
RESEARCH ARTICLE

Model-free feature screening for categorical

outcomes: Nonlinear effect detection and

false discovery rate control

Qingyang ZhangID
1*, Yuchun Du2*

1 Department of Mathematical Sciences, University of Arkansas, Fayetteville, AR, United States of America,

2 Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States of America

* qz008@uark.edu (QZ); ydu@uark.edu (YD)

Abstract

Feature screening has become a real prerequisite for the analysis of high-dimensional geno-

mic data, as it is effective in reducing dimensionality and removing redundant features. How-

ever, existing methods for feature screening have been mostly relying on the assumptions

of linear effects and independence (or weak dependence) between features, which might be

inappropriate in real practice. In this paper, we consider the problem of selecting continuous

features for a categorical outcome from high-dimensional data. We propose a powerful sta-

tistical procedure that consists of two steps, a nonparametric significance test based on

edge count and a multiple testing procedure with dependence adjustment for false discovery

rate control. The new method presents two novelties. First, the edge-count test directly tar-

gets distributional difference between groups, therefore it is sensitive to nonlinear effects.

Second, we relax the independence assumption and adapt Efron’s procedure to adjust for

the dependence between features. The performance of the proposed procedure, in terms of

statistical power and false discovery rate, is illustrated by simulated data. We apply the new

method to three genomic datasets to identify genes associated with colon, cervical and

prostate cancers.

Introduction

Feature screening, as a key and inevitable step in many bioinformatics applications, is effective

in reducing dimensionality and removing redundant features. Because the quality of selected

features may greatly affect the subsequent analysis and conclusions, a reliable screening

procedure is essential in practice. In general, the ideal feature screening should have high sen-

sitivity and specificity simultaneously, as too many false positives could result in poor model

interpretability while too many false negatives may cause lack of fit and inaccurate prediction.

In statistics and bioinformatics literature, there has been a wealth of feature screening tech-

niques that can be roughly classified into two categories, namely model-based screening and

model-free screening. The model-based methods often rely on a class of specific models such

as generalized linear model and nonparametric regression model [1–4]. However with a large
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number of predictors, it can be very challenging to specify the model structure without prior

information. The model-free methods do not require any parametric assumption or model

structure, therefore they are more flexible and more efficient than model-based methods for

high-dimensional data [5–7].

Different types of data require different feature screening techniques. For instance, the

dependence between a continuous response and continuous features could be quantified by

correlation-based measures such as Pearson’s correlation, rank-based correlation, and distance

correlation [8–10]. There have been a number of model-free procedures recently developed

based on these measures. For instance, Li et al. (2012) developed a rank-based feature selector

that is robust to outliers and influential points [5]. Li, Zhong and Zhu (2012) introduced a sure

independence screening procedure based on distance correlation [6]. Another type of problem

is selecting continuous features for a categorical outcome, which is more common in genomic

research. For example, it is often of interest to identify genes associated with cancer or certain

cancer subtype. Existing approaches for such data type mainly rely on normal-based tests such

as two-sample t test (for binary response), Hotelling’s t test and F test (for multi-category

response) [11, 12]. These tests are powerful in detecting the mean difference between pheno-

types, however, they have several major drawbacks in real genomic applications. Firstly, these

tests are normal-based and only targeting linear effects, thus may fail to detect important non-

linear effects. Nonlinear relations are very common in gene regulatory network [13], therefore

should be taken into account for feature screening. Secondly, existing approaches have been

mostly relying on some classic multiple testing procedures to control the false discovery rate

(FDR), such as Benjamini-Hochberg (BH) procedure [14]. However, such procedures control

FDR only when the test statistics are independent or weakly dependent, which might not be

the case in gene selection problem (genes are often strongly associated with each other). In this

paper, we aimed to develop a model-free screening procedure to overcome the two challenges,

namely the nonlinear effect detection and FDR control under feature dependencies. To cap-

ture nonlinear associations between a categorical response and continuous features, we trans-

formed the problem to testing the equality of two or multiple distributions, and a recently

developed nonparametric test was used to evaluate the statistical significance. In addition, we

adapted Efron’s multiple testing procedure to control false discovery rate with feature depen-

dence adjustment.

