aspreviouslydescribed.Within10daysofdifferentiation, robustex-
pression of markers associated with this developmental state were
observed in all cell lines, including PAX6, SOX1,OTX2, and LHX2 (Fig.
4). Quantification of the percentage of cells expressing these tran-
scription factors indicated that mRNA-reprogrammed hiPSCs were
equally capable of differentiating toward this anterior neuroepithe-
lial stage, comparedwith their retroviral-derived counterparts, and
did so in a highly efficient manner.

After theacquisitionof aneye fieldphenotype, thenextmajor
stage in retinal development is the subsequent acquisition of an
optic vesicle-like fate. Previous studies with human embryonic
stem cells and virally derived hiPSCs have indicated that these
cells readily give rise to retinal progenitors analogous to the optic
vesicle stage of retinal development within the first 30 total days
of differentiation [12–14, 16, 20, 21]. These retinal progenitor
cells are organized into individual OV-like structures, allowing for
their subsequent isolation and enrichment. Correspondingly, miPS
cellsweredirected todifferentiate towardanoptic vesicle-like stage,

Figure 2. Establishment of lines of human induced pluripotent stem
cells (hiPSCs) through mRNA- and retroviral-reprogramming methods.
mRNA-reprogrammed lines of hiPSCs (miPS-2, miPS-4, and miPS-6)
and retrovirally reprogrammed cell lines (riPS-1, riPS-2, and riPS-4) ex-
pressed a full complement of pluripotency-associated characteristics.
Quantification of immunocytochemistry results indicated that although
some lines of hiPSCs varied in the expression levels of SOX2 andNANOG,
mRNA-reprogrammedhiPSCs overall did not overtly differ from their ret-
roviral counterparts. *,p, .05. Scale bar =200mm.Abbreviations:miPS,
mRNA-reprogrammed hiPSCs; riPS, retroviral-derived hiPSCs.

Figure 1. Reprogramming of fibroblast samples to pluripotency. Hu-
man fibroblasts were transfected with daily doses of mRNA encoding
for pluripotency reprogramming factors and a nuclear GFP reporter
(A). Similarly,otherculturesof fibroblastswere infectedwithretroviruses
of the transcription factors, including GFP reporters (B). The efficiency of
gene delivery was approximately 95.46% 6 2.81% for mRNA methods
and 28.67%6 4.14% for retroviral methods (C, D). Within 3 weeks fol-
lowing the delivery of these reprogramming factors, compact colonies
indicative of putative hiPSCs were observed (E, F), which were identified
by the expression of the pluripotency-associated cell surfacemarker Tra-
1-60 (G, H). These colonieswere further isolated to generate stable lines
of human induced pluripotent stem cells. Scale bar = 100mm. Abbre-
viations: FL1-H, intensity of green fluorescence; GFP, green fluores-
cent protein; nGFP, nuclear green fluorescent protein.
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with robust expression of retinal progenitor-associated markers
suchas CHX10andPAX6observed (Fig. 5). Interestingly, unlike after
10 days of differentiation, the expression of SOX1 was nearly com-
pletely absent in all cell lines after 30daysof differentiation, indicat-
ing the commitment of these cells to a retinal lineage. miPS cells
were capable of acquiring this optic cup-like phenotype in a highly
efficient manner, with nearly 90% of all cells expressing CHX10 in

some cell lines after isolation of OV-like structures, at levels equal
to or greater than their retroviral counterparts.

Differentiation of Specific Retinal Cell Types

Retinal progenitor cells of the optic vesicle have the ability to give
rise to all the cell types of the retina in a precise and temporal

Figure 4. Establishment of a primitive neural fate from mRNA- and
retroviral-reprogrammed cell lines. miPS and riPS cell lines expressed
primitive neuroepithelial markers, including SOX1 and PAX6, at high
efficiency within the first 10 days of differentiation. Furthermore, all
human induced pluripotent stem cell lines also expressed regional
markers, including OTX2 and LHX2, indicative of acquisition of ante-
rior neural identities. Immunocytochemistry analysis demonstrated
significant differences in expression levels of SOX1, PAX6, and LHX2
among somemiPS and riPS lines; however, no correlationwas observed
betweenthemRNAandretroviralmethodof reprogramming.*,p, .05.
Scale bar = 100mm.Abbreviations:miPS,mRNA-reprogrammedhiPSCs;
riPS, retroviral-derived hiPSCs.

