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Using an effective method to measure the brain functional connectivity is an important step to study the brain functional
network. The main methods for constructing an undirected brain functional network include correlation coefficient (CF), partial
correlation coefficient (PCF), mutual information (MI), wavelet correlation coefficient (WCF), and coherence (CH). In this paper
we demonstrate that the maximal information coefficient (MIC) proposed by Reshef et al. is relevant to constructing a brain
functional network because it performs best in the comprehensive comparisons in consistency and robustness. Our work can be
used to validate the possible new functional connection measures.

1. Introduction

Functional connectivity between brain areas is a hotspot
in the field of cognitive neuroscience. In brain functional
networks, connectivity is often measured using some form
of statistical correlation. Brain activity in one region is
correlated with activity in another region to quantify the
strength and identify statistical dependency. When repeated
for every possible pair of regions, the result is a network
characterization of the brain’s connectivity, in which brain
regions represent network nodes and correlation strengths
correspond to connection weights [1, 2].

To date, the main methods of measuring brain functional
connectivity include correlation coefficient (CF), partial cor-
relation coefficient (PCF), mutual information (MI), wavelet
correlation coefficient (WCF), and coherence (CH). Corre-
lation analysis is the simplest method for analyzing brain
functional connectivity; and it is widely used [3–5]. Zalesky
et al. [1] recommended using this method to construct a
brain functional network. However, contaminations from

noise, such as cardiac and blood vessel activities in the brain,
could also lead to high correlations [6], and the correlation
coefficient only measures linear dependence [7]. Similar
to many commonly used statistics, a correlation coefficient
is not robust; its value may be misleading if outliers are
present [8, 9]. Partial correlation refers to the normalized
correlation between two time series after each series has
been adjusted by regressing out all other time series of
network nodes. One attractive feature of this method is that
it attempts to distinguish direct from indirect connections
[10]. Marrelec et al. [11] advocated partial correlation as a
suitable method to construct a brain functional network.
Some researchers have used this method to study the default
mode network or the difference between patients and con-
trols [12–15]. Partial correlation is a type of conditional
correlation; it still cannotmeasure a nonlinear association [16,
17]. Coherence is the spectral representation of correlation
in the frequency domain and was proposed by Sun et al.
[18]. The expression of correlation in the frequency domain
enables researchers to study the time course relationship in a
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natural and intrinsic manner [19]. This method has recently
been used by Chang and Glover [20] to investigate non-
stationary effects in resting functional magnetic resonance
imaging (fMRI) data. However, coherence provides vague
information on the actual cortical areas involved because
of the complex relationship between the active brain areas
and sensor recordings [21]. Wavelet correlation refers to
the correlation between wavelet coefficients, which can be
obtained from a discrete wavelet transform (DWT) of the
time series. Bullmore et al. [22] studied wavelets and the
statistical analysis of fMRI of the human brain. Skidmore
et al. [23] used wavelet correlation to construct a brain
functional network and identified the differences between
healthy subjects and subjectswith Parkinson’s disease.Mutual
information (MI), amethod in information theory, quantifies
the shared information between two variables and can reflect
both linear and nonlinear dependencies [24]. This method is
popular for measuring the brain functional connectivity [25–
27].

In 2011, Reshef et al. [28] proposed a newmeasure named
maximal information coefficient (MIC), which can capture
both linear and nonlinear association between two variables.
Because of its outstanding performance in measuring dif-
ferent kinds of dependences, it is considered the correlation
for the 21st century [29]. Reshef et al. [30] noted that MIC
is more equitable compared with natural alternatives, such
as mutual information estimation and distance correlation.
Since it was proposed, it has been widely used [31–36]. Su
et al. [37] were the first to use MIC to construct a brain
functional network. However, they only demonstrated that
the brain functional connectivity between healthy subjects
and schizophrenia subjects calculated using MIC is suitable
for classification. As a novel method applied in cognitive
neuroscience, there is no explanation accounting for the
rationality or advantages of MIC.

The paper demonstrates that MIC is a suitable method
to measure brain functional connectivity and illustrates its
advantages in constructing a brain functional connectivity
network. Thirteen healthy subjects with minimal differences
were selected from 75 healthy subjects, and the brain func-
tional network was constructed using MIC, as well as other
methods (CF, PCF, MI, WAF, and CH). Based on the node
importance, we compared the consistency and robustness of
themethods fromdifferent aspects of the network. Compared
with other methods, MIC performed better in terms of
consistency and robustness. Although there are many mea-
sures provided to capture the functional connections between
brain areas, there is no work to compare the performance of
the measures. Our work can be used to validate the possible
new functional connection measures.

