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Abstract

Stroke is a major complication of cardiovascular surgery, resulting in over 100,000 deaths and over a million postoperative
encephalopathies annually in the US and Europe. While mitigating damage from stroke after it occurs has proven elusive,
opportunities to reduce the incidence and/or severity of stroke prior to surgery in at-risk individuals remain largely
unexplored. We tested the potential of short-term preoperative dietary restriction to provide neuroprotection in rat models
of focal stroke. Rats were preconditioned with either three days of water-only fasting or six days of a protein free diet prior
to induction of transient middle cerebral artery occlusion using two different methods, resulting in either a severe focal
stroke to forebrain and midbrain, or a mild focal stroke localized to cortex only. Infarct volume, functional recovery and
molecular markers of damage and protection were assessed up to two weeks after reperfusion. Preoperative fasting for 3
days reduced infarct volume after severe focal stroke. Neuroprotection was associated with modulation of innate immunity,
including elevation of circulating neutrophil chemoattractant C-X-C motif ligand 1 prior to ischemia and suppression of
striatal pro-inflammatory markers including tumor necrosis factor a, its receptor and downstream effector intercellular
adhesion molecule-1 after reperfusion. Similarly, preoperative dietary protein restriction for 6 days reduced ischemic injury
and improved functional recovery in a milder cortical infarction model. Our results suggest that short-term dietary
restriction regimens may provide simple and translatable approaches to reduce perioperative stroke severity in high-risk
elective vascular surgery.
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Introduction

Perioperative stroke occurring during or soon after surgery is a

major cause of morbidity and mortality, with an average incidence

of 2–13% in cardiovascular procedures and 0.08–0.7% in non-

cardiovascular procedures [1,2]. With 7 million cardiovascular

and 21 million non-cardiovascular surgeries performed annually in

the US [3] and similar numbers in Europe (extrapolated from data

from the Netherlands [4]), annual deaths are calculated to be in

excess of 180,000 on these two continents alone. Those left with

the debilitating consequences of perioperative stroke/encephalop-

athy number an order of magnitude higher [5,6]. Treatment of

perioperative stroke accounts for a quarter of the resources spent

annually for stroke treatment in the USA [5].

Numerous pharmacological compounds have been tested for

their ability to provide neuroprotection after stroke, including 5-

HT1a agonists, free radical scavengers, immunosuppressants and

agents that block excitotoxicity. Despite efficacy in rodent models,

most have failed in clinical trials [7]. While perioperative stroke

risk assessment prior to surgery is a common practice, general

prophylactic methods are lacking [1,2], underpinning a need for

basic research.

Strategies that provide neuroprotection when initiated before

the ischemic period are known as preconditioning. Ischemic

preconditioning is a phenomenon in which brief periods of

ischemia protect against subsequent, longer insults to various

organs, including heart [8] and brain [9]. In preclinical models of

stroke, ischemic preconditioning prevents subsequent ischemic

injury by suppressing the expression of pro-inflammatory cyto-

kines, chemokines, adhesion molecules and transcription factors

[10]. Other low-dose stressors such as hypoxia [11], endotoxin

[12] or heat shock [13] can also precondition against ischemic

injury. However, the clinical application of such methods has

remained a matter of debate in large part due to the potential
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safety concerns, highlighting a need for safer preoperative

prophylactic methods.

Dietary restriction (DR), defined as reduced food intake without

malnutrition, extends lifespan and increases resistance to a variety

of acute stressors in multiple species, including rodents [14]. Long-

term application of DR for 3 months or longer is neuroprotective

in rodent models of stroke [15] and excitotoxicity [16–18].

Mechanistically, upregulation of neurotrophic and growth factors,

such as brain-derived neurotrophic factor (BDNF) induced by

long-term DR [19,20] could be partially responsible for increased

protection, as BDNF has been shown to reduce neuronal injury

after ischemia [21,22]. Long-term DR also offers benefits against

ischemic injury in other organs, such as heart, through a variety of

mechanisms including immunosuppression, elevation of reactive

oxygen and nitrogen species scavenging mechanisms and upregu-

lation of heat shock protein levels [23,24].

