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Climate change is altering the biogeochemical and physical characteristics
of the Arctic marine environment, which impacts sea ice algal and phyto-
plankton bloom dynamics and the vertical transport of these carbon
sources to benthic communities. Little is known about whether the contri-
bution of sea ice-derived carbon to benthic fauna and nitrogen cycling
has changed over multiple decades in concert with receding sea ice. We com-
bined compound-specific stable isotope analysis of amino acids with highly
branched isoprenoid diatom lipid biomarkers using archived (1982–2016)
tissue of benthivorous Atlantic walrus to examine temporal trends of sea
ice-derived carbon, nitrogen isotope baseline and trophic position of Atlantic
walrus at high- and mid-latitudes in the Canadian Arctic. Associated with an
18% sea ice decline in the mid-Arctic, sea ice-derived carbon contribution to
Atlantic walrus decreased by 75% suggesting a strong decoupling of sea ice-
benthic habitats. By contrast, a nearly exclusive amount of sea ice-derived
carbon was maintained in high-Arctic Atlantic walrus (98% in 1996 and
89% in 2006) despite a similar percentage in sea ice reduction. Nitrogen iso-
tope baseline or the trophic position of Atlantic walrus did not change over
time at either location. These findings indicate latitudinal differences in the
restructuring of carbon energy sources used by Atlantic walrus and their
benthic prey, and in turn a change in Arctic marine ecosystem functioning
between sea ice–pelagic–benthic habitats.

1. Introduction
Arctic marine environments are fuelled by recurrent influxes of two distinct
sources of carbon that are driven by the seasonal progression of light and
open water availability which varies by latitude [1]. First, the sea ice algal
bloom marks the transition from winter to spring and provides a pulse of
3–60% of total annual primary production from low-latitude to high-latitude
Arctic marine systems [2,3]. Second, the sea ice algal bloom is subsequently
followed by a pronounced summer phytoplankton bloom that provides the
majority of primary productivity to the Arctic marine environment [3]. Climate
warming is increasing the intensity of phytoplankton blooms in relation to thin-
ning sea ice, a longer growing season, an influx of new nutrients, and warmer
ocean temperatures which has also facilitated a poleward shift of more temper-
ate-associated species leading to a reorganization of the food web [4–9].
Moreover, the structure of rocky-bottom Arctic communities are undergoing
ecological regime shifts with prominent increases in both macroalgal cover
and abundance of benthic invertebrates [10]. The seasonal influxes of both pri-
mary productivity sources to Arctic marine waters often exceed the retentive
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capacity of pelagic consumers leading to high amounts of
allochthonous organic carbon being transported to seafloor
habitats [11,12]. This sympagic (ice algae)-pelagic-benthic
coupling drives the energy flow between surface and benthic
energy compartments within Arctic shelf habitats and
forms the foundation of Arctic ecosystem functioning
[13,14]. However, little is known about how the contribution
of sea ice-derived and phytoplankton-derived carbon to
benthic fauna (i.e. sympagic–pelagic–benthic coupling) has
changed over multiple decades with receding sea ice.

Here, we use Atlantic walrus (Odobenus rosmarus rosmarus)
to test for changes in the relative importance of sea ice
algae versus phytoplankton carbon sources that fuel benthic
communities. Atlantic walruses are central place foragers
that are stenophagous and reside near shallow (less than
80 m) bivalve-rich benthic communities, their main prey
[15,16], where they consume approximately 60 kg of filter-
feeding bivalves per day, or approximately 3–6% of their
body weight [17]. Two populations of Atlantic walrus occur
in Canadian waters, a central/low-Arctic population and a
high-Arctic population [18]. These populations are presently
subdivided into seven management units [19,20]. In two of
these management units, northern Foxe Basin and Baffin Bay
near Grise Fiord, Nunavut, Canada, Atlantic walruses over-
winter in polynyas near their summer feeding grounds
within northern Foxe Basin (approx. 69° N) and Jones Sound
(approx. 76° N), respectively [20]. The specialized feeding
ecology and year-round restricted movement of Atlantic
walrus in each of these geographically separated areas (Jones
Sound is approx. 1000 km north of Foxe Basin) provide a
unique opportunity to investigate spatio-temporal variation
in carbon energy dynamics of Arctic benthic environments.

