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Abstract: Teledermatology has developed rapidly in recent years and is nowadays an essential tool for
early diagnosis. In this work, we aim to improve existing Teledermatology processes for skin lesion
diagnosis by developing a deep learning approach for risk prioritization with a dataset of retrospective
data from referral requests of the Portuguese National Health System. Given the high complexity of
this task, we propose a new prioritization pipeline guided and inspired by domain knowledge. We
explored automatic lesion segmentation and tested different learning schemes, namely hierarchical
classification and curriculum learning approaches, optionally including additional patient metadata.
The final priority level prediction can then be obtained by combining predicted diagnosis and a
baseline priority level accounting for explicit expert knowledge. In both the differential diagnosis
and prioritization branches, lesion segmentation with 30% tolerance for contextual information was
shown to improve classification when compared with a flat baseline model trained on original images;
furthermore, the addition of patient information was not beneficial for most experiments. Curriculum
learning delivered better results than a flat or hierarchical approach. The combination of diagnosis
information and a knowledge map, created in collaboration with dermatologists, together with the
priority achieved interesting results (best macro F1 of 43.93% for a validated test set), paving the way
for new data-centric and knowledge-driven approaches.

Keywords: teledermatology; risk prioritization; skin lesion classification; domain knowledge;
hierarchical learning; curriculum learning

1. Introduction

Skin cancer incidence has been increasing over recent decades, and according to the
World Health Organization, almost three million cases occur globally each year, corre-
sponding to one-third of all diagnosed cancers [1]. The previous facts, associated with the
potential risk for misdiagnosis, make the management of skin lesions particularly challeng-
ing for both dermatologists and primary care physicians, translating into a considerable
economic burden for national health services [2]. In this context, Teledermatology has the
potential to improve the efficiency and quality of care at lower costs.

Moreover, major advances in the automatic classification of skin lesions through
computer-processed imaging have been recently reported [3–5]. Still, most of this work has
been conducted primarily at an academic level and mainly focused on specific parts of the
problem. One particular topic not yet fully addressed in the literature is the usage of Multi-
modal Machine Learning approaches [6,7] for dermatological data. Indeed, dermatologists
usually make a multimodal decision, as the interpretation of an image is highly influenced
by the respective clinical information.

Given this, we can conclude that there is a shortage of systems that convert these
different acquired knowledge’s into an effective artificial intelligence-based tool designed
to support the referral dermatological process [8]. Furthermore, to achieve a solution with
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realistic chances of being effectively used in the clinical practice, the design of these systems
must take into account the most common practical difficulties during the referral process,
such as (1) lack of support during the image acquisition process to ensure image quality;
(2) referral decision usually based on incomplete data or not standardized; and (3) inability
to manually perform case prioritization in the desired time window, given the demarked
discrepancy between the huge number of referral requests and available dermatologists.

The present work integrates a larger project, DermAI, that aims to improve the existing
Teledermatology processes between Primary Care Units (PCU) and Dermatology Services
in the Portuguese National Health Service (NHS) for skin lesion referral. Through the usage
of Artificial Intelligence (AI) and Computer Vision, we envision two major goals: (a) to
support doctors in Primary Care Units through the development of a mobile application
that fosters image acquisition standardization [9] and (b) to assist dermatologists in the
referral process for booking specialist consultations in the hospital through the adequate
prioritization of cases. Improving dermatology consultations’ prioritization is particularly
relevant in the Portuguese scenario due to the lack of specialists in the NHS and the long
waiting lists for this type of consultation.

This research addresses the second goal of the DermAI project regarding case prior-
itization. Besides its major relevance in the clinical context, the automatic prioritization
of dermatological clinical cases is a complex task, usually downstream from the more
studied skin lesion classification. To the best of the authors’ knowledge, this work is the
first attempt to tackle it with an AI-based solution. In this context, we propose a Deep
Learning-based framework to predict the priority level given a clinical image of a skin
lesion (with optional patient metadata). The dataset comprises retrospective data from the
Portuguese NHS related to referral requests from PCU for the first Dermatology Hospital
consultation. Its images are not standardized, and the priority (target) labels add to the
complexity since each healthcare site and individual physicians have different requirements
for higher priority cases (e.g., available resources). Inspired by how physicians proceed in
case prioritization, a skin lesion classification task is included as an intermediate step in the
framework. Although extensive work has been carried out in the last decades regarding
this goal, it is still an open problem, especially in real-world, uncontrolled data. Accord-
ingly, this study investigates the broader potential of including domain knowledge into the
prioritization framework. This knowledge can be used to inspire data-centric preprocessing
methods and more robust learning schemes. Moreover, explicit knowledge from clinical
experts is used in the form of a novel knowledge map representing the relationship between
differential diagnosis and the expected priority distribution, which can then be explored in
different ways to guide the final predictions.

The main contributions of this work are summarized as follows:

• an innovative framework for the unexplored and yet-relevant task of dermatological
case prioritization;

• a study on how to include implicit and explicit forms of domain knowledge; and
• a novel, explicit knowledge map and its integration to guide model predictions.

2. Background and Related Work
2.1. Skin Lesion Diagnostic

The skin lesion diagnosis classification paradigm is challenging mainly due to the
large amounts of intra-class variability and complex textures and geometric structures.
Furthermore, the discrepancy in the number of images of some classes can lead to highly
biased Deep Learning models. Over the last few years, there has been an attempt to use
transfer learning to mitigate some of the obstacles. The main consensus is that fine-tuning
a well-established Convolutional Neural Network (CNN) with high performance in a large
dataset, such as ImageNet [10], in a small dataset can lead to a speed-up training and can
improve the performance of the models. In Lopez et al. [11], a pre-trained VGG16 was
used to perform the binary malignant vs. benign classification. During training, the first
four layers of the model were frozen and the rest were trained normally on the ISIC 2016
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dataset [12]. This procedure achieved a sensitivity value of 78.66%, which was a much
higher value than previously recorded. In Nedelcu et al. [13], the networks were trained by
gradually unfreezing the network blocks. Each block was trained for three epochs and then
the previous block was unfrozen and trained. This approach avoids destroying any of the
information in the pre-trained layers.

Other work used pre-trained networks coupled with linear classifiers [14,15] in order
to achieve better results. Menegola et al. [14] applied the VGG-M [16] with a Support Vector
Machine (SVM) for the classification of the EDRA dataset [17]. An interesting finding is
that using only ImageNet as a pretraining dataset leads to better results than using other
medical datasets (Kaggle Retinopathy dataset [18]). Kawahara et al. [15] used a similar
strategy by fine-tuning an AlexNet network [19] pre-trained on ImageNet to the Dermofit
dataset [20], which resulted in high accuracy in its 10 classes.

The aggregation of information from different types of dermatological images and
data modalities has also been attempted, inspired by the fact that, in clinical practice,
dermatologists also combine visual inspection (dermoscopic and macroscopic view) with
additional clinical information about the patient. Mahbod et al. [21] used two Inception-
V3 [22]: one for macroscopic images and the other for dermoscopic images. Nedelcu et al.
[23] used this technique coupled with pretraining in ISIC 2019 [24–26] to achieve higher
results. In addition, Kawahara et al. [5], Kharazmi et al. [27], and Yap et al. [28] employed
multimodal learning approaches, integrating patient metadata to enhance performance.

2.2. Incorporating Domain Knowledge

Despite the great successes demonstrated by Deep Neural Networks, some of them
presented above, it is still challenging, not to say impossible, to guide the learning process
towards specific decision paths. Feature engineering is not required for such models and
when data are available in sufficient amounts and quality. While this is a clear advantage
for the efficiency of the modeling process, we may miss essential inputs that would benefit
the final solution. On the other hand, data are often limited and of poor quality, espe-
cially in the medical field. In this context, there are interesting attempts at incorporating
knowledge from the domain into the learning process, hoping to achieve better suited and
robust models.