2. Materials and Methods

2.1. Subject Information and Data Preprocessing. The data
utilized for this paper is available for download at http://fcon
1000.projects.nitrc.org/indi/retro/cobre.html. The study
comprised 75 healthy samples (ages ranged from 18 to 65

Table 1: Sample information.

𝑁
Age range
(mean age) Sex Right handed

Healthy
samples 13 22–27 (24.6) All male All

years in each group). To control external variables for our
research, we carefully selected 13 samples with the smallest
differences. The ID of samples are 40020, 40051, 40056,
40065, 40091, 40093, 40104, 40114, 40115, 40120, 40127,
40128, and 40129. All subjects were male and right handed
according to the EdinburghHandedness Inventory.Mean age
was 24.6 ± 2.6 for the samples. Detailed subject information
is provided in Table 1.

All fMRI data were processed using SPM8 (http://www.fil
.ion.ucl.ac.uk/spm/) and DPARSF-V2.0 (http://www.restfmri
.net/forum/index.php) [38]. For each subject, we removed the
first 10 volume images from the RS-fMRI data for scanner sta-
bilization and subject adaptation to the environment, which
left 140 volumes for further analysis.Then, we performed slice
timing to correct for the acquisition time delay between slices
within the sameTR; realignment to the first volume to correct
inter-TR head motions was performed, followed by spatial
normalization to a standard MNI template and resampling
to a voxel size of 3 × 3 × 3mm3. No spatial smoothing was
applied based on methods from previous studies [39–41].
Finally, we performed bandpass filtering for each voxel in
the frequency of 0:01–0:08Hz to reduce low-frequency drift
and high-frequency physiological noise. The RS-fMRI data
for each subject were checked for head motion. No subject
was excluded according to the criteria that the translation
and rotation of head motion in any direction were not more
than 1.5mm or 1.5∘. To obtain signals for each region, we
applied an automated anatomical labeling (AAL) atlas [42] to
parcellate the brain into 90 regions of interest (ROIs) (45 per
hemisphere).The names of the ROIs and their corresponding
abbreviations are listed in Table 2. The time series for each
ROI was calculated by averaging the signals of all voxels
within that region.

2.2. Maximal Information Coefficient. The MIC, introduced
by Reshef et al. [28] in 2011, was used as a measure of
association between two random variables𝑋 and𝑌.TheMIC
can capture wide range of relationships.TheMIC(𝑋, 𝑌) is the
mutual information 𝐼(𝑋, 𝑌) between random variables𝑋 and
𝑌 normalized by the minimum entropy min{𝐻(𝑋),𝐻(𝑌)} of
𝑋 and 𝑌, which can be written as

MIC (𝑋, 𝑌)

=
𝐼 (𝑋, 𝑌)

min {𝐻 (𝑋) ,𝐻 (𝑌)}
=
𝐻 (𝑋) + 𝐻 (𝑌) − 𝐻 (𝑋𝑌)

min {𝐻 (𝑋) ,𝐻 (𝑌)}

=
𝐻 (𝑌) − 𝐻 (𝑌 | 𝑋)

min {𝐻 (𝑋) ,𝐻 (𝑌)}
=
𝐻 (𝑋) − 𝐻 (𝑋 | 𝑌)

min {𝐻 (𝑋) ,𝐻 (𝑌)}
,

(1)
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Table 2: Names and abbreviations of the ROIs [42].