Despite its potential as a safe and effective prophylactic method,

the relatively long periods of food restriction employed in

preclinical studies (3 months or longer) are not considered feasible

in a clinical setting [25]. However, recent data indicate that

dietary preconditioning against ischemic injury can be realized in

a clinically relevant time frame in rodent models [26]. For

example, 2 weeks of 30% reduced daily food intake or 3 days of

water-only fasting protect against ischemia reperfusion injury to

kidney or liver [27]. Protein restriction in the absence of calorie

restriction, or restriction of individual essential amino acids such as

tryptophan, can also impart benefits within 6 days [28]. Here, we

describe two different pre-operative manipulations – 3 days of

water-only fasting and 6 days of protein-free DR – with benefits on

focal stroke outcomes in rats.

Methods

Please also see Methods S1 for further details.

Animals
All animal experiments were carried out according to the

National Institute of Health (NIH) guidelines for the care and use

of laboratory animals and approved by the appropriate local or

national ethics board (permit number ESAVI/5459/04.10.03/

2011, issued by ELÄINKOELAUTAKUNTA – ELLA Etelä-

Suomen aluehallintovirasto, Finland). Adult male Sprague-Dawley

(SD) rats weighing 240–300 g were housed under standard

conditions with ad libitum access to food and water unless indicated

otherwise.

Dietary preconditioning regimens
Fasting was performed by removing the complete chow diet

(Harlan Teklad Global 2016 Rodent Diet) for 3d while

maintaining free access to water at all times. Protein-free dietary

restriction was performed by first acclimating all animals to a

complete diet made of refined ingredients (Research Diets

D12450B) consisting of 18% calories from protein (casein), 72%

from carbohydrate (corn starch, maltodextrin, sucrose) and 10%

from fat (soybean oil, lard) for 6d. The control group was then

maintained on the complete diet, and the protein-free group was

given restricted access to an isocaloric diet lacking protein

(Research Diets D08043003, consisting of 90% calories from

carbohydrate and 10% from fat) at 60% of the average daily intake

of the complete diet group for 6d prior to tMCAO and 2d after

reperfusion.

Surgical procedures
Two different stroke models were employed. In experiments

testing the effects of fasting, a severe focal stroke involving

forebrain and midbrain was induced by intraluminal occlusion of

the middle cerebral artery (MCA) with a filament for 60 min,

followed by reperfusion as described previously [29]. Stroke

involving forebrain and midbrain is associated with fever [30]. To

determine whether the MCA occlusion surgery produced a lesion,

core body temperature in each animal one hour after reperfusion

was measured. Experiments evaluating the effect of fasting on

severe focal stroke were performed at Charles River Laboratories

(CRL), Kuopio, Finland.

In experiments testing the effects of protein-free DR, a mild

focal stroke involving cortex only was induced by transient direct

occlusion of the right MCA and bilateral CCAs with a 10-0 suture

for 60 min followed by reperfusion as described previously [31].

Cortical-only stroke does not result in fever in rats [32] (Figure S1)

thus the presence of lesion was verified by behavioral tests up to

two weeks post-stroke and/or by TTC staining 48 hours after

stroke. Experiments evaluating the effect of protein-free diet on

‘‘mild’’ cortical stroke were performed at the University of Helsinki

(UH), Finland.

Behavioral procedures
In the mild suture-induced cortical stroke model, neurological

deficits were evaluated using body swing, Bederson’s score [33]

and cylinder tests [31]; and locomotor activity was measured using

an infrared activity monitor (MedAssociates Inc.). All tests were

conducted by an investigator blinded to the treatment groups.

Analysis of infarction volume
For determination of infarct volume 7d after severe filament-

induced stroke, T2-weighted multi-slice (12–14 continuous slices)

MRI images were acquired using a Varian Inova console

interfaced to a 4.7T horizontal magnet (Magnex Scientific Ltd,

Abington, UK). Lesion quantitation was done by manually

delineating total lesion outlines from MRI images based on T2

contrast between lesioned and healthy tissue using MATLAB

software by an observer blinded to the treatment groups.

Infarct volume 2d after mild suture-induced cortical stroke was

assessed with triphenyltetrazolium chloride (TTC) staining by an

observer blinded to the treatment groups as described previously

[31].

Blood measurements
Glucose levels were measured from fresh blood with a

Glucocard II Super device (Akray Factory Inc., Shiga, Japan).