There are three major approaches to achieving the integration of expert knowledge
into Deep Learning processes: relational, logical, and scientific [29]. The first explores
relationships between entities (e.g., Melanoma is a malignant skin lesion), defined via
relational databases or knowledge graphs. In turn, these can be leveraged through different
techniques, such as statistical relational models (Probabilistic Graphical Models—PGMs—
or Bayesian Networks) or using learned embeddings, where each entity is represented by
a vector in a latent space, learned while accounting for the entities’ context. Interestingly,
PGMs and Bayes Nets can also be used to encode Logical Knowledge, besides Probabilistic
Context-Free Grammars or Markov Logic Networks. This type of propositional knowledge
(e.g., if a skin lesion is asymmetric, showing irregular borders, inconsistent color, etc., the
probability of being malignant increases) can be integrated into DNNs, for example, via
distillation (student-teacher framework) [29]. Finally, scientific knowledge involves existing
models (e.g., Newton’s laws or Navier–Stokes fluid dynamics equations), represented by
partial and stochastic differential equations (PDEs), conservation laws and principles, or
general invariances. These can be learned from data and used to regularize the learning
process of DNNs, via constraints. As an example, Li et al. [30] proposed a domain-
knowledge-guided recurrent neural network (DG-RNN) to predict clinical risks based on
Electronic Health Records (EHR) and using a medical knowledge graph to improve results
and their interpretation by the clinicians.

A survey by Xie et al. [31] summarized different approaches to incorporating domain
knowledge into Deep Learning based on medical imaging. Analyzing the different strate-
gies, one can observe that some use external knowledge to inspire the learning process,
while others actually use that knowledge to guide the model predictions. Examples of the
former include Transfer Learning, where other datasets are leveraged to improve training;
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Multi-Task Learning, where different goals drive a common underlying sub-model, leverag-
ing different characteristics of the domain (e.g., simultaneous skin lesion classification and
segmentation tasks); Curriculum Learning [32–34], inspired by existing training patterns of
human experts (as discussed in more detail below); and Hierarchical Classification [35–40],
which explores the fact that some categories under study might have similar clinical man-
ifestations, thus sharing common features. On the other hand, other strategies rely on
expert knowledge to improve the network’s results. Different types of domain knowledge
can be explored, such as areas of interest in medical images, hand-crafted features known
to the experts, or domain priors (e.g., anatomical priors including shape, position, etc.).
These can then be explored in different ways, including attention mechanisms, feature
fusion techniques, and regularization terms (e.g., constraints). Another recent survey by
Dash et al. [41] considers two broad categories regarding the representation of domain
knowledge for DNNs: logical constraints and numerical constraints. The former can further
be divided into propositional and predicate logic (including binary and n-ary relations).
The latter can be subcategorized into loss functions (regularization) and constraints on
weights (including priors and transfer learning). Still concerning the integration of domain-
based constraints into DNNs, Muralidhar et al. [42] proposed Domain Adapted Neural
Networks (DANN), attempting to find a balance between the usual inductive loss and
a domain-specific loss. The authors explore monotonic relationships between process
variables (monotonic constraints) and information on the normal quantitative range of
operation of those variables (approximation constraints). The results showed significant
improvements over domain-agnostic networks.

2.2.1. Automatic Lesion Segmentation for Diagnosis

Artifacts such as hairs, veins, ruler markings and air bubbles, or non-target lesions in
dermoscopic images can potentially deceive a model’s classifier. Skin lesion segmentation
and subsequent selection of an area of interest have been considered to help discriminate
between lesions without the interference of such background noises [43]. However, the
correct segmentation is not trivial owing to the same challenges. Fully CNNs (FCNs) have
been the staple method used in the skin lesion segmentation challenge. Most methods
are based in the U-Net [44] with small modifications [45,46]. In Öztürk et al. [47], a FCN
used spacial information to segment images in full resolution and without any pre- or
post-processing. In Zahra et al. [48], an ensemble of Bayesian FCN was used to take
advantage of the annotator-related biases to achieve a gold standard in image segmentation.
Several ground truths, for the same image, were used to train several networks, which
were then fused to obtain the final prediction. Other work also utilized the fusion of several
image scales to improve the quality of the segmentation [49]. Lastly, the difference between
image acquisition formats was also analyzed. In Andrade et al. [50], a model for the precise
segmentation of lesions in macroscopic skin lesion images was developed, tackling the
problem of the limited amount of mobile acquired/macroscopic images by making use
of the sizable number of dermoscopic images. For this, a Cycle-Consistent Generative
Adversarial Network (CycleGAN) [51] was used for the translation between the two types
of dermatological images: macroscopic and dermoscopic. The results of this technique
established a new state-of-the-art performance in the SMARTSKINS dataset [52].

Subsequently, the correct selection of an area of interest for use during the diagnostic
classification after the segmentation was also analyzed. Yu et al. [53] proposed a two-stage
framework, integrating very deep lesion segmentation and classification networks. The first
allowed them to predict the lesion masks, to crop the dermoscopic images into square and
tight lesion patches, and to send them as input for the classification stage to extract more
representative and specific features within the lesion regions. The experimental results
reported that the segmentation task led to significant performance improvement in lesion
classification. Burdick et al. [54] also investigated the role of segmentation in CNN-based
lesion classification, specifically the effect of expanding the segmentation border to include
neighboring pixels. The results suggest that such pixels provide contextually relevant
information and that border enlargement is beneficial to a certain extent, with dilated
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masks achieving higher performance than dermatologist-like segmentation masks. In the
work of Tang et al. [55], a Global-Part Convolutional Neural Network (GP-CNN) model
was developed. The motivation behind this design was to treat local information and global
context information with equal importance. The Global-CNN was trained on resized skin
lesion images, with its results extracting global context and producing Class Activation
Maps (CAMs). A CAM-guided probabilistic multi-scale cropping method was employed
on the original dermoscopic images to obtain skin lesion patches, which were used to train
the second sub-model, Part-CNN, and to capture local-scale information of skin lesion
regions. The results from the two sub-models were finally fused by the weighted ensemble
strategy, enhancing classification performance.

2.2.2. Hierarchical Classification

Traditional CNN-based classification systems assume that all classes are equally hard
to distinguish, compromising the classification of visually similar categories. Therefore, to
enhance CNN’s performance, hierarchical systems have been considered in recent years,
having already proved their effectiveness over flat classification approaches. These systems
decompose the global classification problem into multiple sub-problems in a hierarchi-
cal manner, aiming to preserve some relationships that exist across various categories.
Yan et al. [35] introduced Hierarchical Deep Convolutional Neural Networks (HD-CNN),
which incorporate deep CNNs into a hierarchy of categories by using coarse and fine
category classifiers to distinguish easy and difficult classes, respectively. In the work of
Zhu and Bain [36], a system called Branch Convolutional Neural Network (B-CNN) was
proposed. This system introduces branches along the main CNN to make multiple predic-
tions hierarchically. This strategy was applied by Sali et al. [37] to diagnose gastrointestinal
disorders on histopathological images. In the medical field, An et al. [38] developed a
training framework for disease detection that employs transfer learning between models
from different hierarchical levels. With respect to skin lesion diagnosis, Fisher et al. [39]
proposed a method that uses a hierarchical decision tree with a K-NN classifier at each de-
cision node to categorize different types of lesions. Furthermore, Barata et al. [40] proposed
a hierarchical methodology for skin cancer diagnosis, in which two different hierarchies
were explored. The benefits of using a structured classification over a multi-class problem
were demonstrated, making it possible to achieve higher results.

2.2.3. Curriculum Learning

As previously mentioned, another approach that intends to mitigate the differences
verified in the classes’ classification difficulty consists of mimicking the human gradual
learning process, starting from the easiest tasks and gradually progressing to the hardest
ones. This learning procedure is called curriculum learning [32] and has been recently
considered in the medical image field. Maicas et al. [33] proposed a teacher–student
curriculum learning system for automatic breast screening classification, which trains on
simpler tasks before introducing the malignancy detection problem. The work developed
by Tang et al. [34] employed an attention-guided curriculum learning framework that
builds the curriculum based on the disease severity level extracted from radiology reports.
Curriculum learning was also used by Tang et al. [56] for skin lesion segmentation, aim-
ing to handle the overfitting problem caused by the imbalanced number of difficult and
easy samples.