Regions Abbr. Regions Abbr.
Superior frontal gyrus, dorsolateral SFGdor Superior parietal gyrus SPG
Superior frontal gyrus, orbital SFGorb Paracentral lobule PCL
Superior frontal gyrus, medial SFGmed Postcentral gyrus PoCG
Superior frontal gyrus, medial orbital SFGmorb Inferior parietal gyrus IPG
Middle frontal gyrus MFG Supramarginal gyrus SMG
Middle frontal gyrus, orbital MFGorb Angular gyrus ANG
Inferior frontal gyrus, opercular IFGoper Precuneus PCNU
Inferior frontal gyrus, triangular IFGtri Posterior cingulate gyrus PCC
Inferior frontal gyrus, orbital IFGorb
Gyrus rectus REG Insula INS
Anterior cingulate gyrus ACC Thalamus THA
Olfactory cortex OLF

Superior temporal gyrus STG
Precentral gyrus PreCG Superior temporal gyrus, temporal pole STGp
Supplementary motor area SMA Middle temporal gyrus MTG
Rolandic operculum ROL Middle temporal gyrus, temporal pole MTGp
Median and paracingulate gyrus MCC Inferior temporal gyrus ITG

Calcarine fissure and surrounding cortex CAL
Heschl gyrus HES Hippocampus HIP
Cuneus CUN Parahippocampal gyrus PHIP
Lingual gyrus LING Amygdala AMYG
Superior occipital gyrus SOG
Middle occipital gyrus MOG Caudate nucleus CAU
Inferior occipital gyrus IOG Lenticular nucleus, putamen PUT
Fusiform gyrus FG Lenticular nucleus, pallidum PAL

where 𝐻(𝑌 | 𝑋) is the conditional entropy, which is the
amount of information needed to describe the outcome of 𝑌
given that the value of 𝑋 is known. For a pair of variables 𝑋
and𝑌, 0 ≤ MIC(𝑋, 𝑌) ≤ 1 andMIC(𝑋, 𝑌) = 0 if and only if𝑋
and𝑌 are independent.TheMIC is robust to outliers because
the estimations of Shannon entropy and conditional entropy
are robust [36, 43].

2.3. Construct Network. For each subject, we obtained a 90 ×
90 dependencematrix by calculating the connection strength
using one of the 6 previously described methods (CF, PCF,
MIC, MI, WCF, and CH) between all ROI pairs. One can
check the details about the definitions and computations of
the methods in the references. Figure 1 is the visualization of
the six dependence matrices of a randomly selected sample.
The correlation matrix was thresholded into a binary matrix.
By taking each ROI as a node and the functional connectivity
as an edge, we obtained a 90 × 90 adjacency matrix for each
subject. The adjacency matrix can be defined as

𝑎
𝑖𝑗
= {
1 if 󵄨󵄨󵄨󵄨󵄨𝑧𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
≥ 𝑇

0 otherwise,
(2)

where 𝑍 = (𝑧
𝑖𝑗
) is the connection matrix, 𝑇 is the threshold

value, and 𝐴 = (𝑎
𝑖𝑗
) is the adjacency matrix under threshold

𝑇. In other words, if the absolute value of 𝑧
𝑖𝑗
between a pair

of brain regions 𝑖 and 𝑗 exceeds a given threshold 𝑇, an edge
is constructed to connect the brain regions; otherwise, there
is no edge between them. We know that 𝑇 is an external
variable which determines the size of the network. If 𝑇 is too
large, we will obtain a network with fewer edges, which may
lead to a disconnected network. If 𝑇 is too small, some of
the connection strength may be too weak to be significant.
To balance these two aspects, 1200 edges were selected as a
representative network size. We also have obtained results on
different network sizes, and the results were nonsensitive to
network size.

2.4. Comparison Scheme. We try to conduct both inter-
method and intersample comparisons to validate the consis-
tency and robustness. The important results, say key nodes,
obtained by a good method should not conflict with that
obtained by known methods. So we conduct intermethod
comparisons to see which method is more consistent with
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Figure 1: The connection matrices (90 × 90) of a randomly chosen subject from 13 samples were calculated by the 6 previously described
methods (CF, PCF, CH, WCF, MIC, MI). The horizontal and vertical axes are the 90 ROIs. The color intensity represents the connection
strength. One can get an intuitive understanding of the brain functional connectivity. These connection matrices are the basis for our
subsequent research.

other methods. Such an aspect we compare is called consis-
tency. Furthermore, a good method should not be sensitive
to its operation objects. With 13 subjects of similar physical
condition, a good method should obtain similar network
properties. This approach represents a type of repeated trials;
that is, a good method should always be good, regardless of
the experimental targets. Such an aspect we compare is called
robustness.