We used a novel biochemical approach by coupling
source-specific highly branched isoprenoid diatom lipid bio-
markers with compound-specific stable carbon and nitrogen
isotope values of individual amino acids of archived walrus
tissues from Jones Sound over an 11-year time period (1996–
2006) and northern Foxe Basin over a 35-year time period
(1982–2016). We investigated how annual carbon contri-
butions from sea ice algae and phytoplankton differ between
the high- and mid-Arctic benthic habitats in association with
temporal and latitudinal variation in declining sea ice cover.
Highly branched isoprenoids assess carbon source parti-
tioning between sea ice algae and phytoplankton in Arctic
environments, and have been used extensively in marine
mammals [21–24]. Compound-specific stable isotope analysis
of individual amino acids is a powerful tool to discern relative
influences of the carbon and nitrogen isotope composition at
the base of the food web and trophic fractionation on consu-
mer δ13C and δ15N values to then infer consumer carbon
source use and diet [25–27].

The δ13C of essential amino acids (e.g. phenylalanine, a
source amino acid) do not change between diet and consumer
and therefore represent the δ13C baseline of the carbon source
[26], such as between the more 13C-enriched sea ice-derived
carbon and the more 13C-depleted phytoplankton-derived
carbon. For δ15N, the differentiation between source and
trophic amino acids (e.g. glutamic acid) can be used to esti-
mate the trophic position of a consumer from a single
sample while taking into account the δ15N of the baseline
[28]. Source amino acids show very little isotopic fractionation
between baseline and top predator δ15N values whereas
trophic amino acids show significant isotopic fractionation
with each trophic step [25,28]. Therefore, source amino acids
provide a proxy for nitrogen cycling at the primary producer
level who acquire essential nitrates from seawater and can
be used to detect temporal changes in Arctic circulation
dynamics [29].

The objectives of this study were to (1) determine whether
the contribution of sea ice-derived carbon to Atlantic walrus
has changed over time, (2) examine temporal changes in δ15N
of the baseline and the trophic position of Atlantic walrus
and (3) investigate latitudinal variation in objectives (1) and
(2) associated with summer sea ice concentration and sea
ice breakup date between Jones Sound and northern Foxe
Basin. We hypothesized that Atlantic walrus from the
more-northern ice-covered waters of Jones Sound will have
a higher contribution of sea ice-derived carbon in their tissues
than individuals who reside in the more-southern Foxe Basin
area as a result of higher summer sea ice concentrations. In
addition, Atlantic walrus from Jones Sound will show less
of a change in the contribution of sea ice-derived carbon in
their diet compared to those residing to the south, in Foxe
Basin where a more rapid decline in sea ice will occur. We
also hypothesized that there will be no temporal change in
δ15N of the baseline and the trophic position of Atlantic
walrus in both Jones Sound and Foxe Basin indicating con-
sistent biogeochemical characteristics of nitrogen source
availability in these areas and similar trophic roles of primary
consumer consumption over time.
2. Material and methods
(a) Environmental data
Summer sea ice concentrations of Jones Sound and Foxe Basin
were obtained using Canadian Ice Service’s IceGraph 2.0 tool
(http://iceweb1.cis.ec.gc.ca/IceGraph, accessed April 2020)
which disseminates sea ice data on regional and sub-regional
spatial scales across the Canadian Arctic. We queried databases
for each of the pre-defined sub-regions of Jones Sound and
Foxe Basin, which encompassed the polynyas where walrus
overwinter, for total accumulated ice concentrations from early
July to end of August per year from 1982 to 2016. Sea ice breakup
date was determined from the ordinal date on which the weekly
sea ice concentration reached and remained below 50% in Jones
Sound and Foxe Basin.