The remainder of the paper is structured as follows: In Section Methods, we formulate

the problem and introduce the two-step procedure including edge-count test and Efron’s mul-

tiple testing procedure. In Section Results, we conduct a simulation study to evaluate the per-

formance of the proposed procedure in terms of statistical power and false discovery rate

control under various settings. The new method is applied to three real genomic datasets to

search genes that differentiate cancer and normal subjects. We discuss the new method with

some future work perspectives in Section Discussion and conclude the paper in Section

Conclusions.

Methods

Problem formulation and edge-count test

We consider a general setting where the outcome variable is discrete with J categories (J<1)

and the features are continuous. For example in genomics, the outcome response can be nor-

mal/diseased, cancer subtypes or tumor stages and each feature can be the expression level of a

gene. Existing model-free screening based on correlation measures [5, 6] were developed for

continuous outcomes, therefore not suitable for this problem [15]. In this paper, we intro-

duced a novel graph-based method to select continuous features that are associated with a
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categorical response. Our method is model-free and does not depend on any hypothesis on

the form of dependence. To begin with, let {X1, . . ., Xp} be p features (p can be large), and

{1, . . ., J} be the sampling space of response variable Y. With N independent observations of

{Y, Xi,1�i�p}, we test the independence between Y and Xi, which is equivalent to testing equal-

ity of J conditional distributions, i.e.,

H0i : FXi jY¼1ðxÞ ¼ . . . ¼ FXijY¼J
ðxÞ; for any x 2 R

Hai : FXi jY¼j
ðxÞ 6¼ FXi jY¼j

0 ðxÞ; for some x and ðj; j0 Þ;

where FXi jY¼j
ðxÞ stands for the cumulative distribution function of Xi in group Y = j. To test if

H0i is true, we employed a modified edge-count test which is proved more powerful in detect-

ing difference between multiple multivariate distributions [13, 16, 17]. This test has resulted in

several successful applications. For instance, Zhang (2018) [13] applied this method to search

differentially co-expressed gene pairs from high-dimensional data. Zhang, Mahdi & Chen

(2017) [17] employed this test to identify pathways that contribute to ovarian cancer progres-

sion. The motivation of the edge-count test is that if samples in difference groups have differ-

ent distributions, they would be preferentially closer to others from the same group than those

from the other group. The distance between samples can be represented by a regular similarity

graph. For instance, Chen and Friedman (2017) [16] suggested a minimum spanning tree

(MST) or a more general d-MST (a union of d disjoint MSTs). The edge-count test rejects the

null hypothesis if the number of between-group edges in the similarity graph is significantly

less than what we expected. To implement the graph-based test, we first pooled samples from

all J groups and indexed them by 1; 2; . . . ;N ¼
PJ

j¼1
nj. The group index for sample k was

denoted by yk. A d-MST is then constructed on the pooled samples using the standard Krus-

kal’s algorithm [18]. Unless otherwise specified, G simultaneously represents the similarity

graph and the set of all edges, while |G| denotes the total number of edges throughout the

paper. For the edge connecting samples k and k0, i.e., (k, k0), we define Rj as the number of

edges connecting samples from same group j, i.e.,

Rj ¼
X

ðk;k0 Þ2G

Iðyk ¼ yk0 ¼ jÞ;
ð1Þ

and the test statistic has the following quadratic form:

S≔ ½R � EðRÞ�TV � 1ðRÞ½R � EðRÞ�; ð2Þ

where R = (R1, . . ., RJ)
T, V−1(R) represents the inverse covariance matrix of R. The test statistic

defined here simply quantifies the deviation of (R1, . . ., RJ) from their expected values under

permutation null, i.e., H�
0
. Chen and Friedman (2017) [16] established the asymptotic distribu-

tion of S for J = 2, S! w2
df¼2

. In our technical report [17], it was proved that the test statistics

for J groups asymptotically follows a Chi-square distribution with J degrees of freedom under

mild regularity conditions. To illustrate the results, for an edge e in graph G, we let

Ae ¼ feg [ fe0 2 G : e0 and e share a nodeg;

Be ¼ Ae [ fe00 2 G : 9 e0 2 Ae; such that e00 and e share a nodeg;

then the following theorem can be derived:

Model-free feature screening for categorical outcomes
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Theorem 1. If |G| = O(N),
PN

k¼1
jGkj

2
�

4jGj2

N ¼ OðNÞ, ∑e2G|Ae||Be| = o(N3/2),

lim N!1
Nj
N ¼ lj 2 ð0; 1Þ, then

S≔ ½R � EðRÞ�TV � 1ðRÞ½R � EðRÞ�!D w2

J ;

where j = 1, . . ., J is the group index.