2.4.1. Node Importance. We use two criterions to evaluate
the relative importance of a node in a network [43]. One
criterion is the degree centrality (DC), which is proportional
to the degree of the node. Another criterion is Shannon-
Parry centrality (SPC). The former is a popular method. The
latter is based on the Shannon-Parry measure of a network
and the relative importance of the 𝑖th node is proportional
to 𝑢(𝑖) ∗ V(𝑖), where 𝑈 = (𝑢(1), 𝑢(2), . . . , 𝑢(𝑛)) and 𝑉 =
(V(1), V(2), . . . , V(𝑛)) are the left and right eigenvectors of the
adjacency matrix 𝐴 of the network. The SPC can effectively
illustrate the node importance by synthesizing the node
properties and network topology structure [43, 44].

2.4.2. Comparisons on Consistency and Robustness. We con-
duct the comparisons of the consistency and robustness of the
six methods by the flowchart in Figure 2.

3. Results

3.1. Consistency. We compared the consistency from top
10% important nodes (A) and the total Euclidean distance
between importance vectors (B). Since there were two impor-
tance criterions DC and SPC, there were four comparisons.
The computational results are listed in Tables 3–5.

Table 3 shows the comparison of important nodes; for
MIC, the important nodes defined by DC included MEG. L,
MEG. R, ROL. L, SFGmed. L, SFGmed. R, INS. L, INS. R,
PoCG. R, STG. L, and STG. R. When the node importance
was defined by the SPC, nearly the same important nodes
were obtained (STG. R instead of SMG. R). MIC had the best
rank if the node importance criterion was SPC and ranked
the third if SPC was replaced by DC. In the latter case, the
score of MIC (33) was very close to the highest score 34.5.

The comparison of the total Euclidean distances of all
nodes is shown in Table 4; MIC had the best rank if the node
importance criterion is SPC and ranked the second if SPCwas
replaced by DC. In the latter case, the total distance of MIC
was 127.84, which was almost the same as the smallest total
distance 126.4.

Table 5 collects the ranking information of the compar-
isons of consistency.

3.2. Robustness. Since robustness is an important feature of
a method, we conducted six comparisons to examine the
robustness of the methods. We calculated the total Euclidean
distances between the importance vectors (C) and the impor-
tance ranking vectors (D) of the 13 samples. We had four
comparisons since there were two importance criterions. On
the other hand, we calculated the VC (variation coefficient)
of the degrees of the 90 nodes, as well as the voting entropy
of all nodes. The results are listed in Tables 6–10 and Figures
3 and 4.

As shown in Tables 6 and 7, in the comparisons of the
total distance of all nodes, MICwas ranked the second. In the
comparison of the distance between the importance ranking
vectors, MIC was ranked first. The box plot (Figure 3) shows
the average VC of all nodes, MIC performed the second, and
PCF was ranked the first. The results were verified by the
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Table 3: In Table 3(a), importance of nodes was defined by degree centrality (DC). In Table 3(b), importance of nodes was defined by the
Shannon-Parry centrality (SPC). Each column included the important nodes and the score information for a method. In this table, the top
9 (10%) nodes were chosen as the important nodes. If a method obtained a higher score, it was more consistent with all other methods. In
Table 3(a), CF, MI, and MIC had the relatively higher score. Although MIC was ranked the third, its score was very close to CF which is
ranked the first. In general, the network constructed by MIC had the relatively better consistency compared with other methods in terms of
important nodes. In Table 3(b), MIC had the highest score. Thus, the network constructed by MIC had the highest consistency compared
with other methods in terms of important nodes.

(a)

CF PCF MIC MI WCF CH
MFG. L ORBsup. L STG. L MFG. L SMG. R PreCG. L
MFG. R MFG. R MFG. R ROL. L ORBmid. L SFGdor. L
ROL. L ORBmid. L ROL. L SFGmed. L ROL. L MFG. L

SFGmed. L CUN. R SFGmed. L SFGmed. R STG. R MFG. R
SFGmed. R PCUN. L SFGmed. R INS. L SFGmed. L ROL. L
INS. L TPOsup. R PoCG. R INS. R SFGmed. R SFGmed. R
INS. R MTG. L STG. R PoCG. R INS. R PCG. L
STG. L TPOmid. R ANG. L STG. L PoCG. R FFG. R
STG. R ITG. R MFG. L/SMG. R STG. R ROL. R/PreCG. R STG. L

Score 34.5 13 33 33.5 28.5 25.5

(b)