Figure 3. miPS and riPS lines generated cells of all three germ
layers. To confirm the pluripotent nature of these newly generated
miPS and riPS lines, differentiation was performed via the forma-
tion of embryoid bodies to further assess the pluripotent nature
of these cells. All lines of human induced pluripotent stem cells
were analyzed for germ layer markers after 3–4 weeks of differ-
entiation in medium consisting of Dulbecco’s modified Eagle’s
medium/F12 and 20% knockout serum replacement. Ectodermal
cells were identified by the expression of bIII-tubulin; mesodermal
cells were identified by the expression of smooth muscle actin;
and endodermal derivatives were identified by the expression
of a-fetoprotein. Scale bar = 75 mm. Abbreviations: miPS, mRNA-
reprogrammed hiPSCs; riPS, retroviral-derived hiPSCs.
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fashion [51–53]. Similarly, hiPSC-derived retinal progenitor cells
have previously been demonstrated to give rise to all the major
cell types of the retina in an orderly manner. Thus, efforts were
undertaken to determine and quantify the ability of both mRNA
and retrovirus-derived hiPSCs to yield cell types of the retina. Ini-
tially, within the first 30 days of differentiation, pigmentation

associated with the onset of RPE differentiation was observed,
as previously described [25, 28, 36, 54–64], across all cell lines,
with no overt differences detected. These RPE cells becamemore
abundant over the next 1–2 months and eventually gave rise to
expandable monolayers of pigmented, hexagonal RPE-like cells
from all the cell lines tested (supplemental online Fig. 1).

Alternatively, CHX10-positiveOV-like structuresweremore likely
to give rise to cells of the neural retina, particularly the more early
born cell types, such as retinal ganglion cells and developing photo-
receptor cells (Fig. 6), as previously documented [13, 14, 16, 20, 21].
Interestingly, all linesofmiPScellswereable togenerateCRX-positive
photoreceptor-like cells at statistically similar efficiencies, which
correlated with the ability of retroviral-derived cells to yield
photoreceptor-like phenotypes. Additionally, all miPS and riPS cell
linesexpressedavarietyofgenesassociatedwithretinalganglioncells,
photoreceptors, and interneurons of the retina, as demonstrated by
RT-PCR (supplemental online Fig. 2).However, bothmiPS and riPS cell
lines exhibited significant differences in their ability to give rise to
BRN3-positive retinal ganglion cells, with some lines capable of yield-
ing nearly one half (49.13%6 2.95%) BRN3-positive retinal ganglion
cells following enrichment for OV-like structures.

miPS and riPS Cells Differentiate to aRetinal Lineage in a
Developmentally Regulated Manner

The ability to derive retinal cells from hiPSCs allows for the devel-
opmental investigation into the earliest stages of retinogenesis.

Figure 6. Generation of retinal neural cell types from human induced
pluripotent stem cells. After approximately 70 days of differentiation,
cells were analyzed for the expression of markers of retinal ganglion cells
(BRN3/MAP2) or retinal photoreceptors (CRX/RECOVERIN). All cell lines
werecapableofgeneratingtheseretinalcell types,althoughsignificantvar-
iabilitywasobserved in theexpressionofBRN3amongsomemiPSandriPS
cell lines (*, p, .05; **, p, .01; ***, p, .005). Scale bars = 50mm. Ab-
breviations:miPS,mRNA-reprogrammedhumaninducedpluripotentstem
cells; riPS, retroviral-derived human induced pluripotent stem cells.