Plasma cytokines were measured on the Rat Demonstration Multi-

Spot plate (Meso Scale Discovery, Gaithersburg, MD) according

to the manufacturer’s instructions. Clinical chemistry analyses

from plasma samples were performed with an automatic analyzer

(Konelab 30i, Thermo Fisher Scientific, Vantaa, Finland) accord-

ing to manufacturer’s instructions.

Real-time quantitative PCR
Striatum was dissected from snap frozen brains before or 24hr

after severe filament-induced stroke for isolation of RNA for

cDNA synthesis. Real-time quantitative PCR (qPCR) was

performed on a LightcyclerH480 real-time PCR system (Roche

Diagnostics) using LightcyclerH480 SYBR Green I Master

complemented with 2.5pmol of primers (Table S1). Reactions

were performed in triplicate and analyzed with LightcyclerH480

Software. Gene expression was normalized to peptidylprolyl
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PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e93911



isomerase A. Similar methods were employed for gene expression

analysis from cortex and striatum before or 24hr after mild suture-

induced stroke.

Statistics
All values are presented as mean 6 standard error of the mean

(SEM). Differences were considered to be statistically significant at

the p,0.05 level. Statistical analyses including Student’s t-test,

Mann-Whitney U-test and one- or two-way ANOVA or Kruskal-

Wallis non-parametric ANOVA followed by appropriate post hoc

analysis were performed with SPSS 15.0 software.

Results

Neuroprotection against severe focal stroke by
preoperative fasting

In hypoxia and global brain ischemia models, short-term water-

only fasting is protective [34–38]. However, while global brain

hypoperfusion accounts for less than 10% of perioperative strokes

in humans [2], the majority (62%) of perioperative strokes are

caused by focal ischemic insults that are mechanistically and

pathologically different from hypoperfusion. Our first objective

was to assess the effect of short-term fasting on severe focal brain

ischemia. Rats were subjected to pre-operative water-only fasting

for 3d as shown in Fig 1A. As expected, fasted rats exhibited a

significant reduction in body weight (Fig 1B). Fasting also

significantly reduced blood glucose levels (Fig 1C) and body

temperature (Fig 1D) prior to induction of focal stroke by

intraluminal occlusion of the middle cerebral artery (MCA) with

a filament for 60 min. One hour after reperfusion, body

temperature was elevated in both groups, consistent with lesion

induction (Fig 1D). Analysis of infarction volumes obtained from

T2-MRI images revealed a significant reduction 7d after tMCAO

in the fasted group relative to the ad libitum-fed group (Fig 1E and

F).

Suppression of pro-inflammatory response to severe
focal stroke by fasting

Long-term DR is believed to protect against ischemia reperfu-

sion injury at least in part through suppression of inflammatory

responses [23]. In the context of neuroprotection, long-term DR is

additionally associated with upregulation of neurotrophic factors

and growth factors such as BDNF [16,17,19,20], and increased

expression of proteins involved in cytoprotection [39]. To gain

insight into the molecular mechanisms of protection by fasting

against focal stroke, we analyzed striatal gene expression

immediately before (baseline) and 24hr after tMCAO using qPCR

(Fig 2A). Unlike long-term DR, we found no significant differences

in mRNA expression levels of growth factor-related, cytoprotective

or pro-inflammatory markers at baseline as a result of 3d of fasting

relative to ad libitum (AL) fed controls (Fig 2B, Table S1). 24hr after

reperfusion, expression of mRNAs encoding for the pro-inflam-

matory cytokine tumor necrosis factor alpha (TNFa), its receptor

TNFRSF1A and its downstream target, the intercellular adhesion

molecule 1 (ICAM1) were significantly upregulated in the lesioned

hemisphere compared to the control hemisphere in the ad libitum

group, but not in the fasted group (Fig 2C), suggesting attenuation

of the inflammatory response to stroke in fasted rats. Surprisingly,

mRNAs encoding for several neurotrophic and growth factors

including glial cell line-derived neurotrophic factor (GDNF),

neurturin (NRTN), mesencephalic astrocyte-derived neurotrophic

factor (MANF), transforming growth factor beta 1 (TGFb1),

fibroblast growth factor 2 (FGF2) and GDNF family receptor

alpha 1 (GFRa1) were significantly upregulated in the lesioned

striatum after stroke in the ad libitum rats but not in the fasted rats

(Fig 2C). A similar trend was observed in BDNF mRNA

expression, but this effect did not reach statistical significance.