(b) Sample collection
Paired Atlantic walrus liver and muscle samples were collected
opportunistically from the northern region (Grise Fiord, Nunavut
(n = 10)) and the southern region (Hall Beach, Nunavut (n = 4) and
Igloolik, Nunavut (n = 34)) during July andAugust, 1982–2016, by
Inuit hunters as part of their subsistence harvests (see figure 1 and
table 1 for n per sampling year). Hall Beach and Igloolik are only
70 km apart (figure 1a) and Atlantic walrus samples collected
from these nearby communities were grouped together because
they are part of the same management unit in northern Foxe
Basin [20]. Atlantic walruses from Grise Fiord (1996 and 2006)
are part of the North Water management unit of the high-Arctic
population which do not overlap with the Foxe Basin manage-
ment unit [18]. Tissues were stored at −20°C before processing.
Based on average body mass of adult Atlantic walruses (approx.
1000 kg), the stable isotope half-life of muscle represents approxi-
mately six months which encompasses part of their overwintering
period in nearby polynyas, as well as spring and summer foraging
periods [20]. We performed highly branched isoprenoid diatom
lipid biomarker analysis on Atlantic walrus liver samples, as
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Figure 1. Atlantic walrus sample locations of Grise Fiord, Igloolik and Hall Beach (a) as well as July–August sea ice concentration and sea ice breakup date in Jones
Sound (b,d ) and Foxe Basin (c,e) from 1982 to 2016. Map insets for (b) and (c) were obtained from IceGraph 2.0 (Canadian Ice Service) highlighting the area where
sea ice concentrations were estimated. July–August sea ice concentration significantly declined over time in Jones Sound (slope =−0.008, t33 =−3.81, r2 = 0.31,
p < 0.001) and in Foxe Basin (slope =−0.005, t33 =−4.13, r2 = 0.34, p < 0.001). In addition, sea ice breakup date significantly decreased over time in Jones
Sound (slope =−0.57, t33 =−3.86, r2 = 0.29, p < 0.001) and Foxe Basin (slope =−0.49, t33 = -3.75, r2 = 0.30, p < 0.001). (Online version in colour.)
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greater than 70% of highly branched isoprenoid diatom lipids are
typically stored in vertebrate liver [32]. The residency time of
highly branched isoprenoid lipids in liver of larger mammals is
unknown but is thought to be days to weeks, a slightly longer
timeframe to that of primary consumers (i.e. days [22,24]) yet
still represents a timeframe to investigate short-term contri-
butions. For example, Brown et al. [21] used highly branched
isoprenoids of ringed seal (Pusa hispida) liver samples to quantify
monthly changes in sea ice-derived carbon contributions to ringed
seal diet. Using both liver and muscle samples of Atlantic walrus
allows one to measure time-integrated resource use over two
different temporal scales (i.e. monthly using liver and seasonal
using muscle). Stomach contents of Atlantic walrus (n = 22) from
Igloolik in 1996 were mainly composed of bivalve siphons along
with some remnants of sea cucumber remains (P.J.B. 2019, unpub-
lished data) representing a benthivorous invertebrate diet
consistent with previous walrus diet assessments from this
region (July 1987 and 1988 [15]).

(c) Lipid extraction, analysis and quantification
Highly branched isoprenoids were extracted from liver tissue
using established techniques of Brown et al. [33] and Belt et al.
[34] at the Scottish Association of Marine Sciences. Briefly,
lyophilized liver subsamples (0.1–2 g) were saponified (approx.
5 ml H2O :MeOH, 1 : 9; 20% KOH; 60 mins, 70°C) and mixed
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with hexane (3 × 4 ml), then centrifuged (2 min; 2500 revolutions
per minute) with hexane prior to being transferred to clean glass
vials and then dried with N2 stream to remove traces of H2O
and MeOH. Dried lipid extracts were then fractionated (5 ml
of hexane) using column chromatography (SiO2; 0.5 g). Highly
branched isoprenoids were analysed by gas chromatography
mass spectrometry and quantified by measuring the mass spec-
tral intensities for each HBI in selective ion monitoring mode
(see [23]). Percentages of sea ice-derived carbon were quantified
from H-Print estimates using analytical intensities of three highly
branched isoprenoids (IP25: m/z 350.3, II; m/z 348.3 and III; m/z
346.3) according to equation (2.1), with this combination
allowing a linear calibration to be constructed [33]