Figure 5. Differentiation of miPS and riPS cells to a retinal lineage.
Following the establishment of an anterior neural fate, a subset of
cells acquired a definitive retinal progenitor fatewithin 30 days of dif-
ferentiation, as confirmed by the expression of retinal progenitor
markers, including CHX10 and PAX6. The highly proliferative nature
of these cells was demonstrated by the expression of Ki-67. Impor-
tantly, the cells lost the expression of SOX1, a marker found in many
anterior neural cell types but lost within retinal cells. Immunocyto-
chemistry analysis demonstrated some variability in CHX10 expression
among the human induced pluripotent stem cell lines, irrespective of
the reprogramming method, and expression of PAX6 was consistent
across all cell lines. *, p, .05. Scale bars = 50mm.Abbreviations:miPS,
mRNA-reprogrammed human induced pluripotent stem cells; riPS,
retroviral-derived human induced pluripotent stem cells.
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In order for lines of hiPSCs to serve as a model for retinal devel-
opment, however, it is essential that these cells are directed to
differentiate in a manner that closely mirrors known stages of
retinogenesis. Thus, efforts were undertaken to demonstrate the
stepwise acquisition of retinal characteristics from both mRNA
and retroviral-derived hiPSCs through known stages of retinal de-
velopment (Fig. 7). Samples were collected at different stages of
differentiation, and gene expression profiles across all cell lines
were evaluated via qRT-PCR experiments. Similar trends of differ-
entiationwereobservedacross cell lines,with theexpressionof the

pluripotency marker OCT4 gradually lost over the first 10 days of
differentiation. This loss of OCT4 expression coincided with an
increased expression of retina-specific transcription factor RAX,
thereby indicating the establishment of the eye field. After 30 days
of differentiation, the sustainedexpressionofRAX led to the estab-
lishment of the OV-like structures, as indicated by the onset of the
retinal progenitor marker CHX10. These retinal progenitor cells
later gave rise to various retinal phenotypes, including the expres-
sion of CRX, indicative of developing photoreceptors, by 70 days of
differentiation.

DISCUSSION

The ability to direct the differentiation of hiPSCs to a retinal line-
agehasbeen the subject of intense interest andnumerous studies
in recent years and has generated considerable enthusiasm for
the study of human retinal development and disease progression
[4, 12–14, 16, 21–26, 65, 66]. However, such efforts were often
complicated by the numerous factors related to the culture of
hiPSCs, including the method by which somatic cells have been
reprogrammed to a pluripotent state. The results presented
within our study for the first time demonstrate the feasibility
of deriving retinal cells from mRNA-reprogrammed hiPSCs and,
as such, will likely facilitate future efforts toward the development
of translational and therapeutic applications of hiPSC-derived ret-
inal cells.

Traditionally, hiPSCs have been reprogrammed from a fibro-
blast source through the use of viral vectors encoding for
pluripotency-associated transcription factors [7, 33, 35]. Although
these approaches were straightforward and effective, the use of
viral vectors was also associated with numerous undesirable fea-
tures, inparticular, for the futuretranslational applicationofhiPSCs
and their differentiated progeny. First, the use of DNA vectors has
often been accomplished through the use of constitutive promoters
driving the expression of pluripotency transgenes. Although such
constitutive expression might assist in the efficient reprogramming
of fibroblasts toanhiPSC fate, it couldalsohinderefforts todirect the
differentiation of resultant hiPSCs. Furthermore, viral delivery of
reprogramming vectors has also been associated with the risk of in-
sertional mutagenesis, because these vectors incorporate into the
host genome in a random fashion [37–40]. The effects of these
genomic insertions could interrupt certain genes necessary
for differentiation to desired cellular lineages or even disrupt tumor
suppressor genes, leading to uncontrolled growth of cells.