The expected values and covariance matrix of (R1, . . ., RJ) can be derived as follows:

EðRjÞ1�j�J ¼ jGj
njðnj � 1Þ

NðN � 1Þ
;

VðRjÞ1�j�J ¼ EðRjÞð1 � EðRjÞÞ þ 2C
njðnj � 1Þðnj � 2Þ

NðN � 1ÞðN � 2Þ

þðjGjðjGj � 1Þ � 2CÞ
njðnj � 1Þðnj � 2Þðnj � 3Þ

NðN � 1ÞðN � 2ÞðN � 3Þ
;

CovðRj;Rj0 Þj6¼j0 ¼ ðjGjðjGj � 1Þ � 2CÞ
njnj0 ðnj � 1Þðnj0 � 1Þ

NðN � 1ÞðN � 2ÞðN � 3Þ
� EðRjÞEðRj0 Þ;

where N ¼
PJ

j¼1
nj and C ¼ 1

2

PN
k¼1
jGkj

2
� jGj.

The convergence rate of the asymptotic result is the usual n−1/2 and there are three condi-

tions on the similarity graph (stated in the main Theorem above). |G|* O(N) requires that

the density of the graph is of the same order as the pooled sample size.
PN

k¼1
jGkj

2
� OðNÞ

ensures that there is no large hubs nor many small hubs. ∑e2G|Ae||Be|* o(N3/2) requires there

is no cluster of small hubs [16]. These conditions are satisfied by the k-MST based on Euclid-

ean distance [16], we therefore recommend using k-MST as the similarity graph in edge-count

test. Furthermore, we conducted a simulation study to evaluate the finite sample performance

of the asymptotic null distribution under different sample sizes and different similarity graphs.

Details of the simulation settings can be found in S1 File, and the results were summarized in

Fig T in S1 File. It is found that under two different models (standard normal distribution and

exponential distribution with λ = 1), the asymptotic chi-squared distribution works quite well

in approximating p-values, even for relatively small sample size, e.g, 20 samples in each group

of Y. Increasing sample size generally results in better accuracy of approximation, and the use

of slightly denser graph (e.g., 3-MST or 5-MST) may result in better accuracy. These findings

are consistent with the simulation results for two groups (J = 2) [16]. For small sample sizes

(e.g., nj� 10, j = 1, . . ., J), however, the asymptotic distribution might not work well, and in

such cases, it is safer to use a permutation p-value based on our test statistic S.

It is noteworthy to mention that the main theorem also applies to multi-dimensional fea-

tures (Xi can be a random vector), i.e., our method can be used to select feature sets. One inter-

esting application is to search biological pathways or gene sets that are associated with certain

phenotypes [17]. In addition to the aforementioned edge-count test, some other tests for

equality of distributions may also be considered, including Kolmogorov-Smirnov (KS) test

[19] and traditional graph-based test [20, 21]. However, these methods have practical limita-

tions in real applications. For instance, KS test is known to be very conservative, i.e., the null

hypothesis is too often not rejected [22, 23] (see our simulation study in S1 File for illustrating

the conservativeness of KS test). Moreover when the feature is multi-dimensional, the imple-

mentation of KS test can be prohibitively computationally intensive. Graph-based tests such as

the traditional edge-count tests are easy to implement but they could be problematic under

certain location and scale alternatives. As reported recently [16], the traditional edge-count

test works well for location alternative under low dimension, however, it becomes problematic

Model-free feature screening for categorical outcomes
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for scale alternative (or location+scale alternative, i.e., the two distributions are different in

both location and scale), especially when the dimension is moderate to high. This is caused by

the fact that the number of within-sample edges in the inner layer would be larger than its null

expectation, while the number of within-sample edges in the outer layer would be less than its

null expectation, making the edge-count test have low or even no power [16].

Multiple testing with dependence-adjustment

As we discussed in the previous sections, the prevailing Benjamini-Hochberg procedure may

fail to control the false discovery rate in the presence of moderate or strong feature depen-

dence. In the feature screening problem, the test statistics {S1, . . ., Sp} are correlated under fea-

ture dependencies, therefore the BH procedure is not appropriate. To overcome the issue, we

adapted a dependence-adjusted multiple testing procedure suggested by Efron (2007) [24].