Interestingly, no significant differences were observed in the

expression of cellular stress response genes (with the exception of

HMOX1, Fig 2C) as a function of diet or stroke. The expression of

all genes analyzed relative to the reference gene PPIA and

normalized to expression in the ad libitum group at baseline is

provided in Table S1; no significant changes were observed in any

of these genes in sham-operated animals 24hr after operation in

either dietary group.

Since DR can modulate innate immune activation, we

measured the concentration of plasma chemokines/cytokines

(CXCL1, IL-1b, IL-4, IL-5, TNFa, IFNc and IL-13) prior to

and 4hrs after tMCAO. Of these, only the pro-inflammatory

neutrophil chemoattractant CXCL1 (C-X-C motif ligand 1) was

significantly differentially regulated by fasting at baseline, with

higher levels in the fasted group than in the ad libitum fed group

(Fig 2D). Four hours after tMCAO, there was a trend in each of

the seven cytokines tested toward being reduced in the pre-fasted

group, but none reached statistical significance (Table 1).

Neuroprotection against mild focal cortical stroke by
protein-free dietary restriction

Because water-only fasting may in some clinical settings be

difficult to tolerate, we next asked whether a milder short-term

food restriction regimen could also precondition against stroke. A

protein-free DR preconditioning regimen was chosen based on its

efficacy in protecting kidney and liver from ischemia reperfusion

injury [28].

The intraluminal filament-induced severe stroke model used in

the fasting experiments above is one of the most widely used focal

stroke models in rats. However, a potential limitation of this

method is the severity of the resulting infarction, since stroke lesion

of comparable size extending from forebrain to midbrain in

humans is most often fatal. We thus continued to probe the

potential benefits of protein-free DR using a stroke model that

causes a milder lesion restricted to cortex [40], which is a common

type of embolic stroke in humans. Our objective was also to assess

infarct size at its maximum, i.e. 48 h after stroke and evaluate

functional outcome at 2, 7 and 14 days post-stroke.

Rats were acclimated to a complete diet made of refined

ingredients for 6d. They were then divided into two groups,

balanced for body weight and food intake during the acclimation

period (Fig 3A). One group remained on the complete diet for 6d

prior to stroke with average ad libitum daily food intake of 18.9 g/d.

The second group was fed a protein-free diet for 6 d prior to stroke

at the reduced amount of 11.4 g/d (,40% calorie restriction).

Although the initial aim was to normalize food intake among

animals in the short-term protein-free DR group in expectation of

food aversion to an incomplete (protein-free) diet, 36% of rats left

some protein-free food uneaten, indicative of slightly greater

aversion than predicted.

After preconditioning, a mild focal cortical stroke was induced

by transient direct occlusion of the right MCA and bilateral CCAs

with a suture for 60 min. One hour after reperfusion, body

temperatures were not significantly elevated, consistent with

milder lesion induction [41] (Fig S1). Two days after stroke

induction, animals were sacrificed and infarction volumes were

measured by TTC staining of brain sections. Rats in the protein-

free DR group showed a 39% reduced infarction volume relative

to the ad libitum fed group on the complete diet (Fig 3B, C).

Similarly, the maximal infarction area was significantly reduced in

the protein-free DR group compared to the complete diet group

Preoperative Dietary Restriction Is Neuroprotective in Stroke
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(Fig 3D). Prior to sacrifice 2d after stroke induction, rats in the

protein-free diet group had smaller behavioral deficits as shown by

biased body swing activity (Fig 3E) and Bederson’s score (Fig 3F).

Although plasma levels of total protein, albumin and urea were

reduced in the protein-free DR group at the time of sacrifice

consistent with the lack of protein in their diet, a number of other

blood parameters including glucose, triglycerides, creatinine and

prothrombin were not significantly different between diet groups

(Table S2).

Improved functional recovery from mild focal cortical
stroke upon short-term protein-free DR

We next assessed whether short-term protein-free DR could

promote functional recovery up to 2 weeks after stroke. The

experimental diets were applied as described above (Fig 4A).