H� Print(%) ¼ (III)
ðIP25 þ IIþ IIIÞ � 100: ð2:1Þ

Sea ice-derived carbon, as a proportion of marine origin carbon
within samples, was estimated using equation (2) from previous
H-Print calibration (R2 = 0.97, p≤ 0.01, d.f. = 23) [33] and
expressed below as mean values.

sea ice� derived carbon (%) ¼ 101:08� 1:02�H� print: ð2:2Þ
02126
(d) Compound-specific stable isotope analysis
The δ13C and δ15N values of individual amino acids were ana-
lysed via gas chromatography-combustion isotope ratio mass
spectrometry at University of California, Davis where approxi-
mately 3 mg of lyophilized and homogenized Atlantic walrus
muscle samples underwent acid hydrolysis 6 M HCl at 150°C
under a N2 headspace for 70 min and derivatized using methox-
ycarbonylation esterification (see [35,36] for more details).
Quality assurance of δ13C and δ15N followed protocols of [36]
where two mixtures composed of pure amino acids of calibrated
δ13C and δ15N (UCD AA1, UCD AA2) were co-measured with
samples. In addition, two well-described, natural materials
were co-analysed with samples and used as secondary quality
assurance materials (baleen and fish muscle). We measured the
δ13C and δ15N values from a total of 12 amino acids but focus
on two that are most commonly used as a trophic and baseline
amino acid: glutamic acid (Glu), a non-essential, trophic amino
acid; and phenylalanine (Phe), an essential, source amino acid.
Mean analytical precision assessed from duplicate measures of
internal baleen and fish muscle samples and two internal
reference compounds (UCD AA1 and UCD AA3) were less than
or equal to 0.3‰ for δ13C and less than or equal to 1‰ for
δ15N. All stable isotope ratios are expressed in per mil (‰) in stan-
dard delta (δ) notation relative to the international standards Pee
Dee Belemnite for carbon and atmospheric N2 for nitrogen, using
the following equation: δX = [(Rsample/Rstandard) − 1] × 10−3,
where X is 13C or 15N and R equals 13C/12C or 15N/14N.

(e) Statistical analysis
We used linear regression analysis to investigate the relationship
between δ13C of phenylalanine (δ13CPhe) and sea ice-derived
carbon from H-print estimates—two variables that have been
used to discriminate between sea ice-derived carbon and
phytoplankton-derived carbon [32,37]. A lower δ13CPhe value
represents a higher contribution of phytoplankton-derived
carbon to the diet of the consumer. A Pearson correlation was
used to examine the correlation between summer sea ice concen-
tration and sea ice breakup date. We also used linear regression
analysis to investigate temporal trends of sea ice concentration in
Jones Sound and Foxe Basin. To test for changes across years in
Foxe Basin, mean annual values of δ13CPhe (i.e. baseline δ13C),
δ15NPhe (i.e. baseline δ

15N) and sea ice-derived carbon (i.e. derived
from H-print values) were used in linear regressions to meet the
assumption of independent data for this time series (1982–2016;
n = 9 for δ13CPhe and sea ice-derived carbon, and n = 6 for
δ15NPhe) since one value of sea ice concentration was estimated
for each year and generally five Atlantic walrus individuals were
collected per year, except in 1987 (n = 4), 2013 (n = 2) and 2016
(n = 2). Including each individual within each sampling year
violates the assumption of independent errors and allows
pseudoreplication where observations from the same year are
more likely to be similar than observations from other years.
We used a similar analytical approach to investigate relationships
of δ13CPhe and sea ice-derived carbon relative to sea ice concen-
tration of Atlantic walruses in Foxe Basin. Student t-tests were
used to determine a significant difference in δ13CPhe, δ

15NPhe and
sea ice-derived carbon between 1996 versus 2006 for individuals
collected in Jones Sound.