Unlike the BH procedure, Efron’s procedure does not rely on the independence assumption

and generally applies to any dependency structure. It has been extensively studied and widely

applied by the statistic community. For instance, Liu (2013, 2017) employed this procedure as

a key step to control false discovery rate in the Gaussian graphical model estimation and differ-

ential network estimation [25, 26]. To implement Efron’s method, we first transformed the

test statistics {S1, . . ., Sp} into z-values by quantile normalization

zi ¼ F� 1ðPðw2
df¼J � SiÞÞ; i ¼ 1; :::; p;

where F−1(�) represents the inverse cumulative distribution function of N(0, 1). Following the

notations in Efron (2007), let A ¼ ðP0 � P̂0Þ=Q0, where P0 = 2F(1) − 1,

P̂0 ¼
Pp

i¼1
Ifjzij � 1g=p, Q0 ¼ 1=

ffiffiffiffiffi
pe
p

. In addition, we let

AðzÞ ¼ 1þ jAj
jzj�ðzÞ
ffiffiffi
2
p
ð1 � FðzÞÞ

( )� 1

;

where ϕ(�) represents the probability density function of N(0, 1). Here, A(z) is used to control

the influence of correlation between test statistics (under independence and sparsity, A(z) is

close to 1, thus the procedure is same as BH procedure). The critical value can be obtained as

follows:

z0 ¼ inf � 1 < z <1; 1 � FðzÞ �
aAðzÞ

p
max ð1;

Xp

i¼1

Ifzi � zgÞ

( )

:

To control the FDR at the level of α (e.g., α = 0.05 or α = 0.10), one can solve for the cutoff z0

and reject H�i0 if zi> z0. This testing procedure asymptotically controls the FDR at the desired

level under some mild regularity conditions (though it might be slightly conservative for some

cases) and it works well under all settings in our simulation study. The detailed proof and regu-

larity conditions for Gaussian case can be found in Liu (2017) ([26], see Theorems 3.1 and

3.3).

Results

Simulation studies

The simulation studies in this part examined the performance of the proposed procedure

under several different settings. Without loss of generality, we considered a binary outcome

variable Y 2 {0, 1} (i.e., J = 2) and p continuous features {X1, . . ., Xp} with sample size N (p�
N). Four high-dimensional settings (each setting refers to a combination of model and feature

Model-free feature screening for categorical outcomes
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dependency structure) were used to generate the data. To be precise, let k 2 {1, 2, . . ., N} be the

index of sample, and i 2 {1, 2, . . ., p} be the index of feature, where we set p = 500 and N = 50,

100, 200, 500 respectively. In addition, we assumed that only the first 10 features, {X1, . . ., X10},

were associated with Y and the other 490 features were redundant. The transformation func-

tions {hi(Xik), 1� i� 10} were set as hi(Xik) = Xik for 1� i� 3 (linear transformation),

hiðXikÞ ¼ X3
ik for 4� i� 6 (nonlinear monotonic transformation), hiðXikÞ ¼ X2

ik for 7� i� 8

(nonlinear non-monotonic transformation) and hi(Xik) = sin(2πXik/3) for 9� i� 10 (nonlin-

ear non-monotonic transformation), representing a combination of linear effects and nonlin-

ear effects. The four transformation curves were shown in Fig 1.

Fig 1. Four transformation functions in the simulation study.

https://doi.org/10.1371/journal.pone.0217463.g001
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To establish the relation between Y and {X1, . . ., X10}, we considered two different models:

• Logistic regression model: Yk* Bernoulli(πk), logfpk=ð1 � pkÞg ¼
P10

i¼1
bihiðXikÞ, β1 =

β2 = β4 = β6 = β7 = β9 = 0.5, and β3 = β5 = β8 = β10 = −0.5

• Latent variable model: Yk ¼ IfY�k > 0g, where Y�k ¼
P10

i¼1
bihiðXikÞ þ �k, �k* N(0, 0.52),

β1 = β2 = β4 = β6 = β7 = β9 = 0.5, and β3 = β5 = β8 = β10 = −0.5

Furthermore, to evaluate the effect of feature dependencies on statistical power and FDR

control, we generated the data by two methods:

• Independent features: Xik* Unif(−1.5, 1.5) for 1� i� 500.