Short-term protein-free DR significantly reduced body weight

(Fig 4B). Horizontal locomotor activity on d2 after stroke was

significantly improved in the protein-free DR group, indicating

faster recovery (Fig 4C). A similar tendency was observed with

vertical activity on d2 but did not reach statistical significance

(Fig 4D). Body swing activity was significantly reduced in the

protein-free DR group on d14 after the stroke compared to the

complete diet group (Fig 4E). Similarly, Bederson’s score was

significantly reduced on d14 (Fig 4F), with a similar trend on d2

and d7 (p = 0.0586 and p = 0.102, respectively, Mann-Whitney U-

test). Rats in the protein-free DR group also showed improved

performance in the cylinder test on d14 compared to the complete

diet group (Fig 4G).

Finally, in order to shed light on underlying mechanism in

comparison to the fasting paradigm, we performed qPCR analysis

of gene expression changes in both cortex and striatum 24 hours

post-stroke. As expected using this stroke model, gene expression

changes in cortex were greater than in striatum. Nonetheless the

patterns were similar between these two brain regions, including

increased expression of neurotrophic factors BDNF and GDNF,

stress response genes HMOX1 and GRP78, and inflammatory

markers including ICAM1 and TNFRSF1A (Figure S2). However,

with the exception of BDNF in the striatum, changes in expression

of these genes in response to stroke were similar between diet

groups, suggesting that protection afforded by fasting and protein-

free DR could work via different mechanisms or time scale.

Figure 1. Preoperative 3-day water-only fasting is neuroprotective against stroke. (A) Experimental timeline indicating periods of ad
libitum feeding and fasting relative to the onset of tMCAO on day 0. AL, ad libitum fed (n = 11); FA, fasted (n = 14). (B) Average body weights prior to
and after tMCAO; F8, 23 = 17.69, ***p,0.0001, 2-way ANOVA. (C) Blood glucose levels on the indicated days prior to and after tMCAO; F2, 23 = 14.09,
***p,0.0001, 2-way ANOVA. (D) Body temperature before tMCAO and 1 hour after reperfusion; ***/###p,0.001, Student’s t-test. (E) Infarction
volumes at d7 after tMCAO; *p = 0.0215, Student’s t-test. (F) Representative MRI images of the lesioned brain sections with green lines surrounding
the lesion.
doi:10.1371/journal.pone.0093911.g001
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Figure 2. Molecular mechanisms of fasting-induced neuroprotection. (A) Experimental timeline indicating dietary treatments and
experimental endpoints relative to tMCAO on day 0. (B) Relative expression of the indicated genes in the striatum of ad libitum fed (AL, n = 6) and
fasted (FA, n = 5) rats at baseline, measured by qPCR and expressed relative to the AL group. (C) Relative expression of selected genes in AL (n = 5)
and FA (n = 6) rats 24 hours after tMCAO in the unlesioned left (L) and lesioned right (R) striata, measured by qPCR and expressed relative to the
unlesioned AL group; *p,0.05, **p,0.01, ***p,0.001, 1-way ANOVA. (D) Serum CXCL1 levels in AL (n = 12) and FA (n = 12) rats at baseline;
**p = 0.0021, Student’s t-test.
doi:10.1371/journal.pone.0093911.g002
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Discussion

In hypoxia and global brain ischemia models, short-term water-

only fasting is protective [34–38]. However, global brain

hypoperfusion accounts for less than 10% of perioperative strokes

in humans [2]. The majority (62%) of perioperative strokes are

caused by focal ischemic insults that are mechanistically and

pathologically different from hypoperfusion. Here we report that

three days of preoperative water-only fasting reduced infarct

volume compared to ad libitum fed rats in a focal stroke model

involving forebrain and midbrain. In contrast to long-term DR

and ischemic preconditioning, fasting did not increase baseline

mRNA expression levels of cellular stress resistance genes such as

the molecular chaperones HSP70 and GRP78 [39], or HMOX1

[42]. Nor did it significantly affect the expression of growth and

neurotrophic factors including BDNF and FGF2 [39] or their

downstream targets in the brain (Fig 2B, Table S1). Rather,

increases in neurotrophic and growth factors and their receptors

24 hours after reperfusion in ad libitum fed animals correlated with

increased infarct size. This is consistent with the notion that

neurotrophic and growth factor upregulation is a relatively late

event in ischemic brain damage, occurring downstream of innate

immune system activation [43]. Our results are also in line with

studies showing that intracranial applications of NTFs are in large

part neuroprotective only when injected before the stroke, but are

neither neuroprotective nor able to facilitate recovery when

applied after the stroke [44]. Taken together, our results suggest

that the mechanism of protection by long-term DR and short-term

fasting in brain may differ, as has been suggested in other organs

including the kidney [27].