3. Materials and Methods

Recalling the main objective of this project—improving case referral from general
practitioners to dermatology specialists—the primary goal of this work is to create a
predictive model to classify the priority of a case into one of three levels: normal, priority,
or high priority. Figure 1 illustrates the overall workflow of this process, highlighting
four major sequential blocks: Input, Preprocessing, Learning, and Outcome. The first
concerns the input data, the case properties explored for the intended task. This work
considers a dermatological image and associated metadata such as the patient’s age and
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sex. Then, these data are subject to several preprocessing operations. These can be standard
to Deep Learning, such as normalization, or specific to this work, as the optional automatic
lesion segmentation and data augmentation. Then, the Learning block comprises the
two branches where actual learning takes place: the differential diagnosis branch, where
different learning schemes are explored, and the output are an array of scores for the set
of categories under analysis, and the priority branch, which can be seen as the baseline
for the target task, connecting the inputs to the priority scores output. Finally, we propose
an additional Outcome block, where the different branches can be combined with domain
knowledge to achieve the final priority level prediction. In this case, domain knowledge is
based on a statistical distribution mapping each differential diagnosis to priority priors.
Details on this map are provided below.

Input Images

Metadata
(Age, Sex)

Automatic Lesion 
Segmentation

Differential Diagnosis Branch
(Learning scheme)

Hierarchical
Curriculum
LearningFlat

Category Normal Priority High 
Priority

1 70 20 10

2 20 45 35

… …

N 15 25 60

Knowledge map

Prioritization Branch

Including Domain Knowledge

Output: 
Diagnostic scores

Naïve Priority 
from Diagnosis

Output: 
Baseline Priority scores

Final Priority

Fusion

Input Preprocess ing Learning Outcome

Figure 1. Overview of the methodology followed in this work towards the prediction of dermatologi-
cal case risk prioritization.

3.1. Database

The authors had access to anonymized retrospective data from the Portuguese National
Health System related to the referral requests from Local Health Care Units for the first
Dermatology Hospital consultation. The referral requests that occurred between 2014 to
2020 (before COVID-19 pandemic) and only cases corresponding to single lesions with
differential diagnosis available were considered. The authors counted with the support
of a group of dermatologists to select the clinically relevant list of differential diagnoses
to be considered when building a prioritization model for dermatological referrals. The
DermAI dataset used here was first presented in [13] and consisted of a total of 3427 cases
corresponding to single lesions from 13 distinct differential diagnoses. The average age
(and standard deviation) of the individuals correspond to 55.84 ± 22.18, and regarding the
sex, there are 1406 male and 2021 female cases. The dataset contains mostly macroscopic
(close-up) images of lesions; however, in some cases, the images are anatomical (296). The
distribution of cases in relation to the differential diagnosis and priority level provided
by dermatologists is presented in Table 1, and some illustrative examples of lesions with
different priority levels are shown in Figure 2. The differential diagnosis refers to the
diagnosis provided by dermatologists after the specialist consultation and priority refers to
the level of priority in the triage process to book the consultation. It is important to stress
that, although there are national guidelines to define the priority (normal, priority, and
high priority), the different hospitals have a different number of specialists in this field and
different resources so these data include this intrinsic variability.
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Table 1. DermAI train and test dataset distribution considering the differential diagnosis and priority
level (N—Normal; P—Priority; HP—High Priority; Tot—Total).

Class
Train Dataset Test1 Dataset Test2 Dataset

N P HP Tot N P HP Tot N P HP Tot

1 SebKer 893 54 2 949 226 8 3 237 12 8 3 23
2 ActKer 350 56 10 416 89 14 0 103 10 14 0 24
3 Nev 444 46 5 495 114 8 0 122 11 8 0 19
4 MolCont 54 2 0 56 7 8 0 15 2 8 0 10
5 Haem 41 13 2 56 7 6 1 14 6 6 1 13
6 UncNeop 162 32 2 196 37 4 9 50 5 4 9 18
7 Dermfib 103 9 0 112 22 5 1 28 5 5 1 11
8 SLent 38 1 0 39 7 2 0 9 7 2 0 9
9 PenFib 77 14 0 91 21 1 1 23 11 1 1 13
10 VWart 137 17 0 154 36 1 1 38 11 1 1 13
11 OtMlNp 47 21 25 93 3 6 14 23 0 6 14 20
12 BCC 8 37 0 45 1 7 3 11 1 7 3 11
13 MM 13 9 22 44 0 0 8 8 0 0 8 8

Total 2367 311 68 2746 570 70 41 681 81 70 41 192

High priority

Priority

Normal

Figure 2. Illustrative examples of lesions from the DermAI dataset with different priority levels.

Observing the partition distributions in Table 1, it is clear that the sample distribution
per differential diagnosis and priority levels are not balanced. The training set and test set 1
were stratified so that their distributions matched. However, due to the low representation
of some diagnostic classes and priority levels, we decided to select a subset of the test
set 1 to balance the priority levels. Furthermore, due to the mentioned challenges of
the priority labels, we asked three experienced dermatologists to validate 200 of these
samples regarding expected priority. Challenging examples where there was disagreement
were not considered in this subset. This resulted in test set 2, comprised of 192 samples,
distributed among high priority (all 41 samples available from the test set 1), priority (all
70 samples from test set 1), and normal (81 samples randomly sampled from the test set
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1). Additionally, due to some diagnostic categories being greatly underrepresented, we
found that the creation of a validation set made the training even more challenging (Solar
Lentigo has only 39 training samples, and Melanoma has 44, for example) or left the final
test set too small (9 testing samples for Solar Lentigo, and 8 for Melanoma). Thus, when
comparing the impact of different approaches and techniques, we rely on the results of
test set 1 (more general, unbalanced, and many labels unvalidated) and report the final
performances on test set 2 (fewer samples, more balanced, and validated labels).

Finally, bearing in mind that the priority level in different hospitals can change de-
pending on the available resources, the authors worked closely with a group of three
experienced dermatologists in order to build a knowledge map of the priority level for each
differential diagnosis. We asked the dermatologists to individually provide their priority
level distribution depending on the differential diagnosis. In Table 2, we present the mean
and standard deviation of the obtained results. Looking at the Seborrheic Keratosis class
(1 SebKer), the doctors agree that 80% of the cases fall into the normal class while 17% are
noted as priority and a minority, 3%, are considered high priority. Oppositely, we can see
that Malignant Melanoma class (13 MM) was mostly referred to as high priority, with a
few (10%) being referred as priority. Moreover, observing standard deviations of these two
classes, it is possible to see that the three doctors mostly agree on this distribution. There
are some classes though, such as Neoplasm of Unclear Behavior (6 UncNeop) or Other
Malignant Neoplasms (11 OtMalNeop), where the distribution is more evenly spanned
across two priority levels: normal and priority for the former and priority and high priority
for the latter.

Table 2. Knowledge map distribution per differential diagnosis.

Class Differential Diagnosis
Mean (%) Std (%)

N P HP N P HP

1 SebKer Seborrheic Keratosis 80 17 3 0 7.7 7.7
2 ActKer Actinic Keratosis 57 30 13 19 12 21
3 Nev Nevus, Non-neoplastic 67 30 3 19 23 8
4 MolCont Molluscum Contagiosum 60 40 0 57 45 12
5 Haem Haemangioma 67 23 10 31 21 12
6 UncNeop Neoplasm Unc. Behavior 40 50 10 39 28 12
7 Drmfib Dermatofibroma 84 13 3 17 12 8
8 SLent Solar Lentigo 84 13 3 17 12 8
9 PenFib Pendulum Fibroma 93 7 0 15 15 0
10 VWart Viral Warts 87 10 3 12 12 8
11 OtMalNeop Other Malignant Neoplasm 9 42 49 17 23 21
12 BCC Basal Cell Carcinoma 26 57 17 24 22 8
13 MM Malignant Melanoma 0 10 90 0 12 12

3.2. Automatic Lesion Segmentation for Diagnosis Enhancement

Preprocessing transformations such as lesion segmentation may enhance the per-
formance of CNN models, as proven by the positive results of the works presented in
Section 2.2.1. Furthermore, given that this is still an open issue in image analysis, we
investigated the application of a segmentation step followed by a crop around the lesion in
the images of the dataset to verify whether the removal of those structures is advantageous
for differential diagnosis.

In order to obtain segmentation masks for the DermAI dataset, a procedure based
on two methods was implemented. First, an attention-guided methodology using the
Gradient-weighted Class Activation Mapping (GradCAM) technique [57] was applied to
the flat baseline diagnosis model trained on the original images of the dataset, which is
described in the following section. The resulting activation maps were used to extract
masks from the classifier, by performing empiric thresholding operations dependent on the
average intensity of the grayscale maps. To avoid noise commonly found in the corners of
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the maps, patches equal to the average intensity of the image were applied on such regions.
As lesions are usually located in the center of the image, the closest blob to this point was
selected and the GradCAM mask was obtained. For the second approach, we employed a
DeepLabV3+ [58]-based segmentation model, with MobileNetV2 [59] as a feature extractor,
from Andrade et al. [50], to obtain our DeepLab masks.