More recent efforts to generate hiPSCs have focused on
methods to minimize the likelihood of such issues, while still
maintaining or improving reprogramming efficiency. Perhaps
most notably, the use of nonviral methods such as episomal vec-
tors has become more widely used in recent years [34, 67].
Episomal vectors are ostensibly nonintegrating in nature and,
thus, should eventually be lost by cells after repeated passaging.
Suchanapproachwouldminimize the risk of insertionalmutagen-
esis, as these vectors would not integrate into the host genome.
Furthermore, with the eventual loss of these vectors over time,
the risk of constitutive expression of pluripotency factors is de-
creased. However, because of the DNA-based nature of these
vectors, one cannot completely eliminate any risk of genomic in-
tegration and/or constitutive expression. Thus, a need exists to
derive lines of hiPSCs in an efficient manner that is free of these
concerns. The recent advent of mRNA-based reprogramming
strategies suitably eliminates these concerns, as the DNA

Figure 7. In vitro retinal differentiation of human induced pluripo-
tent stem cells (hiPSCs) recapitulates known stages of retinogenesis.
All linesofhiPSCswereassessed for expressionof stage-specific genes
during the course of retinal differentiation (A). quantitative reverse
transcription polymerase chain reaction analyses demonstrated that
although the expression of pluripotency factor OCT4 decreased on
differentiation, transcription factors RAX and CHX10 were expressed
at slightly later time points andwere largely retained up to 70 days of
differentiation (B–D). As expected from in vivo studies of retinogen-
esis, expression of photoreceptor-specific marker CRX was only seen
at 70 days of differentiation (E). Overall, the results demonstrated
that all miPS and riPS cell lines recapitulated stage-specific patterns
of gene expression typically associated with human retinogenesis.
Scale bars = 200 mm (B–D) and 50 mm (E). Abbreviations: miPS,
mRNA-reprogrammed human induced pluripotent stem cells; riPS,
retroviral-derived human induced pluripotent stem cells.
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transgene-free source would prevent genomic integration, and
the mRNA nature of these vectors would be rapidly degraded
within the cell.

Although the importance and utility of mRNA reprogramming
for the generation of hiPSCs has been well-documented [47, 48],
the ability of these cells to faithfully recapitulate existing differenti-
ation protocols and yield a full complement of retinal phenotypes
has not been previously demonstrated. The ability to derive cells
of theretinal lineagehas important implicationsforstudiesofhuman
retinogenesis and the progression of retinal degenerative disorders
in patient-derived cells. Furthermore, hiPSC-derived retinal cells
have been proposed as an optimal candidate for cell replacement
within the nervous system, owing to the ease of accessibility of
the retina and its highly organized nature [18, 27, 30, 32, 68]. Recent
efforts have worked toward the clinical applications of human plu-
ripotent stem cells, including hiPSCs, for the potential treatment of
retinaldegenerativedisorders [58,61, 69]. Theefficientderivationof
retinal cells frommRNA-reprogrammed hiPSCs represents a signifi-
cant advance in the development of hiPSCs as effective models of
human retinal development and/or disease progression. However,
for many applications, it is also important to demonstrate that the
protocols for differentiation to the desired cellular lineages are com-
parablyefficient, if notenhanced,whenusingmRNA-reprogrammed
hiPSCs compared with their virally derived counterparts.

The results of the present study help to demonstrate that
the nonintegrating, DNA-free nature of mRNA reprogramming is
likely to be an important development for the generation and ap-
plication of hiPSC-derived retinal cells. hiPSCs derived through
mRNA reprogramming strategiesweredemonstrated to yield ret-
inal cells at a similar efficiency comparedwith their virally derived
counterparts, as significant differences between the cell line
types could not be readily attributed to the reprogramming strat-
egy. In order to establish the utility and efficiency of retinal dif-
ferentiation from hiPSCs, it was important to establish proper
control lines of hiPSCs, because genomic variations between dif-
ferent samples would likely introduce increased variability be-
tween the lines [13, 70, 71]. Thus, the present study explored
the use of hiPSCs derived from bothmRNA and retroviral reprog-
ramming strategies using the identical sourcematerial of BJ fibro-
blasts, which have previously been used by several other groups
for the derivation of hiPSCs [33, 35, 48, 72]. Thus, any potential
differences among the cell lines could not be attributed to the
origin of the cells before reprogramming. A certain degree of
variability can also be expected, apart from the reprogramming
method itself; thus, to account for this type of variability, three
different linesofhiPSCswere generated througheach reprogram-
ming method and all six lines of hiPSCs were differentiated
through each stage of retinal specification.