In the severe stroke model involving forebrain and midbrain,

protection afforded by fasting correlated with an altered inflam-

matory response. Ischemic injury to thalamic areas causes fever

[45], which along with activation of microglia facilitates the

expression of pro-inflammatory cytokines such as TNFa [46,47].

Binding of TNFa to its receptor TNFRSF1A on endothelial cells

induces ICAM1 expression [48], increasing blood-brain barrier

permeability to infiltrating leukocytes and exacerbating tissue

damage [49]. In line with the above, we observed a dramatic

upregulation of TNFa in the infarcted right hemisphere of ad

libitum fed animals 24 hours after reperfusion, whereas the

expression of TNFa in the lesioned right hemisphere of fasted

rats was not significantly affected. TNFRSF1A and ICAM1

expression in the striatum were also both significantly increased

after tMCAO in ad libitum fed but not fasted rats. Since rats

overexpressing TNFa are more susceptible to ischemic injury and

mitochondrial dysfunction upon tMCAO [50], while TNFa
neutralization is protective [51], our results suggest that suppres-

sion of TNFa expression upon focal ischemia reperfusion injury

may be an important component of fasting-induced protection

from focal stroke.

We also observed a significant increase in the levels of

neutrophil chemoattractant CXCL1 in the plasma of rats

following a 3d fast. Increased CXCL1 in the blood could reduce

local inflammation by reducing the steepness of the chemokine

gradient driving neutrophil chemotaxis from the vasculature to the

site of brain injury, as well as by affecting adhesion molecule

expression on neutrophils themselves [52]. Interestingly, in

humans, short-term dietary preconditioning elevates serum levels

of IL-8, the human paralogue of CXCL1 [53], warranting further

study.

Several physiological parameters can also affect the outcome of

experimental stroke. These include body temperature, blood

glucose, blood pressure and blood gas levels. Hypothermia has

been shown to effectively reduce ischemic injury in experimental

models of brain injury [54], and body temperature was slightly but

significantly reduced in fasted animals. However, therapeutic

Table 1. Plasma cytokine levels (pg/mL) 4 hours after reperfusion in rats fed ad libitum (AL) or fasted for 3 days (FA) prior to
tMCAO; IFN, interferon; IL, interleukin, CXCL1, C-X-C motif ligand 1; TNF, tumor necrosis factor.

4hr plasma cytokines IFNa IL1b CXCL1 TNFa IL4 IL5 IL13

AL (n = 6) 11.763.8 49.369.7 987462069 25.466.3 7.261.7 132.7626.1 0.360.3

FA (n = 6) 5.062.1 55.3614.3 720562388 12.967.0 5.361.5 87.2623.3 0.360.2

p-value 0.16 0.74 0.42 0.22 0.42 0.22 0.94

doi:10.1371/journal.pone.0093911.t001

Figure 3. Protein-free DR is neuroprotective against stroke. (A)
Experimental timeline indicating periods of ad libitum access to a
complete diet (AL, n = 15) or restricted access to a protein-free diet (PF,
n = 14) relative to the onset of tMCAO on day 0. (B) TTC-stained brain
sections showing infarct size (white area). (C) Total infarction volume on
d2 after tMCAO; *p = 0.0396, Student’s t-test. (D) Average maximal
infarction area from the slice with the largest infarction area per animal;
*p = 0.0320, Student’s t-test. (E) Biased body swing activity in 20 trials;
**p = 0.0016, Mann-Whitney U-test. (F) Behavioral performance assessed
by modified Bederson’s score; *p = 0.0396, Mann-Whitney U-test.
doi:10.1371/journal.pone.0093911.g003
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hypothermia in rodents and humans is protective only if body

temperature is reduced by several degrees [55]. Because fasting

reduced body temperature only by a half of a degree, fasting-

associated neuroprotection is not likely to be a result of

hypothermia. Hyperglycemia and hypoglycemia can both be

deleterious after stroke [56,57]. Although baseline blood glucose

levels in fasted rats were reduced by 30% relative to the ad libitum

fed group, this correlated with protection rather than susceptibility

to ischemic brain damage. Finally, fasting in rats has been

reported not to alter blood pressure or blood gas levels [37], thus

making the above parameters unlikely to contribute significantly to

protection.