The overlap between the segmentation masks obtained from both methods was found.
In cases where the overlapping area was above 50% of the GradCAM mask’s area, this
mask was accepted; if this condition was not verified but the overlapping area was more
than 60% of the DeepLab mask’s area, then the latter was taken. Otherwise, an empty mask
was considered, which means that the original image was used.

The location of the lesion was inferred from the mask. A square image patch containing
the whole skin lesion was defined by finding the difference between the largest and smallest
dimensions of the bounding box and by adding half of this value to both sides of the latter,
except in cases where this was not possible due to the total dimensions of the image.
Furthermore, a tolerance based on a percentage of the approximate radius of the lesion was
studied, as neighboring pixels may include contextually relevant information. Each square
area of interest was used to crop the original images for both training and testing of the
differential diagnosis models explained in Section 3.3.1. The lesion patches experimented
on are presented in Figure 3: original image; cropped image with no tolerance; and cropped
with the inclusion of neighboring pixels corresponding to 10%, 30%, and 50% of the
lesion radius.

(a) (b) (c) (d) (e)

Figure 3. Examples of original and cropped images with different tolerances. (a) Original image.
(b) Cropped with no tolerance. (c) Cropped with 10% tolerance. (d) Cropped with 30% tolerance.
(e) Cropped with 50% tolerance.

3.3. Differential Diagnosis Branch
3.3.1. Flat Approach

The EfficientNet is a group of networks developed based on the network scaling
(depths, width, and resolution), achieving state-of-the-art results while being multiple
times smaller and faster [60]. We chose to employ EfficientNetB3 as it requires a much
lower number of parameters to achieve the performance of other commonly adopted CNN
architectures on the ImageNet dataset.

To accommodate an EfficientNetB3 network for skin lesion diagnosis, a fully connected
layer was applied on top of the extracted feature map, generating a number of channels
related to the number of classes to predict (13). For dimensionality reduction, the Global
Average Pooling method was applied, as it is known to reduce overfitting [61]. The final
output was obtained by using the softmax activation function.

The role of a lesion segmentation step in skin lesion diagnosis was investigated by
training models with each of the following inputs: original images of the DermAI dataset
and cropped images with 0%, 10%, 30%, and 50% tolerance (Figure 3). The input of the
EfficientNetB3 architecture consists of images of size (300 × 300); hence, the considered
images are resized to the desired shape using the nearest neighbor method. To mitigate
overfitting issues due to the imbalance of the dataset, we employed stratified batches, i.e.,
each batch always holds exactly one sample of each skin lesion class, resulting in a batch
size that matches the number of classes for the dataset (13). We decided to use 200 samples
per class as it was a reasonable compromise between oversampling of the classes with fewer
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examples and downsampling of the opposite. Additionally, simple data augmentation
transformations were applied: rotation in the range of [1, 30] degrees, horizontal and
vertical flip, shear distortion, zooming, width and height shift in the range [0, 0.2], channel
shift in the range [0, 10], brightness in the range [0.2, 0.8], and reflect as the fill mode.

The network was trained using the weights pre-trained on ImageNet. The frozen
block approach was adopted for better results [62]: each EfficientNetB3 block was trained
for three epochs using a learning rate of 10−4 for the top layers and 10−5 for the rest of the
blocks. Training stopped when validation loss no longer yielded an improvement and the
model started overfitting. Adam was used as the optimizer, and categorical cross-entropy
was specified as the loss function.

The input images resulting in the best performing flat model were adopted for the
learning schemes described below. As further discussed later, the choice of these learning
approaches was inspired by clinical and intuitive procedures, intending for the introduction
of domain knowledge to improve the final priority assessment.

3.3.2. Hierarchical Classification

To address the challenge of some types of skin lesions having similar clinical mani-
festations, dermatologists usually consider the intrinsic hierarchical organization of these
lesions when performing their diagnosis. Therefore, to mimic the medical procedure, the
dataset was hierarchically organized according to some of the methodologies used by
clinicians, with the aim to facilitate the classification of the lesions. This organization was
made in collaboration with the three experienced dermatologists, resulting in a two-level
and a three-level hierarchy, as illustrated in Figure 4.

(a) (b)

Figure 4. Hierarchies considered for skin lesion diagnosis. (a) Two-level hierarchy. (b) Three-
level hierarchy.

Although the process of dividing lesions into different coarse categories can make
it easier for dermatologists to diagnose skin lesions, due to their complexity, this is not
a straightforward process, and for this reason, some exceptions may arise (marked with
* in Figure 4). With respect to the two-level hierarchy (Figure 4a), as its name suggests,
the Neoplasm Unclear Behavior class was assigned to the malignant set by the fact that
its categorization is not clear. Concerning the three-level hierarchy (Figure 4b), despite
the majority of Basal Cell Carcinoma lesions being non-pigmented, there may also be
cases in which these lesions are pigmented or even uncertain. The same occurs in Actinic
Keratosis lesions, which may present both pigmented and non-pigmented characteristics.
Therefore, for these two classes, each example was carefully analyzed by a dermatologist
who assigned it the correct coarse label (pigmented, non-pigmented, or uncertain).

After the dataset was organized, the B-CNN approach [36], introduced in the related
work, was employed, as it already proved to be effective for medical image classifica-
tion [37]. In this strategy, new branches were inserted along the main network to predict
as many labels as the number of hierarchical levels. Assuming that low-level features
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are captured by shallow layers and high-level features are captured by deeper layers,
the predictions are ordered from coarse to fine categories. As in the flat classification
approach (Section 3.3.1), the EfficientNetB3 network pre-trained on the ImageNet was
employed as the main network. Regarding the two-level hierarchy (Figure 4a), a new
branch was introduced between the fifth and sixth blocks of the main network to predict
between benign and malignant lesions, and, in the case of the three-level hierarchy, two
new branches were introduced to the main network to predict the coarse categories relative
to the upper hierarchical levels. In this case, one of the new branches was connected
between the fourth and fifth blocks of the network to predict the first-level categories
(melanocytic, non-melanocytic, and uncertain), and the other one was between the fifth
and sixth blocks to predict the categories corresponding to the second hierarchical level
(pigmented melanocytic and non-melanocytic lesions, non-pigmented, uncertain, and
other). Similar to the original implementation [36], for both hierarchies these branches
were composed of three fully connected layers, having dropout and batch normalization
techniques also applied to prevent overfitting and to stabilize the learning process. For
both hierarchies, fine categories, i.e., the lesion diagnosis, were predicted on the top of the
EfficientNetB3. As a training protocol, the frozen block approach introduced in Section 3.3.1
was also adopted in this part of the work, and the same learning rates and optimizer were
employed. In this case, the blocks were unfrozen up to the group before the introduction
of the first branch. As loss functions, the categorical cross-entropy was considered. The
final loss consisted of a weighted summation of all prediction losses (coarse and fine), so
throughout the learning process, different loss weights were assigned to each level of the
hierarchy to determine the corresponding contribution to the final loss. The change in
weights was made to optimize the learning of the coarse categories in the initial epochs
and, as the learning process evolves, to shift the optimization focus to the fine categories.
Hence, in the case of the two-level hierarchy, the loss weights started out as [0.98; 0.02];
after six epochs changed to [0.3; 0.7], the 12th was set to [0.1; 0.9] and, finally, the 18th epoch
changed to [0.0; 1.0]. Concerning the three-level hierarchy, the loss weights began as [0.97;
0.02; 0.01], in the 6th epoch, changed to [0.1; 0.8; 0.1]; in the 12th epoch, changed to [0.1; 0.2;
0.7]; and from the 18th epoch until the end of the training process, followed [0.0, 0.0, 1.0].

Moreover, the strategy proposed in [38] was also investigated. However, as the results
fell short of expectations, we decided not to include them in this paper.