• Dependent features: Xik ¼
ffiffiffi
2
p

Zik, where {Zik}1�i�500 * N500(0, S) and S is a random corre-

lation matrix containing both positive and negative elements (generated by R package clus-
terGeneration). In addition, we conducted an interval truncation (between -1.5 and 1.5) for

the samples to avoid extreme values.

The following six testing procedures were applied to each combination of model and fea-

ture dependency structure above, namely logistics model with independent features, logistic

model with dependent features, latent variable model with independent features and latent

variable model with dependent features:

• Edge-count test with Efron’s multiple testing procedure

• Edge-count test with Benjamini-Hochberg procedure

• Welch’s t test with Efron’s multiple testing procedure

• Welch’s t test with Benjamini-Hochberg procedure

• Mutual information z-test with Efron’s multiple testing procedure

• Mutual information z-test with Benjamini-Hochberg procedure

In the edge-count test, a 3-MST was constructed as the similarity graph for better approxi-

mation of p-values [17]. To implement Welch’s t test with dependence-adjusted multiple test-

ing, we first calculated and transformed the test statistics into z values via quantile

normalization:

zi ¼ F� 1ðPðtdf¼vi � tiÞÞ; i ¼ 1; . . . ; p;

where the degree of freedom vi was approximated by Welch-Satterthwaite equation and the

test statistics ti was calculated by the standard formula for t test with unequal variances:

vi ¼

s2i1
n1
þ

s2i0
n0

� �2

s4i1
n2

1
ðn1� 1Þ

þ
s4i0

n2
0
ðn0 � 1Þ

; ti ¼
Xi1 � Xi0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2i1
n1
þ

s2i0
n0

q ;

where {n1, n0} stand for the sample sizes for Y = 1 and Y = 0, fXi1;Xi0g and fs2
i1; s

2
i0g represent

the sample means and sample standard deviations of Xi in two groups, respectively.

To test whether the mutual information is zero, we used the following Fisher-z transforma-

tion:

zMI
i ¼

1

2
log

1þ Î �ðY;XiÞ

1 � Î �ðY;XiÞ
; ð3Þ

Model-free feature screening for categorical outcomes
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where Î �ðY;XiÞ represents the normalized sample mutual information between response Y
and Xi, and it can be computed as Î �ðY;XiÞ ¼ ÎðY;XiÞ=ðĤðYÞ þ ĤðXiÞÞ, where ÎðY;XiÞ

stands for the sample mutual information between Y and Xi, and fĤðYÞ; ĤðXiÞg stand for the

sample entropies of Y and Xi. By the classical decision theory, zMI
i � Nð0; 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 3
p

Þ under

the null hypothesis [27, 28]. The sample mutual information and sample entropy were

obtained by R package infotheo (https://cran.r-project.org/web/packages/infotheo), where the

continuous Xi was discretized into N1/3 bins.

The targeted FDR was chosen to be α = 0.10. Figs 2 and 3 summarized the empirical statisti-

cal power and false discovery proportion by six procedures based on 100 replications. It can be

seen that the edge-count test was superior to Welch’s t test and mutual information test in

both false discovery rate control and statistical power under all settings. Notably, the edge-

count test showed a substantial power gain (ranging from 0.17 * 0.44) over other tests. For

independent features, the BH procedure and Efron’s procedure performs very similar in FDR

control. However, under feature dependence, the BH procedure is slightly worse than Efron’s

procedure for all tests.

Fig 4 presented an illustrative example where feature X7 was missed by Welch’s t test and

mutual information test but captured by the edge-count test in our simulation. The reason is

that feature X7 has a quadratic effect (h7ðX7Þ ¼ X2
7
) on Y, and the difference between two sam-

ple means (vertical dashed lines) becomes subtle and undetectable. However, feature X7

showed very different patterns in two groups (a clear bimodal shape in Y = 1 and much weaker

bimodal shape in Y = 0) which was detected by the edge-count test. Fig 5 showed an example

of false negative where the feature was missed by all methods due to a small difference in both

sample mean and sample distributions.

Application to three cancer genomic datasets

We first applied the new procedure to a colon cancer dataset [29] to search genes that differen-

tiate cancer and normal subjects. The data contained expression level of 2,000 genes in 40

tumor and 22 colon tumor samples, probed by oligonucleotide arrays. To reduce variance and

remove potential effects, the data for each subject were first log-transformed and then normal-

ized by the trimmed mean and trimmed standard deviation (the lowest and highest 5% data

were excluded). Two procedures were compared in selecting differentially expressed genes in

two groups, including the edge-count method with Efron’s multiple testing procedure (a

3-MST was used as the similarity graph) and Welch’s t test with Benjamini-Hochberg proce-

dure, both with targeted FDR α = 0.10. As can be seen from our simulation results (Figs 2 and

3), when the sample sizes are relatively small (N = 50), the mutual information z-test exhibited

extremely low power, therefore we did not consider this method for real data analysis.