There are several trophic position (TP) equations derived from
compound-specific stable isotope analysis of individual amino
acids that provide a range in trophic position estimates for
marine mammals and seabirds [38,39]. Given the high amount
of variation in trophic discrimination factors between glutamic
acid and phenylalanine (TDFGlu-Phe) related to a species’ mode
of nitrogen excretion and diet quality [27], multi-TDF equations
are considered more accurate and can improve trophic position
estimates of consumers compared to single, step-wise TDF
equations [30,31,39], and provide further support for a scaled
TDF and trophic level framework [40]. Therefore, we estimated
Atlantic walrus trophic position using a multi-TDF approach
that incorporated a seal-specific TDF [30])

TP ¼ 2þ d15NGlu � d15NPhe � TDFGlu�Phe

b

� �
, ð2:3Þ

where δ15NGlu and δ15NPhe represent the stable isotope nitrogen
values of glutamic acid and phenylalanine of the consumer, β rep-
resents the difference in δ15NGlu and δ15NPhe of primary producers
(3.4‰) [25] and TDFGlu-Phe is the seal-specific TDF value of 4.3‰.
Alternative methods for calculated trophic position of Atlantic
walrus provided differences in absolute values but similar
trends over time (see electronic supplementary material, S1). To
test for temporal changes in trophic position of Atlantic walruses
in Foxe Basin, linear regression was used on mean annual values
of trophic position over time. A student t-test was used to deter-
mine a significant difference in trophic position of Jones Sound
Atlantic walrus between 1996 and 2006. All statistical analyses
were performed in R v. 3.6.1 [41].
3. Results
(a) Temporal trends in sea ice concentration
Jones Sound had a consistently higher summer sea ice con-
centration than in Foxe Basin by 13% ± 12% (average ± s.d.)
each year from 1982 to 2016. However, over this 35-year
record, summer sea ice concentration decreased by approxi-
mately 26% in Jones Sound (slope =−0.78, intercept = 1607.7,
t33 =−3.81, r2 = 0.31, p < 0.001) and 18% in Foxe Basin (slope =
−0.52, intercept = 1071.8, t33 =−4.13, r2 = 0.34, p < 0.001;
figure 1). In addition, sea ice breakup date now occurs
20 days earlier in Jones Sound (slope =−0.57, intercept =
1363.50, t33 =−3.68, p < 0.001) and 17 days earlier in Foxe
Basin (slope =−0.49, intercept = 1198.90, t33 =−3.75, p <
0.001; figure 1). Sea ice breakup date was highly correlated
with summer sea ice concentration (0.92) in that an early sea
ice breakup date was associated with a lower summer sea
ice concentration and a later sea ice breakup was correlated
with higher summer sea ice concentrations. Therefore,
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sea ice breakup date was not included in linear models
due to multicollinearity.

(b) Relationship between sea ice-derived carbon
and δ13CPhe

Sea ice-derived carbon was strongly positively correlated
with δ13CPhe (r = 0.67). Furthermore, a significant increase in
δ13CPhe relative to sea ice-derived carbon occurred (slope =
17.12, intercept = 534.32, t46 = 6.11, r2 = 0.45, p < 0.001) with
estimated sea ice-derived carbon values ranging from 30%
to greater than 100% in association with δ13CPhe values ran-
ging from −29.4‰ to −24.7‰ (table 1 and figure 2). Given
the moderate explanatory power of this linear equation,
future studies can then use this model to estimate the percen-
tage of sea ice-derived carbon in the diet of Arctic species
using δ13CPhe values from their study species.