CF PCF MIC MI WCF CH
MFG. L ORBsup. L MFG. L MFG. L PreCG. R PreCG. L
ANG. L MFG. R MFG. R ROL. L ORBmid. L PreCG. R
ROL. L ORBmid. L ROL. L SFGmed. L ROL. L MFG. L

SFGmed. L CUN. R SFGmed. L SFGmed. R ROL. R MFG. R
SFGmed. R PCUN. L SFGmed. R SFGdor. L SFGmed. L SFGdor. R
INS. L TPOsup. R PoCG. R INS. R SFGmed. R PoCG. L
INS. R MTG. L STG. R PoCG. R INS. R PCG. L
STG. L ORBsup. R ANG. L STG. L PoCG. R FFG. R
STG. R ORBinf. L STG. L STG. R STG. R STG. L

Score 30 12 32 31 27 18

Table 4: In Table 4(a), we used degree centrality (DC) to measure the importance of node in network. In Table 4(b), we used Shannon-Parry
centrality (SPC) to measure the importance of node in network. So each method got a 1 ∗ 90 vector to measure the importance of nodes by
calculating nodes’ average importance from 13 sample networks.The value in the middle of table was the Euclidean distance between vectors
from different method. The value of last row was the sum of Euclidean distance from one method to the others. If this sum of distance was
smaller, corresponding method had better consistency. From Table 4(a), CF and MIC had relatively small and very similar sum of distance,
so MIC had better consistency than other methods. From Table 4(b), MIC had the smallest sum of distance, so MIC had the best consistency
with other methods.

(a)

Method CF PCF MIC MI WCF CH
CF 0 48.77 13.90 11.10 22.00 30.70
PCF 48.77 0 47.48 50.36 44.32 40.34
MIC 13.90 47.48 0 14.85 23.80 27.81
MI 11.10 50.36 14.85 0 22.61 31.73
WCF 22.00 44.32 23.80 22.61 0 34.30
CH 30.70 40.34 27.81 31.73 34.30 0
Total 126.4 231.27 127.84 130.65 147.03 164.88

(b)

Method CF PCF MIC MI WCF CH
CF 0 0.0454 0.0117 0.0094 0.0191 0.0299
PCF 0.0454 0 0.0425 0.0442 0.0413 0.0332
MIC 0.0117 0.0425 0 0.0115 0.0192 0.0267
MI 0.0094 0.0442 0.0115 0 0.0180 0.0288
WCF 0.0191 0.0413 0.0192 0.0180 0 0.0328
CH 0.0299 0.0332 0.0267 0.0288 0.0328 0
Total 0.1155 0.2066 0.1116 0.1119 0.1304 0.1514
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Table 5: A summary of the comparison of consistency. A: consistency in the important nodes; B: consistency in the importance of all nodes.
The DC column indicated the importance of the node as defined by degree centrality (DC). The SPC column indicated the importance of
the node as defined by the Shannon-Parry centrality (SPC). For the consistency comparison in four aspects, MIC had two times of the first
ranking, one time of the second ranking, and one time of the third ranking. Overall, MIC had the best performance. Actually, if we pay
attention to Tables 3 and 4, we will find that MIC, CF, and MI have a very similar conclusion.

Aspects DC SPC
CF PCF MIC MI WCF CH CF PCF MIC MI WCF CH

A 1 6 3 2 4 5 3 6 1 2 4 5
B 1 6 2 3 4 5 3 6 1 2 4 5

Consistency and robustness comparison processes

Calculate the connection matrix by six methods (CF, PCF, MIC, MI, WCF, and CH) for 13 samples; 
then get the adjacency matrix with 1200 edges by thresholds.  

Evaluate the node importance by DC and SPC; combine the importance vector from 

Calculate mean 
importance 

vector for the 
matrix by row,
and obtain a 

each method.

Select top 10% 
important node; 

 give each 
method a score 

by voting.

 For each 
method, 

calculate the 
total Euclidean 

distance from its 
vector to other 

vectors.

 For each 
method, 

calculate the 
total Euclidean 

distance 
between the 13 
row vectors in 

the matrix.

Calculate the 
rank of node in 
each row; get a

matrix for each 
method. 

of each column;

for each method. 

Fix the number i 
of important 

nodes; for one 
method, each 
sample votes i 

important 
nodes; obtain a 

probability 
vector from the 

votes, and 
calculate the 

entropy.
Plot each 

vector; conduct 

test. 