Out of 2,000 genes, 36 and 26 genes were selected by the two methods and Fig 6 showed a

Venn diagram summarizing the agreement between two selections. As shown in Fig 6, most of

the 26 genes by Welch’s t test were also captured by the edge-count test, but a list of 11 genes

that were identified by edge-count test were missed by the Welch’s t test, which included genes

Hsa.3180, Hsa.1804, Hsa.40177, Hsa.4937, Hsa.2157, Hsa.44676, Hsa.2847, Hsa.3026, Hsa.108,
Hsa.11632, Hsa.27716. Figs 7 and 8 presented the expression levels of two such genes, includ-

ing Hsa.108 and Hsa.2157, where the sample distributions in normal and tumor groups were

significantly different from each other but both skewed. Our edge-count test successfully

detected this difference, while the Welch’s t test failed to detect it due to close sample means

(indicated by the two vertical dashed lines). Similar results were observed for the other nine

genes (see Figs B-J in S1 File for details).
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As previously reported in the literature, several of these 11 genes are associated with human

cancers. To name a few, gene Hsa.1804 (SFN) promotes lung adenocarcinoma progression at

an early stage [30]. Gene Hsa.4937 (CREBBP) acts as a potent tumor suppressor in small cell

lung cancer, and inactivation of CREBBP enhances responses to a targeted therapy [31]. Gene

Hsa.44676 (VAV1) promotes cancer growth by instigating tumor-microenvironment cross-

talk via growth factor secretion [32]. Gene Hsa.108 (POSTN), a matricellular protein-coding

Fig 2. False discovery proportions and empirical statistical powers by six different procedures under independent features: (a) false discovery

proportion for logistic model; (b) statistical power for logistic model; (c) false discovery proportion for latent variable model; (d) statistical

power for latent variable model. All results were based on 100 replications.

https://doi.org/10.1371/journal.pone.0217463.g002
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gene, has been shown to regulate key aspects of tumor biology, including proliferation, inva-

sion, matrix remodeling, and dissemination to pre-metastatic niches in distant organs [33].

Gene Hsa.11632 (RYR1), together with RYR2 stimulates apoptosis of prostate cancer cells [34].

The results from colon cancer data well confirmed our findings from simulation study, i.e.,

the edge-count test can not only detect the mean difference, but also detect distributional dif-

ferences, thus it is more sensitive to nonlinear change compared to normal-based tests such as

Fig 3. False discovery proportions and empirical statistical powers by six different procedures under dependent features: (a) false discovery

proportion for logistic model; (b) statistical power for logistic model; (c) false discovery proportion for latent variable model; (d) statistical

power for latent variable model. All results were based on 100 replications.

https://doi.org/10.1371/journal.pone.0217463.g003
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t test, F test and Hotelling’s t test. Additionally, we conducted feature selection using p-values

from a simple logistic regression (implemented by R function glm()), followed by a Benjamini-

Hochberg procedure with α = 0.10. We detected a total of 28 significant genes, and 26 of them

were consistent with the selection by Welch’s t test. However, this model fails to detect any of

the 11 genes with nonlinear effects. The logistic regression model was further modified by add-

ing a quadratic term in order to capture the nonlinear relations, however, this modification

did not lead to any improvement.

Fig 4. An example that feature X7 was captured by edge-count test but missed by Welch’s t test: (a) histogram of X7 in group Y = 1; (b) histogram of

X7 in group Y = 0; (c) comparison of two fitted density curves, where the vertical dashed lines indicate the sample means in two groups.

https://doi.org/10.1371/journal.pone.0217463.g004
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The new method was further tested on two additional cancer genomic datasets, including

the RNA-seq data for cervical cancer [35] and the microarray data for prostate cancer [36] (see

S1 File for details about data analysis). Similar to the results from the colon cancer data, the

edge-count test consistently detected more genes than the Welch’s t test (in the cervical cancer

data, the new method identified 16 more genes and in the prostate cancer, the new method

identified 12 more genes). All the newly discovered genes have close sample means but signifi-

cantly different distributions in normal and tumor groups. The details of nine such genes were

shown in S1 File, see Figs K-S in S1 File.