After a total of 30 days of differentiation, it has beenpreviously
demonstrated thathiPSC-derivedOV-like structuresmightberead-
ily identified and manually enriched, with these cells capable of
giving rise to all major cell types of the retina [4, 12–16, 20, 21].
Similarly, hiPSCs derived throughmRNA-reprogramming methods
were capable of generating theseOV-like structureswithin 30 days
of differentiation. The retinal progenitor-associated transcription
factor CHX10 was expressed in most cells in all lines of hiPSCs at
this stage, although significant differences did exist between some
lines. No correlation was observed in the expression of CHX10 be-
tweenmRNA- and retroviral-derived lines of hiPSCs; however, one
line of mRNA-derived hiPSCs (miPS-4) and one line of retroviral-
derived hiPSCs (riPS-4) expressed CHX10 in significantly more cells

(nearly 90%) than the other cell lines tested, consistent with pre-
vious studies with the H9 (WA09) human embryonic stem cell line
[13, 20]. Those lines of hiPSCs with a lower percentages of cells
expressing CHX10 arenot likely tobe less retinal in nature, because
further differentiation of these cells yielded retinal neurons at sim-
ilarefficienciesbya total of70daysofdifferentiation. Rather, these
variationsmight represent slight differences in the developmental
timing of these cell lines during differentiation [20].

Within a total of 70 days of differentiation, hiPSCs from both
mRNAand retroviral-derived reprogrammingmethodswere capable
of giving rise tomorecommitted retinal neurons, inparticular, retinal
ganglion cells (RGCs) anddeveloping photoreceptor cells [51–53]. In-
terestingly, theseare twoof theearliestgeneratedretinal cell types in
vivo, suggesting that this differentiation paradigm is biased toward
the generation of early born cell types. Althoughno significant differ-
enceswereobserved in thedifferentiationofphotoreceptor-likecells
across all cell lines tested, significant differences did exist in the gen-
eration of retinal ganglion cells, with some lines of hiPSCs generating
nearly onehalf BRN3-positive RGCs andothers as little as 20%. These
differences could not be attributed to the reprogramming method
itself and were likely due to some intrinsic difference in the ability
of each line to give rise to RGCs, although it is important to note that
BRN3 isexpressed inmanybutnotallRGCs [73].Thus, thesenumbers
couldbe anunderestimate of RGCdifferentiation, andperhaps some
linesgive rise toanundetectablenumberofBRN3-negativeRGCs.Re-
gardless, these results underscore the importance of characterizing
new lines of hiPSCs for their ability to give rise to a desired cell type
and selecting lines of hiPSCs carefully, because some lines might be
more appropriate for certain applications than others.

CONCLUSION

The overall results of the present study demonstrate that mRNA
reprogramming to generate hiPSCs will likely prove to be an impor-
tant approach for the generation of hiPSCs for a variety of transla-
tional and potentially clinical applications in the future. The lack
of DNA vectors, whether integrating or nonintegrating, eliminates
the risk of insertional mutagenesis and constitutive expression of
pluripotency transcription factors. Thus, mRNA-reprogrammed
hiPSCs likely represent cells thatwill be closer to anembryonic stem
cell state of pluripotency and will possess numerous features that
would distinguish these cells as likely safer options as hiPSCs are
brought closer to therapeutic applications.For the retina, this ispar-
ticularly important because the differentiated retinal progeny de-
rived from both human embryonic and induced pluripotent stem
cells are becoming closer to clinical applications for diseasemodeling
[10, 13, 22, 23, 25, 26], pharmacological screening [13, 22, 74], and
cell replacement [18, 28, 30, 32, 75]. In the near future, it will also
be necessary to demonstrate additional levels of safety before the
widespread application of hiPSCs for translational purposes.Recent
efforts have focused on the elimination of xenogeneic components
from media used to maintain and differentiate hiPSCs [16, 62, 76,
77], and these approacheswill need to be combinedwith appropri-
ate reprogramming strategies, such as mRNA reprogramming.
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