For i between 9
and 18, obtain 

each method.

Robustness
Consistency

Calculate the VC

1 ∗ 90 vector for

13 ∗ 90 rankget a 1 ∗ 90 vector

1 ∗ 10 vector for

different samples to obtain a 13 ∗ 90 matrix for each method.

two-sample t-

Figure 2: The flowchart summarizes the process of our comparison scheme on two aspects: consistency and robustness. Looking from the
top to the bottom following the arrow and the branches, we can have a clear vision of our steps and the steps can be easily realized. We will
conduct ten comparisons, four for consistency and six for robustness. To make it clear, “voting” is a metaphor. For instance, when we use 6
methods to extract the top 9 important nodes, we think that the 6 methods are “holding” a vote for their top 9 important nodes from the
90 nodes. The same goes for our samples. In the left branch of consistency part, the six methods have their own important nodes sets after
“voting,” but the sets are different; that is to say, the six methods have different “opinions” on important nodes. We give each method a score,
respectively, to decide which method’s “opinion” is the best. One method’s score is the total votes it receives from other methods, including
itself. The method which acquires the most votes pools other methods’ “opinions” together and is considered more reliable. In the first left
branch of the robustness part, the 13 samples “vote” 𝑖 (9 ≤ 𝑖 ≤ 18) important nodes from the 90 nodes. After “voting,” the 90 nodes have
their voting numbers and voting rates (voting number/sum of vote). We can calculate the entropy according to the probability distribution
induced by the voting rates. If the entropy is small, it means that the 13 samples have consensus on important nodes, and the corresponding
method is more robust.
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Table 6: C: robustness in the importance of all nodes. We used degree centrality (DC) and Shannon-Parry centrality (SPC) to measure the
importance of node in network and put the importance vector calculated in the same method from different sample as the row to construct
matrix, so each method obtained a 13 ∗ 90 matrix. The value in the table was the sum of Euclidean distance between different row vectors
for one method. D: robustness in the ranking of all nodes in importance. We used degree and Parry measure to measure the importance of
node in network and put the importance vector calculated in the same method from different sample as the row to construct matrix, so each
method obtained a 13 ∗ 90 matrix. Then we got the rank of node in each row, so each method got a 13 ∗ 90 rank matrix. The value in the
table was the sum of Euclidean distance between different row vectors from rank matrix of one method. If this sum of distance was smaller,
corresponding method had better robustness. In the aspect C, MIC is ranked the second and is only bigger than PCF. In the aspect D, MIC
had the smallest sum of distance, so MIC had better robustness than other methods.

Aspects CF PCF MIC MI WCF CH

C DC 9148.4 7282.8 8344.8 9536.6 9750.4 10119
SPC 8.30 6.54 7.59 8.08 8.90 9.45

D DC 24910 26483 24588 24889 25705 26544
SPC 24669 26574 24435 24677 25600 26680

Table 7: C: robustness in importance of all nodes. D: robustness in the ranking of all nodes in importance. The DC column indicated the
importance of the node defined by degree centrality (DC). The SPC column indicated the importance of the node defined by the Shannon-
Parry centrality (SPC). For the robustness comparison, MIC had the best ranking in D and was ranked second in C. Actually, PCF was very
unstable. In aspect D, PCF had poor performance. In the part of discussion, we will proceed to explain this phenomenon. Overall, compared
with other methods, MIC had the best performance in robustness.

Aspects DC SPC
CF PCF MIC MI WCF CH CF PCF MIC MI WCF CH

Robustness C 3 1 2 4 5 6 4 1 2 3 5 6
D 3 5 1 2 4 6 3 5 1 2 4 6

Table 8: We conducted one side two-sample 𝑡-test between each two methods under the confidence level of 95%. In this chart we showed
the 𝑃 value of the test in which the method’s mean in the row was smaller than that in the column. We arranged the methods according to
their rank. The events in the symmetric position of the table were complementary, so we just showed the bold font data. We could see PCF
passed 5 tests and was ranked first. MIC passed 4 tests and was ranked second.