3.3.3. Curriculum Learning

The visual similarities that exist between different types of skin lesion and the different
clinical manifestations that the same lesion may present make some categories more difficult
to classify than others. Thus, the use of curriculum learning was also explored in this
work, intending that categories could be learned according to the corresponding difficulty,
favoring the learning of harder categories. With the exception of the SLent class, which
was considered the hardest category since it is the least represented in the train dataset, the
criteria used to define the categories’ difficulty were based on the F1-score achieved with
the flat approach (Table 4). Therefore, the learning started with the easiest classes (i.e., the
ones that resulted in a higher F1-score, as SebKer, ActKer, and MolCont), and throughout
the process, the hardest classes were introduced (being OtMalNeop, BCC, and SLent the
last classes introduced).

Similar to the previously described approaches (Sections 3.3.1 and 3.3.2), the Efficient-
NetB3 network with ImageNet weights was first employed and the training procedure
was also based on the frozen block procedure, which gradually unfreezes groups of the
network’s blocks. Each block was trained for three epochs, and in this case, a total of six
blocks were unfrozen. The learning process started with four classes, and after all of the
desired groups had been unfrozen, a new class was introduced in the dataset, according
to the established ordering. When introducing a new class, all blocks were refrozen and
the aforementioned unfreezing process was repeated. As training protocol, the Adam opti-
mizer was considered and the categorical cross-entropy loss function was used. Regarding
the learning rate, it was tuned to 1 × 10−4 on the top layers and 1 × 10−5 for the rest of
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the blocks. With respect to the batch size, a batch size of 13 was considered, ensuring that,
after all classes were introduced, one sample from each class was presented at each batch
of images.

3.3.4. Multimodal Learning

The previously described strategies can be further developed to incorporate clinical
information as additional input, since the combination of complementary information
from different data modalities has been shown to slightly improve performance [23,27,28].
Our networks are set to receive two inputs: dermatological images and patient-level
metadata (age and sex). To merge this information, we employ a late feature fusion
technique [63]. The patient metadata is directly concatenated with the feature vector
extracted from the dermatological images by the EfficientNetB3 architecture; subsequently,
the merged information is provided to the classifier. The aforementioned training protocols
for each learning scheme (Flat—Section 3.3.1, B-CNN—Section 3.3.2, and Curriculum—
Section 3.3.3) are employed.

3.4. Prioritization Branch

The prioritization branch is an end-to-end approach to ascertain the priority level of a
skin lesion, without considering its diagnostic. Therefore, the EfficientNetB3 network, with
weights trained on ImageNet, is trained with the priority labels described in the last line
of Table 1. The pre-trained model was modified to comply with the three desired classes
(normal, priority, and high priority), and a softmax activation function was used in the
output. Similar to the diagnostic approaches, the frozen block approach was used. Initially,
only the last three blocks of the EfficientNetB3 were trained for three epochs, and gradually
more groups were unfrozen for six cycles, meaning that, in total, six blocks were trained.
Additionally, the Adam optimizer in combination with categorical cross-entropy loss was
used with a small learning rate to prevent the rapid overfitting in the first blocks. The
stratification of the imbalanced dataset was made in consideration of the priority and a
batch size of 12 was used, ensuring that each priority class has four samples per batch.

Last, the role of lesion segmentation and the incorporation of clinical information
in the prioritization branch was also tested. For the former, two types of cropping were
considered: the original images and the best tolerance of cropping identified on the Flat
differential diagnostic approach.

3.5. Final Priority (Integration with Domain Knowledge)

The incorporation of explicit domain knowledge in the final priority prediction given
by the proposed framework can be performed in a number of ways. The naive method
of including information from the experts is to combine the results of the differential
diagnostic class and the knowledge map shown in Table 2. Since this knowledge map
represents the average priority given to a skin lesion depending on its class, this approach
is similar to the routine of an expert dermatologist when analyzing skin lesions. Initially, a
diagnosis is ascertained, and depending on it, a priority is given. In the naive approach,
the diagnostic scores are multiplied by the distribution average scores, ending with an
aggregated priority level prediction. Here, each class score, which results from the learning
block of the differential diagnostic branch, is multiplied by the corresponding knowledge
map average values for the three priority levels. Then, the final priority prediction is
computed by aggregating these results, through a summing operation or by taking the max
value for each priority level.

Nonetheless, the naive approach does not consider any learning regarding the pri-
oritization task, as it only considers the learned diagnostic branch and the knowledge
map. A simple way to include the baseline priority is to fuse the outputs of the baseline
priority model and the naive approach. To achieve this, a weighted addition on the outputs
was performed, as in αPriority + βDiagnosis. Therefore, this approach, entitled Simple
Approach, utilizes two models: one for prioritization and one for diagnosis.
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The last approach tested (Combined Approach) includes the learning step during
the training of the prioritization task. For this, an auxiliary branch can be added to the
differential diagnosis model to compute the prioritization. This ensures that the model
learns the intricate relationship between the class and the priority of the lesions. Thus,
the Combined Approach has two branches: the first computes the diagnosis and the
second computes the prioritization. These branches are then joined to learn the final
priority. The diagnostic output is combined with the knowledge map and added, with the
expression used in the previous approach, to the prioritization branch output. This addition
is made during training, and the loss function takes into consideration both diagnostic and
prioritization, making sure that the diagnosis is not prejudiced for the priority.

4. Results and Discussion
4.1. Differential Diagnosis Branch
4.1.1. Preprocessing Strategies

The overall metrics score results for the different experiments on skin lesion segmen-
tation for diagnosis improvement are summarized in Table 3. The flat approach based
on EfficientNetB3, pre-trained on ImageNet, was trained with the original images of the
dataset and returned accuracy of 37.59%, weighted F1 of 40.49%, and macro F1 of 26.11%.
Considering the model trained on square lesion patches with 0% tolerance, accuracy and
weighted F1-scores dropped from 37.59% to 34.80% and 40.49% to 37.63%, respectively,
whereas macro F1 registered a slight improvement. The introduction of 10% tolerance
further decreased the performance, with this model showing the worst overall results
(absolute difference of, at best, 1% in all considered metrics). The ‘dilation’ of the area of
interest to include more context proved to be beneficial when considering higher tolerance
values (30% and 50%). Both accuracy and weighted F1 achieved the best overall values
for the first; however, there is a 1% absolute difference in macro F1 with an advantage
for the 50% tolerance images. Interestingly, the usage of zero or small (10% tolerance)
resulted in worse classification performance but achieved better results when higher values
of tolerance were used, which suggests that a specific amount of contextual information is
advantageous for the model. As an example, the computation of specific features related to
color and texture variations requires pixel information of both lesion and skin.

Table 3. Metrics score of test set 1 for segmentation effect in lesion classification (in %).

Experiment Accuracy Weighted F1 Macro F1

Original images 37.59 40.49 26.11
Cropped with no tolerance 34.80 37.63 26.66
Cropped with 10% tolerance 33.77 36.63 25.02
Cropped with 30% tolerance 38.77 41.40 27.50
Cropped with 50% tolerance 37.59 41.36 28.56

Analyzing sensitivity, precision, and F1 per class for the models with best overall
results (trained on 30% and 50% tolerance images), the first presented the best scores for
the majority of the malignant classes (OtMalNeop and MM), thus being considered the
top-performing approach. The metrics for the best model (cropped images with 30%)
are illustrated in Table 4. Despite the data-balancing techniques, there is a considerable
imbalance between the different classes’ scores. Regarding Seborrheic Keratosis (SebKer),
which is the most represented class in the dataset, it obtains the highest F1-score (53.23%)
with some misclassifications in Nevus (Nev), Dermatofibroma (Drmfib), Neoplasm of
Uncertain Behaviour (UncNeop), and Malignant Melanoma (MM). Actinic Keratosis (Ac-
tKer) achieves the second-best F1-score (52.57%), and typical misclassifications include
Basal Cell Carcinoma (BCC), Other Malignant Neoplasms (OtMalNeop), and SebKer. The
Viral Warts class (VWart) is one of the best classified categories (F1 44.90%), with some
examples being misclassified as UncNeop. Nevus class, the second most represented in
training, achieved an F1-score of 39.82% with some misclassifications to SebKer, Drmfib,
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and VWart. Additionally, Dermatofibroma achieved an interesting performance of 36.00%
for F1. Although with almost 100 examples in the training set, Pendulum Fibroma (Pend-
Fib) only achieved a F1-score of 27.10%, with misclassifications spanning across several
benign classes. From the benign classes, the ones with fewer examples in the dataset are
Molluscum Contagiosum (MolCont), Haemangioma (Haem), and Solar Lentigo (SLent)
achieving poorer performances (22.73%, 14.29%, and 8.7%, respectively). Regarding Neo-
plasm of Uncertain Behaviour (UncNeop), which includes higher intra-class variability, a
lower F1-score (16.84%) was obtained. The malignant class of Other Malignant Neoplasm
(OtMalNeop) also achieved a low F1-score (10.34%), with most misclassifications falling
into SebKer, ActKer, Drmfib, and BCC. The BCC class achieved the lowest F1-score, 3.85%,
which can be explained by the small number of samples (less than 50) and higher variability
in their biological and clinical manifestations. Finally, MM achieved an interesting F1-score
of 26.32%, despite the low number of training examples and common misclassifications
that fell into Nev and SebKer, which is in accordance with the clinical point-of-view. These
results are in line with the results previously presented in the study of Nedelcu et al. [13].