(c) Temporal trends of sea ice-derived carbon, δ13CPhe,
δ15NPhe and trophic position

In Jones Sound, there were no significant differences in
sea ice-derived carbon (t8 = 1.35, p = 0.25), δ15NPhe (t8 = 0.57,
p = 0.59) and trophic position (t8 = 1.01, p = 0.34) of Atlantic
walrus between 1996 and 2006 (table 1). However, δ13CPhe

was 0.8‰ lower in 2006 versus 1996 (t8 = 3.81, p < 0.01)
when sea ice concentration was 70% in 1996 and only 40%
in 2006 (table 1). In Foxe Basin, δ15NPhe (t5 = 0.19, p = 0.85)
and trophic position (t5 = 0.63, p = 0.53) of Atlantic walrus
did not change over time, whereas significant decreases
occurred for sea ice-derived carbon (t8 =−4.60, p < 0.01)
and δ13CPhe (t8 =−3.80, p < 0.01; figure 3). Both sea ice-
derived carbon (t8 = 3.30, p = 0.01) and δ13CPhe (t8 = 3.20,
p < 0.02) were significantly higher in years of higher sea ice
concentration (figure 4).
4. Discussion
Using a novel biochemical coupling approach for polar
environments, we identified a prominent 35-year decline (i.e.
1982–2016) in the contribution of sea ice-derived carbon to
Atlantic walrus, a benthic fauna consumer, in Foxe Basin.
This pattern was associated with a dramatic decline in sea
ice cover where Atlantic walrus shifted from a nearly exclusive
contribution of sea ice-derived carbon in their diet to more
phytoplankton-derived carbon. In Jones Sound, a slight
decrease of sea ice-derived carbon to the benthic environment
occurred between 1996 versus 2006, though Atlantic walrus in
this area havemaintained a nearly exclusive amount of sea ice-
derived carbon in their diet (98% in 1996 and 89% in 2006)
despite a large difference in summer sea ice concentration
between sampling years (70% in 1996 versus 40% in 2006).
We found strong support of a decoupling of sea ice–benthic
habitats. Less sea ice-derived carbon now reaches benthic
fauna at mid-Arctic, but not high-Arctic, latitudes which
suggests spatial variation in fundamental alterations of
carbon energy dynamics and ecosystem functioning due to
climate change. This result aligns with observed changes in
sea ice algal bloom phenology and production in that the sea
ice algal bloom is occurring earlier in the year across the
Arctic, but there is latitudinal heterogeneity in the amount of
sea ice algal production [42]. In the near future, high-Arctic
latitudes (74° N to 84° N; e.g. Jones Sound) may experience
an 11–550% increase in ice algal production due to a shifting
of the ice season to more favourable photoperiods, whereas
a smaller change or loss (−25% to 73%) in ice algal production
will occur at mid-Arctic latitudes (66° N to 74° N; e.g. Foxe
Basin) due to a narrowing of the sea ice algal production
window [42]. This finding is further strengthened by evidence
of a consistent stable nitrogen isotope baseline over the same
time period, indicating that the biogeochemical characteristics
in terms of δ15N of seawater nitrate and nitrogen cycling
dynamics of Jones Sound and Foxe Basin have remained the
same between 1996–2006 and 1982–2016, respectively. In
addition, Atlantic walruses occupied a steady trophic position
of approximately 3 in both areas, suggesting consistent trophic
roles of consuming filter-feeding bivalves and other benthic
primary consumers.