PCF MIC CF MI WCF CH
PCF >0.9999 >0.9999 >0.9999 >0.9999 >0.9999
MIC 0.9966 0.9999 >0.9999 >0.9999
CF 0.8758 0.9415 0.9936
MI 0.5986 0.8714
WCF 0.8447
CH

Table 9: We conducted one side two-sample 𝑡-test between each two methods under the confidence level of 95%. In this chart we showed
the 𝑃 value of the test in which the method’s mean in the row was smaller than that in the column. We arranged the methods according to
their rank. The events in the symmetric position of the table were complementary, so we just showed the bold font data. We could see MIC
passed 5 tests, which performed best.

MIC CF MI WCF PCF CH
MIC 0.7668 0.9556 0.9757 >0.9999 >0.9999
CF 0.8277 0.9011 0.9999 >0.9999
MI 0.6796 0.9998 >0.9999
WCF 0.9984 >0.9999
PCF 0.9870
CH

Table 10: In the robustness comparison, MIC was ranked the second in the aspect of VC of degree centrality (DC); MIC had the best ranking
in terms of entropy of important nodes. Overall, compared with other methods, MIC performed best in terms of robustness.

Approach CF PCF MIC MI WCF CH
VC of DC 3 1 2 4 5 6
Entropy of important nodes 2 5 1 3 4 6
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Figure 3: We used degree centrality (DC) to measure node impor-
tance and calculated VC of 90 nodes’ degree as to 13 samples. Thus,
a 1 × 90 vector was obtained for each method. Box plots of these
vectors were constructed to determine which method had a smaller
average value. When the average VC was smaller, the method was
considered to perform better in terms of robustness. The box plot
shows the robustness rankings of PCF, MIC, CF, MI, WCF, and CH.
Comparisons regarding this aspect indicated that MIC had a good
performance. For statistical tests, see Table 8.
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Figure 4: The horizontal axis is the number of important nodes
for every subject according to the Shannon-Parry centrality (SPC).
The vertical axis is the entropy as a metric to measure results;
smaller entropy indicates better performance. Performance results
were compared, and MIC performed best. For statistical tests, see
Table 9.

two-sample t-tests under the confidence level of 95%. In the
comparison of the voting entropy of nodes between the 13
samples, MIC performed the best when the top 9–18 (10–
20%) nodes were regarded as the important nodes, as shown
in Figure 4. MIC passed all the two-sample t-tests under the
confidence level of 95%. The ranking information is listed in
Table 10. Overall, for the robustness comparisons, MIC was
consistently ranked in the top two methods.

4. Discussions

We comparedMIC to five existing methods comprehensively
from consistency and robustness. According to the results in
Tables 3–5, MIC, CF, and MI are more consistent than WCF,
CH, and PCF.The consistency scores of MIC, CF, and MI are
very close. Combine the two comparisons in important nodes
with criterionsDCand SPC inTable 3, the total scores ofMIC,
CF, andMI are 65, 64.5, and 64.5, respectively. SoMIC ismore
consistent than CF and MI. For the comparisons based on
total distance, one can see from Table 4 that MIC also is more
consistent than CF and MI. From the four comparisons in
consistency, MICwas ranked 3, 1, 2, and 1, CF was ranked 1, 3,
1, and 3, andMIwas ranked 2, 2, 3, and 2.The sumof the ranks
is 7, 8, and 9 for MIC, CF, and MI, respectively. We conclude
that MIC was more consistent than CF and MI because the
sum of the ranks is smaller.

For the robustness comparison, we compare six aspects.
MIC was ranked the first and PCF was ranked the fifth
in the comparisons of the total Euclidean distance between
the importance (DC, SPC) ranking vectors and the voting
entropy. In the remaining three comparisons, MIC was
ranked the second, while PCF was ranked the first. PCF is
very robust in the comparisons of total Euclidean distances
between the importance (DC, SPC) vectors and variation
coefficients of degrees. But it does not mean it is a good
method because it performs the worst in all of the consis-
tency comparisons. In fact, it regresses out all the other 88
nodes’ influence when calculating the correlation coefficient
between a pair of nodes. This leads to relatively uniform
results that lack discriminability. We refer to Figure 1 for a
typical visualization of a PCF matrix.

5. Conclusions

In this paper, we demonstrate that MIC can be used to
construct a brain functional network. We compared MIC
with five other methods (CF, PCF, MI, WCF, and CH) and
ensured that it is suitable for brain functional network con-
struction. In the comprehensive comparisons in consistency
and robustness, MIC performs the best, and the results are
convincing.
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