Table 4. Resulting metrics and confusion matrix of test set 1 for a differential diagnosis model trained
on cropped images with 30% tolerance (in %).

Classes Sensitivity Precision F1-Score

1 SebKer 43.46 68.67 53.23
2 ActKer 44.66 63.89 52.57
3 Nev 36.07 44.44 39.82
4 MolCont 33.33 17.24 22.73
5 Haem 14.29 14.29 14.29
6 UncNeop 16.00 17.78 16.84
7 Drmfib 64.29 25.00 36.00
8 SLent 11.11 7.14 8.70
9 PenFib 26.09 30.00 27.91
10 VWart 57.89 36.67 44.90
11 OtMalNeop 13.03 8.57 10.34
12 BCC 9.09 2.44 3.85
13 MM 62.50 16.67 26.32

4.1.2. Comparison of Learning Schemes

Taking into account the previous results achieved with the flat classification approach,
the cropped images with 30% tolerance were adopted as input images both in the case of
the hierarchical classification and curriculum learning strategies. In Table 5, the overall
scores achieved with the different experiments for skin lesion differential diagnosis may
be found.



Diagnostics 2022, 12, 36 15 of 26

Table 5. Metrics score of test set 1 for differential diagnosis approaches using cropped images with
30% tolerance (in %).

Experiment Accuracy Weighted F1 Macro F1

Nedelcu et al. [13] 42.71 44.04 28.65

Flat 38.77 41.40 27.50
B-CNN (Two-level) 40.23 42.53 30.52
B-CNN (Three-level) 41.70 43.45 29.95
Curriculum Learning 48.75 49.64 33.55

Analyzing the results concerning the hierarchical classification (B-CNN), it is demon-
strated that the results of the flat classification approach, which was used as the baseline,
were outperformed with both hierarchies (two and three levels). In the case of the three-
level hierarchy, an absolute difference of almost 3% is verified in terms of accuracy, 2% in
weighted F1, and with respect to macro F1, the improvement corresponded to around 2.5%.
Moreover, comparing the two hierarchies, although the three-level hierarchy achieved
slightly higher results in terms of accuracy and weighted F1, this difference was about 1.5%
at most, demonstrating a similar performance between them.

With respect to the curriculum learning strategy, the gradual learning of the different
classes benefited the differential diagnosis, achieving a considerable improvement in the
overall metrics, when compared with both flat and hierarchical strategies. Taking the flat
classification as the baseline, an absolute difference of 10% was verified in accuracy, 8% in
weighted F1, and regarding macro F1, a difference of 6% was observed.

The corresponding scores for the best learning scheme (curriculum learning) for each
diagnostic class are represented in Table 6 in the leftmost columns for each metric (“img”).
The confusion matrix may also be found in Figure 5a. Comparing these results with
the ones achieved with the flat classification approach (Table 4), it is possible to observe
an improvement for most of the classes in terms of precision and F1-score. Regarding
malignant lesions, such as OtMalNeop, BCC or MM, this enhancement in F1-score reached
an absolute difference of about 8%, 12%, and 14%, respectively. Furthermore, the sensitivity
of OtMalNeop or BCC registered an improvement of around 50%.

Table 6. Resulting metrics of test set 1 for the differential diagnosis model trained with curriculum
learning (in %), considering images (img), or images and metadata (img + meta) as the input.

Classes
Sensitivity Precision F1-Score

Img Img + Meta Img Img + Meta Img Img + Meta

1 SebKer 59.49 54.01 68.12 69.95 63.51 60.95
2 ActKer 62.14 71.84 62.14 53.62 62.14 61.41
3 Nev 47.54 43.44 54.21 47.75 50.66 45.49
4 MolCont 40.00 26.67 31.58 33.33 35.29 29.63
5 Haem 7.14 14.29 25.00 50.00 11.11 22.22
6 UncNeop 14.00 22.00 16.67 16.92 15.22 19.13
7 Drmfib 57.14 50.00 32.65 31.11 41.56 38.36
8 SLent 11.11 11.11 4.00 10.00 5.88 10.53
9 PenFib 17.39 17.39 30.77 28.57 22.22 21.62
10 VWart 57.89 55.26 52.38 38.89 55.00 45.65
11 OtMalNeop 26.09 13.04 13.95 11.11 18.18 12.00
12 BCC 18.18 36.36 13.33 30.77 15.38 33.33
13 MM 50.00 25.00 33.33 40.00 40.00 30.77
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(a) (b)

Figure 5. Confusion matrices of test set 1 for the differential diagnosis model trained with curriculum
learning. (a) Input: image. (b) Input: image and metadata.

It is also worth mentioning that, although the structure of the DermAI dataset used
in our previous work is not exactly the same as the one considered in this study, as here
the data were stratified considering the priority and differential diagnosis, the curriculum
learning experiment allowed us to improve the results obtained before [13]. In terms of
accuracy and weighted F1, this improvement corresponded to an absolute difference of
around 6%, and with respect to the macro F1 score, an improvement of 5% was verified.

Therefore, considering the results achieved with the various experiments, the curricu-
lum learning approach was the learning scheme that demonstrated better performance for
skin lesion differential diagnosis.

4.1.3. Multimodal Learning

Confronting the experimental results presented in Table 7 that used image and meta-
data with the ones achieved with only images (Table 5), it is shown that the addition
of patient metadata (age and sex) slightly decreased the overall metrics for skin lesion
diagnosis, except for the B-CNN model using a three-level hierarchy. Moreover, although
the results did not improve with the introduction of metadata, the curriculum learning
experiment still surpassed all other strategies. In Table 6, the impact of metadata on the
classification of each of the classes may be analyzed, and in Figure 5b, the corresponding
confusion matrix is represented. It is observed that the sensitivity and F1-score were pe-
nalized for most of the classes, demonstrating the disadvantage of including metadata for
differential diagnosis. With respect to some malignant classes, such as OtMalNeop or MM,
drops of 13% and 25% were verified in terms of sensitivity, and in terms of F1-score, this
decrease corresponded to around 6% and 9%, respectively. Although BCC class achieved
better results using metadata it should be noted that this corresponds to having 2 more
correctly classified instances out of 11. Additionally, regarding UncNeop class, although it
gave better overall results using metadata, looking at the confusion matrix, we can observe
that misclassifications using only images occur more to malignant classes.

Table 7. Metrics score of test set 1 for the differential diagnosis learning schemes with metadata
(in %).

Experiment Accuracy Weighted F1 Macro F1

Flat + Metadata 36.56 39.66 26.07
B-CNN (Two-level) + Metadata 39.65 41.36 27.91
B-CNN (Three-level) + Metadata 42.00 44.22 30.90
Curriculum Learning + Metadata 47.14 47.46 33.16
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Considering those results, the curriculum learning strategy without metadata (using
only images) was the learning scheme adopted for differential diagnosis classification in
the following experiments.

Nevertheless, as dermatologists also take clinical information into account to perform
skin lesion diagnosis, these were not the expected results. We expected that the introduction
of metadata could improve the outcomes as previously stated in [5,27,28]. It is, however,
important to note that, in these studies, other clinical information such as lesion location,
lesion elevation, or lesion size were also considered, which leads us to believe that age
and gender may not be sufficient to improve the differential diagnosis in the context of
this work.