(a) Spatio-temporal variation of sea ice-derived carbon
to benthic fauna

Sea ice-derived carbon estimated from highly branched
isoprenoids has been observed across all consumer trophic
levels from primary and secondary consumers to near-top
and top predators [21–24,43], suggesting at least some depen-
dency and continued use of sea ice-derived carbon by Arctic
biota throughout the year, particularly in the benthic environ-
ment [11,43–45]. However, inter-annual variability in the
availability of sea ice algae to consumers in the ecosystem
and in turn the strength of sympagic-pelagic-benthic coupling
is contemporaneous with inter-annual changes in environ-
mental conditions [45]. Over a 9-year period from 2002–2010
in the Bering Sea, sea ice algae carbon was less available to
consumers such as ice seals and their prey, in both pelagic
and benthic environments in warmer years with less sea ice
than in relatively colder years with more sea ice [45]. In
addition, the amount of sea ice-derived carbon in the diet of
beluga whales (Delphinapterus leucas) and ringed seals (Pusa
hispida), predators who mainly consume prey within the epi-
pelagic portion of the water column, has declined over a
27-year study period in Cumberland Sound, Nunavut
[21,23]. Using Atlantic walrus as a bioindicator for carbon
cycling in benthic communities, this study provides the first
empirical support for a multi-decadal decline (1980–2010s)
of sea ice-derived carbon in the benthic environment in
association with sea ice phenology and cover that varies
with latitude.
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In the 1980s in the more-southern area of Foxe Basin, the
contribution of sea ice-derived carbon (i.e. highly branched iso-
prenoid diatom lipids from liver) in the diet of Atlantic walrus
was similar to that of the more-northern area of Jones Sound
in the 1990s and 2000s (88% versus 94%), but then decreased
dramatically in the 1990s and 2000s where sea ice-derived
carbon became 1.8 times lower (52%) than in Jones Sound.
More rapid declines in summer sea ice concentration and earlier
sea ice breakup in Jones Sound relative to Foxe Basin from 1982
to 2016 (this study) is consistent with observations of greater
susceptibility of northern Arctic regions to reduced springtime
ice seasons than more-southern areas [46]. Despite this, the con-
siderable decrease in the contribution of sea ice-derived carbon
observed in Foxe Basin Atlantic walrus over time suggests a
much greater reduction of sea ice algal production and transpor-
tation to the benthos at lower latitudes than at higher latitudes,
or less ice algae-dependent prey being available. This decrease
may represent a direct negative impact on benthic biomass
and community structure in Foxe Basin as sea ice algae provides
nutritionally rich lipids and relatively undegraded carbon to the
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seafloor in the spring, which in turn negatively impacts the
functioning of the lipid-reliant Arctic ecosystem [3,43].

TheArctic seafloorand its sediments act as a long-term repo-
sitory for sea ice-derived carbon where benthic heterotrophs
feed on these sedimentary stores of sea ice-derived carbon
which can then be transferred back up to the pelagic environ-
ment via fishes, marine mammals and seabirds who consume
benthic fauna [43]. Therefore, the spatio-temporal differences
of sea ice-derived carbon in the benthos suggests that Jones
Sound, a higher latitude area with a longer ice-covered period,
could harness greater sea ice-derived carbon deposits in the
benthos at present than in Foxe Basin, potentially buffering
the system against sea ice loss. However, whether this potential
carbon buffering in Jones Sound continues into the future
with even less sea ice, or whether phytoplankton-derived
carbonwillmainly fuel this benthic system in the future requires
further monitoring as results observed from Foxe Basin may
foreshadow that of Jones Sound.

The δ13CPhe of Atlantic walrus in Foxe Basin declined at a
rate of 0.6‰ per decade from 1982 to 2016 in associationwith a
decreasing sea ice concentration and earlier sea ice breakup,
and was 0.8‰ lower in 2006 than in 1996 in Jones Sound,
suggesting less sea ice-derived carbon in the benthos over
time in both areas which aligns with our H-Print estimates.
The decadal declines of δ13CPhe in Atlantic walrus from both
study areas is six to eight times higher than the decrease of
δ13C of dissolved inorganic carbon in Arctic marine waters
(−0.11‰ per decade) attributed to increasing concentrations
of anthropogenic CO2 in the atmosphere known as the Suess
effect [47]. Additionally, our decadal declines in δ13CPhe paral-
lel estimates from [47] where the entire pool of δ13C of
particulate organic carbon in the Arctic Ocean decreased by
0.6‰ per decade with declining sea ice in combination with
increased phytoplankton primary productivity [5]. It is unli-
kely that bacterial and meiofaunal processes in the benthic
substrate contributed to higher δ13CPhe values over time [48]
since temporal decreases in δ13CPhe corresponded to that of
temporal declines in H-Print values. From 1998 to 2018, both
Jones Sound and Foxe Basin have undergone an increase in
phytoplankton biomass [5] which in turn, sinks as phytodetri-
tus to then be exploited by benthic consumers. Net primary
productivity across the Arctic has increased by 57% from
1998 to 2018 due to increased phytoplankton biomass
supported by an influx of new nutrient availability [5],
however, it is unknown whether this ever-increasing phyto-
plankton production can subsidize the continual loss of sea
ice algae for benthic consumers. Arctic bivalve growth rate is
greater in years with more sea ice [49] due to the availability
of more nutritionally rich polyunsaturated lipids from
sea ice algae than from phytoplankton [50,51]. Therefore,
reductions in sea ice cover and amount of sea ice algae that
reaches the benthos may negatively influence the growth
rate and body size of Arctic bivalve communities and in
turn, benthic foragers, such as Atlantic walrus. In addition,
it is unknown whether a corresponding reorganization of
benthic community structure in Foxe Basin has also occurred.