Although water-only fasting is simple and effective in preclinical

models of stroke, it may not be well-tolerated in some clinical

settings. Thus, the nutritional basis of protection – whether an

overall reduction in calories or the removal of specific nutrients – is

important not only for understanding the underlying mechanism

but also for evaluating the translational potential of the

intervention. In fruit flies, the benefits of long-term DR on

longevity can be abrogated by the addition of essential amino acids

[58]. Long-term protein or individual amino acid restriction can

also slow aging in rodents and precondition against acute stressors,

including acetaminophen (paracetamol) toxicity [59] and ischemic

injury to kidney and liver [28]. In studies of amino acid deficiency-

mediated protection against renal and hepatic ischemia reperfu-

sion injury, activation of the GCN2-dependent amino acid

starvation response is required for protection in part through

modulation of the systemic inflammatory response to injury and/

or by activation of organ-autonomous stress resistance pathways

[28]. Taken together, these data suggest broad evolutionary

conservation of beneficial adaptive responses to protein/amino

acid restriction.

Consistent with these reported benefits of protein/essential

amino acid restriction, we found protection with a short-term

protein-free DR regimen in a rat model of mild focal stroke,

including reduced infarction volume and improved functional

recovery. Interestingly, however, preliminary analyses of gene

expression changes 24hr after reperfusion to probe candidate

mechanisms of protection did not reveal overlap between the

protein-free DR and fasting paradigms of neuroprotection. This

could be due to different kinetics of gene expression in the severe

vs. mild stroke models, or could indicate true differences in

underlying mechanisms of protection by fasting and protein-free

DR regimens. We focused our gene expression analysis on the

24hr time point in an attempt to uncover primary mechanisms of

neuroprotection, as later time points could be confounded by

differences in initial lesion size. Nonetheless, inflammatory

responses after ischemic brain injury are also time dependent,

beginning immediately after injury and lasting for months [60].

Thus, studies using unbiased gene expression analysis at multiple

time-points and in different brain areas using gene arrays in

combination with physiological, histological and behavioral

parameters may help to dissect mechanisms involved in diet-

induced neuroprotection and improved recovery after stroke in the

Figure 4. Protein-free DR promotes functional recovery after stroke. (A) Experimental timeline indicating periods of ad libitum access to
a complete diet (AL, n = 14) or restricted access to a protein-free diet (PF, n = 14) relative to the onset of tMCAO on day 0 and subsequent
behavioral testing on days 2, 7 and 14. (B) Average body weights on the indicated days relative to tMCAO on day 0; F1,26 = 96.20, ***p,0.0001, 2-way
ANOVA. (C-G) Behavioral tests on the indicated days after tMCAO: (C) horizontal activity; F1,26 = 4.994, *p = 0.034, 2-way ANOVA; (D) vertical activity;
F1,26 = 4.150, p = 0.052, 2-way ANOVA; (E) biased body swing activity in 20 trials; *p = 0.0211, Mann-Whitney U-test; (F) modified Bederson’s score;
**p = 0.0018, Mann-Whitney U-test; (G) cylinder test measured on d14 after tMCAO; *p = 0.0492, Mann-Whitney U-test.
doi:10.1371/journal.pone.0093911.g004
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future. How short-term dietary interventions such as fasting or

short-term protein-free DR affect ischemic stress resistance in

humans is currently unknown. However, there is substantial

empirical and observational evidence that medically supervised

fasting with periods of 7–21 days is efficacious in the treatment of

rheumatic diseases, chronic pain syndromes, hypertension, and

metabolic syndrome [61,62]. Because metabolic responses to

dietary restriction observed in experimental organisms are shared

by humans [63], an expectation that benefits will translate to focal

brain ischemia in humans is warranted [26]. The human

functional equivalents of the 3d fasting or 6d protein-free DR

regimens in rodents tested here are not known, but represent an

important next question in translation to the clinic. In conclusion,

due to its simplicity, cost-effectiveness and presumed low risk,

short-term dietary preconditioning may carry an immediate

potential for clinical application in perioperative risk management.
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