4.2. Skin Lesion Diagnostic—Results in the Literature

As the dataset employed in this work is private, the proposed skin lesion diagnostic
model is not directly comparable with other studies in the literature, except for the work
of Nedelcu et al. [13], which also reports results on this dataset. Therefore, due to the
different datasets used and the variety of skin lesion diagnosis classes, the results’ analysis
is challenging. Nonetheless, in Table 8, we summarized the performance of a number of
relevant studies conducted in the area, in addition to the work on the DermAI dataset.

Regarding the organization of the diagnostic classes, there is the differentiation be-
tween benign vs. basal cell carcinoma vs. melanoma [14], seborrheic keratosis vs. nevi
vs. melanoma [40] or even more detailed types of skin lesions, which varied depending
on the study [4,5,13,23,28,39]. Concerning the representativeness of the considered classes,
several examples from each lesion category were available in some of these work [14,28,40],
in contrast with the studies conducted on the DermAI dataset, in which some lesions
comprised less than 50 training examples [13].

Moreover, as the employed datasets were not always the same, the images’ difficulty
could also differ in the various works, which may have had an influence on the algorithms’
outcomes. For instance, images from the Dermofit database were collected under standard-
ized conditions, whereas images from the DermAI dataset were acquired under different
lighting and capture conditions, which increased their variability. Although Esteva et al. [4]
also used images from different sources, the training process was made with 757 finer
diseases, which demonstrated better performance than a model trained directly on the nine
final classes.

Furthermore, concerning the modalities of the images explored in the various studies,
some works only considered dermoscopic images [14,39], which, in comparison with
macroscopic or anatomic images (DermAI dataset), present less variability caused by
features such as facial or anatomic structures. Additionally, in the work of Yap et al. [28],
macroscopic and dermoscopic images were considered for each skin lesion, thus providing
complementary information. Moreover, in that work, samples with anatomical features
(e.g., eyes, multiple facial landmarks, etc.) were removed in an attempt to avoid biases.

It is, then, possible to infer the complexity of the DermAI dataset, which comprises few
examples relating to some skin lesion categories, and high image variability caused not only
by the various image acquisition conditions but also from the different explored modalities.
Nonetheless, as previously mentioned, compared with the other study conducted on the
DermAI dataset [13], the model proposed in this work surpassed its performance with
respect to all of the considered metrics.
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Table 8. Results concerning some related skin lesion diagnosis studies.

Study Dataset Modalities Classes Acc. Sens. Spec. Weight-F1 Macro-F1 AUC

Esteva et al. [4] Several CI, DI 9 a 55.40 - - - - -
Menegola et al. [14] EDRA 1, ISIC 2016 2 DI 3 b - - - - - 84.50

Yap et al. [28] Private MI, DI, Md 5 c 72.00 - - - - -
Kawahara et al. [5] EDRA 1 CI, DI, Md 5 d - 60.40 91.00 - - 89.60

Fisher et al. [39] Dermofit 3 CI 10 e 87.10 - - - - -
Barata et al. [40] ISIC 2017 2 DI 3 f - - - - - 87.40

Nedelcu et al. [23] EDRA 1, ISIC 2019 2, Dermofit 3 MI, DI, Md 5 e 79.20 63.80 92.60 - - -
Nedelcu et al. [13] DermAI MI, AI 13 42.71 - - 44.04 28.65 -

Curriculum Learning (proposed) DermAI MI, AI 13 48.75 48.75 91.10 49.64 33.55 -
1 EDRA 7-Point Criteria Evaluation, 2 ISBI Challenge/ISIC Skin Lesion Analysis towards Melanoma Detection, 3 Edinburgh Dermofit. Modalities: MI—macroscopic images, CI—clinical
images, DI—dermoscopic images, AI—anatomical images, Md—metadata. a Cutaneous lymphoma; benign dermal tumors, cysts, and sinuses; malignant dermal tumor; benign
epidermal tumors, hamartomas, milia, and growth; malignant and premalignant epidermal tumors; genodermatoses and supernumerary growths; inflammatory conditions; benign
melanocytic lesion; malignant melanoma. b Benign, basal cell carcinoma, and melanoma. c Nevus, melanoma, basal cell carcinoma, squamous cell carcinoma, pigmented benign
keratoses. d Basal cell carcinoma, nevus, melanoma, miscellaneous, seborrheic keratoses. e Actinic keratosis, basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma,
melanoma, melanocytic nevus/mole, seborrheic keratosis, pyogenic granuloma, hemangioma, and dermatofibroma. f Seborrheic keratosis, nevi, and melanoma.
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4.3. Priority Branch

The overall results from the trained prioritization models are summarized in Table 9.
By observing the overall results, one can conclude that the incorporation of metadata
proved to be quite disadvantageous. When considering metadata, the models reach under-
performing results, leading to a drop of at least 10% in all metrics. Regarding the type of
input, an overall conclusion can be drawn from the robustness of the cropping method.
Using cropped images with 30% of tolerance seems to improve the classification capacity
of the prioritization models, which lead to the top-performing results for each of the simple
and metadata model. These results are in line with the results obtained considering the flat
approach for differential diagnosis (Section 4.1.1).

Table 9. Metrics score of test set 1 for prioritization approaches (in %).

Experiment Accuracy Weighted F1 Macro F1

Original images 43.17 51.41 29.70
Cropped with 30% tolerance 48.02 56.06 31.66
Original images + Metadata 20.55 26.25 17.76
Cropped with 30% tolerance + Metadata 27.02 35.58 20.45

For the top-performing model, the metrics and confusion matrix for each prioritization
class, shown in Table 10, were analyzed. The main objective in the prioritization model
was to have high sensitivity in the priority classes and high F1 in the normal class. This
is crucial since a high sensitivity in priority classes means that the high-priority lesions
were correctly identified as needing urgent care. Likewise, the high precision in the normal
class means that the cases are not classified as more urgent than needed. With respect
to the high priority class, it is possible to ascertain that more than half of the cases were
correctly identified. However, in the confusion matrix, it is possible to observe that most
incorrectly classified cases were given a normal classification, which is the least desired
outcome. Moreover, in the normal class, there are still a high number of misclassified cases.

These results are a product of the intrinsic variability of the gathered data, meaning
that, depending on the hospital resources (facility and experts availability), the priority
level attributed might change.

Table 10. Resulting metrics and confusion matrix of test set 1 for baseline priority model (in %).

Classes Sensitivity Precision F1-Score

HP 51.22 10.94 18.03
P 20.00 9.46 12.84
N 51.23 85.63 64.11
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4.4. Final Priority

The results from the combination of the trained models with the knowledge map to
obtain the final prioritization are summarized in Table 11, and the results per class are
summarized in Table 12. The corresponding confusion matrices can be found in Figure 6.
In these tables, the first line represents the result obtained in the prioritization branch
(baseline priority) of which the results were discussed in the previous section.

Table 11. Global metrics score of test set 1 for final priority level prediction (in %).

Experiment Accuracy Weighted F1 Macro F1

Baseline Priority 48.02 56.06 31.66
Naive GT 82.53 81.81 56.40
Naive (Max) 78.41 77.83 47.07
Naive (Sum) 80.18 78.74 47.86
Simple Approach 77.24 76.39 43.46
Combined Approach 48.31 56.77 35.60

Table 12. Resulting metrics (%) of test set 1 of each final priority class for the different risk prioritiza-
tion approaches.