(b) Spatio-temporal variation of Atlantic walrus δ15NPhe
and trophic position

Nitrogen is a key element of life and is one of the major
elements required for primary production in marine environ-
ments [52]. Nitrogen isotopes in marine primary producers
can be used to trace the biogeochemical cycling of oceanic
processes as primary producers assimilate nitrate, therefore
their δ15N reflects the δ15N of seawater nitrate [52]. Both
Jones Sound and Foxe Basin are influenced by Pacific
waters which are first modified by physical and biogeochem-
ical processes in the Arctic Basin prior to entering and exiting
the Canadian Archipelago eastward through Lancaster
Sound and southward via Fury and Hecla Straits [53,54].
Though the inflow of Pacific water has increased to the
Arctic from 1990 to 2015 [55], no long-term changes to the
δ15N of the baseline in Jones Sound and Foxe Basin occurred
suggesting that water circulation, nitrogen cycling and nitrate
assimilation by primary producers from both areas have
remained consistent over time.

Trophic position estimates revealed that Atlantic walrus
in Jones Sound and Foxe Basin have consistently played the
same trophic role in each area over time. Equation (2.3) pro-
vided a trophic position of Atlantic walrus (range = 2.8–3.2)
that is in better agreement with estimates derived from
stomach contents (3.4) [56] compared to equations that use
a universal trophic discrimination of 7.6‰ [28] which gener-
ally underestimate the trophic position of marine mammals
[38]. Though Atlantic walrus have been documented to
occasionally consume ringed seals [16] who occupy a trophic
position of 3.3 to 4.6 [57], their contribution to Atlantic walrus
diet is very low, consistent with our trophic position estimates
of approximately 3. Despite declining sea ice concentration
and Atlantic walrus habitat in both Jones Sound and Foxe
Basin, both management units have had stable population
estimates since the 1970s, suggesting healthy populations
over the duration of our study period [58].

(c) Summary
Our novel biochemical trophodynamic approach using com-
pound-specific stable isotope analysis of amino acids in
combination with highly branched isoprenoids revealed
that: (1) both analytical approaches are complementary to
each other with moderate explanatory power, (2) in associ-
ation with an earlier sea ice breakup and declining sea ice
concentration, a strong decoupling of sea ice-benthic habitats
occurred at mid-Arctic latitudes where less sea ice algae is
now incorporated into benthic fauna, (3) sea ice algae is the
nearly exclusive carbon source for benthic fauna in the
high-Arctic and (4) the δ15N of the baseline and trophic pos-
ition of Atlantic walrus did not change over time indicating
consistent nitrogen cycling and trophic roles of high bivalve
consumption. We identified spatio-temporal changes in the
carbon source that fuels benthic communities in the Arctic,
suggesting a continuing decrease and thinning of sea ice
cover will influence species interactions, benthic community
biomass and structure, and Arctic ecosystem functioning.
Long-term monitoring of Atlantic walrus biological par-
ameters, such as body condition, is required to determine
how Atlantic walrus and potentially other benthic consumers
are responding to these changing carbon sources to gain
insight into the modifications in ecosystem dynamics across
the rapidly warming Arctic.
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