Fig 5. An example that feature X7 was missed by both edge-count test and Welch’s t test: (a) histogram of X7 in group Y = 1; (b) histogram of X7 in

group Y = 0; (c) comparison of two fitted density curves, where the vertical dashed lines indicate the sample means in two groups.

https://doi.org/10.1371/journal.pone.0217463.g005
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Discussion

Genomic studies with high-dimensional data often rely on feature screening. In this work, we

developed and validated a model-free feature screening method which reliably selects continu-

ous features associated with a categorical outcome under high dimension. The new method

tackles two major challenges in feature screening and feature selection, namely nonlinear

effect detection and false discovery rate control under feature dependencies. The edge-count

test is based on some simple calculations such as MST construction and Chi-square test, there-

fore it is easy-to-implement and feasible for large-scale data sets such as cancer genomic data

and brain mapping data. For instance, in the colon cancer example with 2,000 genes, the

computation took less than 10 seconds by R implementation on single CPU (2.5 GHz Intel

Core i7).

There are several possible extensions of the proposed selector. For instance, in addition to

feature screening, our method can also be used to select feature sets. One appealing property

of the edge-count test is that it only requires a similarity graph constructed on the samples. In

practice, one could simply build a MST or m-MST based on Euclidean distance as the similar-

ity graph, and the main result Si ! w2
df¼J holds regardless of the sizes of feature sets. This exten-

sion can be used to search important pathways associated with certain disease, which is

biologically more interesting than single gene based selection as the pathway-level analysis

provides more functional insights into the mechanism underlying the phenotype change.

Efron’s multiple testing procedure was used in our method to control FDR under feature

dependencies, but it might be replaced by other recently developed procedures. For instance,

when the test statistics are positively dependent, one may also use Benjamini-Hochberg-Yeku-

tieli (BHY) procedure to control FDR [37]. Fan et al. (2012) introduced a new multiple testing

based on principal factor approximation, which adjusts the feature dependencies of arbitrary

structure [38]. However, Fan et al.’s method relied on the true covariance matrix of the test sta-

tistics, which is unknown in most cases. To obtain a good sample covariance matrix of the test

statistics {S1, . . ., Sp} in our framework, a subsampling without replacement might be needed

in order to get independent samples of {S1, . . ., Sp}, however, the estimation may require rela-

tively large sample size, e.g., N> 1, 000.

Fig 6. A Venn diagram showing the agreement between two selections by Welch’s t test (with BH procedure) and

edge-count test (with Efron’s multiple testing procedure).

https://doi.org/10.1371/journal.pone.0217463.g006
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Conclusions

Identification of disease-related biomarkers from large-scale data is essential in many genomic

studies. However, existence of nonlinear effects and strong feature dependencies make existing

methods inappropriate and unreliable. In this work, we presented a model-free feature screen-

ing method which is sensitive to both linear and nonlinear effects. In addition, the depen-

dence-adjusted multiple testing procedure can well control the false discovery rate under

feature dependencies. On a whole, we put forward a simple yet effective testing procedure that

reliably captures different types of effects. Although we used gene expression data for

Fig 7. An example that gene Hsa.108 was selected by edge-count test but missed by Welch’s t test: (a) histogram of gene Hsa.108 in tumor samples;

(b) histogram of gene Hsa.108 in normal samples; (c) comparison of two fitted density curves, where the vertical dashed lines indicate the sample

means in two phenotypic groups.

https://doi.org/10.1371/journal.pone.0217463.g007
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illustration in the paper, the proposed test can be readily applied to other data types and prob-

lems, such as DNA methylation data and protein expression data and pathway selection.

Supporting information

S1 File. Additional analyses. This file contains additional simulation studies and real data

applications, as well as the technical report by Zhang, Mahdi and Chen.

(PDF)

Fig 8. An example that gene Hsa.2157 was selected by edge-count test but missed by Welch’s t test: (a) histogram of gene Hsa.2157 in tumor

samples; (b) histogram of gene Hsa.2157 in normal samples; (c) comparison of two fitted density curves, where the vertical dashed lines indicate

the sample means in two phenotypic groups.

https://doi.org/10.1371/journal.pone.0217463.g008
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