Models
Sensitivity Precision F1-Score

HP P N HP P N HP P N

1 Baseline Priority 51.22 20.00 51.23 10.94 9.46 85.63 18.03 12.84 64.11
2 Naive GT 53.66 15.71 92.81 70.97 18.03 89.81 61.11 16.79 91.29
3 Naive (Max) 39.02 15.71 88.95 31.37 21.57 87.56 34.78 18.18 88.25
4 Naive (Sum) 34.15 14.29 91.58 41.18 20.83 87.15 37.33 16.95 89.31
5 Simple Approach 34.15 8.57 88.77 31.82 11.32 86.64 32.94 9.76 87.69
6 Combined Approach 34.15 42.86 50.00 21.54 10.20 88.51 26.42 16.48 63.90

The result of the ground truth of the diagnostic and the knowledge map (KM) (KM
presented in Table 2) is also shown, named Naive GT, since it represents an upper bound
of the diagnosis branch, meaning that it is the maximum value of prioritization possible
to obtain considering the real values of diagnosis (ground truth). Concerning the naive
approach, the model trained with the curriculum learning strategy without metadata
(Table 5) was used to compute the differential diagnosis and then combined with the
knowledge map to compute the prioritization. As stated in the methodology, two types
of combinations were tested: summing the two results (Naive (Sum)) or taking the max
value for each priority level (Naive (Max)). When comparing the two, it is possible to
observe that there is a slight improvement, approximately 1% in the global metrics when
summing the results of the prioritization. There is, however, a concern when looking at
the confusion matrices Figure 6b,c. The misclassified high priority and mid-level priority
class cases are mostly being labeled as normal, with these errors being more frequent in
the sum-based approach. Considering both results (global metrics and detailed results
per priority classes), we decided to pursue the study using the Naive (Sum) approach.
Nonetheless, in contrast with the baseline priority, it is possible to see the importance of
including a diagnostic branch for the correct assessment of the lesion priority and how its
quality affects the results. In fact, this implicit form of domain knowledge is essential in
clinical practice, where the clinician first attributes a diagnostic category (even if in broader
terms) and then assigns a priority level for referral. Comparing these results with the upper
bound obtained when using the diagnostic ground-truth labels (Figure 6a), they show a
difference of under 3% for accuracy and weighted F1 metrics but close to 9% for macro F1
score. Observing the confusion matrix, this is mainly due to the misclassification of HP
examples (22 correctly classified samples using GT vs. 16 and 14 for KM Max and Sum,
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respectively), suggesting that there is still margin for improving the higher priority class
results. This is further confirmed when comparing the metrics for the high priority and mid
priority classes in Table 12. Here, in the normal class, the metrics are almost on par with the
Naive (GT); however, in the high priority class, there is a great drop in the performance.
Furthermore, it is also possible to observe that, when it comes to the mid priority class, the
Naive (GT) values are lower than the Naive (Sum) and Naive (Max). This signifies that this
approach is suitable for the classification of high priority and normal classes but is to a less
extent for the mid priority class.

(a) (b) (c) (d) (e)

Figure 6. Confusion matrices of test set 1 for the different risk prioritization approaches tested.
(a) Naive GT. (b) Naive (Max). (c) Naive (Sum). (d) Simple Approach. (e) Combined Approach.

Regarding the Simple Approach, several alpha and beta values were tested, having
the best results been found for alpha equal to 2 and beta to 1. When comparing these results
with the best Naive approach (Sum), it is possible to affirm that the concern with the high
priority and mid priority classes is still unresolved and that the performance for the normal
priority worsened. Although the baseline priority model achieves higher sensitivity in
priority classes and the diagnostic curriculum with summing domain knowledge (Naive
Sum) achieves good F1-score in normal class, the Simple Approach that combines both
information does not obtain better results, against our expectations. This suggests that
the inclusion of a direct prioritization route actually hinders the overall performance,
indicating that features learned in this branch are not so priority-discriminant as the
ones that account for the diagnostic categories, especially considering the inclusion of
explicit domain knowledge. Interestingly, the last approach tested (Combined), despite not
obtaining better global metrics, achieves the best results for the mid-priority class and the
predictions on high priority are more acceptable than the previous model (Simple), since
the misclassifications of high priority are on the priority class instead of normal. However,
this comes at the cost of having worse results for the normal class.

To the best of our knowledge, there are no reports of the prioritization task of skin
lesions, so the final prioritization results were further confirmed in test set 2, as shown in
Tables 13, 14 and Figure 7. We recall that this is a subset of test set 1, where three different
dermatology experts validated samples regarding their priority level and the overall class
distribution is closer to balanced. Due to these facts, the more directly comparable metric is
the macro F1 score since accuracy and weighted F1 are more sensitive to the underlying
class distributions. Thus, comparing both test sets regarding macro F1, the first noteworthy
result is that, although most results are slightly worse for test set 2, the baseline priority and
the Combined Approach are higher in this set, 41% vs. 32% and 44% vs. 36%, respectively.
However, this might be because these approaches have lower sensibility and precision when
it comes to the normal class. Since the dataset is more balanced, an incorrect prediction
in this class has less weight in the metrics compared with test set 1. Regarding the Naive
(Sum) Approach, even though it has lower metrics than in test set 1, the same behavior is
observed in Naive GT values, which represents the maximum possible performance in this
approach.
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Table 13. Global metrics score of test set 2 for final priority level prediction (in %).

Experiment Accuracy Weighted F1 Macro F1

Baseline Priority 42.71 40.96 40.51
Naive GT 56.25 51.02 51.81
Naive (Sum) 50.52 44.39 43.61
Simple Approach 48.96 41.17 40.35
Combined Approach 44.79 44.93 43.93

Table 14. Resulting metrics (%) of test set 2 of each final priority class for the different approaches.

Models
Sensitivity Precision F1-Score

HP P N HP P N HP P N

1 Baseline Priority 51.22 20.00 58.02 36.21 35.90 49.47 42.42 25.69 53.41
2 Naive GT 53.66 15.71 92.59 78.57 37.93 55.56 63.77 22.22 69.44
3 Naive (Sum) 34.15 14.29 90.12 70.00 45.45 48.67 45.90 21.74 63.20
4 Simple Approach 34.15 8.57 91.36 60.87 35.29 48.68 43.75 13.79 63.52
5 Combined Approach 34.15 42.86 51.85 50.00 35.29 53.16 40.58 38.71 52.50

(a) (b) (c) (d) (e)

Figure 7. Confusion matrices of test set 2 for the different risk prioritization approaches tested.
(a) Baseline Priority. (b) Naive GT. (c) Naive (Sum). (d) Simple Approach. (e) Combined Approach.

Regarding the approaches where differential diagnosis and knowledge map are in-
cluded, we see a drop in macro F1 (and, expectedly, in accuracy and weighted F1), which
may be indeed a more reliable result for real-world performance, considering the validation
of its labels. This comparison highlights the importance of building a sound validation
strategy for any learning model, especially when dealing with a highly variable target such
as dermatological case prioritization. Different hospitals and clinicians assign different lev-
els according to available resources, previous experience, and other factors. In this context,
data curation is critical, even if relevant experts cannot validate all samples. Nonetheless,
data-centric methods and the inclusion of domain knowledge (either implicitly or explicitly)
may help to circumvent these limitations, as shown here, improving the priority baseline
by incorporating diagnostic classification (itself improved by using automatically cropped
images and curriculum learning) and exploring direct relationships between differential
diagnosis and expected priority distributions in the form of a knowledge map provided
by experts.

5. Conclusions and Future Work

This paper proposes different strategies for the relevant and yet-unexplored task of
automatic dermatological case prioritization based on skin lesion images and metadata.
Retrospective data from the Portuguese National Health System was used, consisting of
dermatological images and metadata (age and sex) from 13 different differential diagnostic
classes and three priority levels (normal, priority, and high priority) attributed in the
referral process for dermatology specialty consultation in public hospitals. Besides the
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natural diversity from different acquisition settings, the dataset includes the variability
regarding the prioritization levels, which are dependent on the hospital resources to book
the consultations, besides the individual clinician’s experience.

This work proposes an innovative framework for prioritization, leveraging different
forms of implicit and explicit domain knowledge. The range from preprocessing operations
and methodologies for training a Deep Neural Network (namely an EfficientNetB3 fine-
tuned after ImageNet pretraining, as suggested in the study of Nedelcu et al. [13]). These
include different learning schemes to obtain the differential diagnosis score and baseline
priority score. As a particular contribution, we studied the inclusion of a novel knowledge
map, provided by the dermatology experts, to improve the final priority level prediction.

Considering the real-world dataset used and the diversity of dermatological images
obtained, the first experiment concerned the preprocessing operations needed in terms of
lesion segmentation to improve the diagnosis classification. In this study, the best results
were obtained when using cropped images with 30% tolerance (accuracy 38.77%, weighted
F1 41.40%, and macro F1 27.50%, for test set 1), when compared with the original images
and with cropped images with 0%, 10%, and 50% tolerance.

In terms of learning schemes for differential diagnosis classification, the cumulative
strategy of curriculum learning provided the best results, achieving 48.75% accuracy, and
49.64% and 33.55% weighted and macro F1 for test set 1, respectively, when compared with
flat the classification approach and both hierarchical approaches (two and three levels).
Moreover, the inclusion of patients’ metadata in the differential diagnosis classification
models was also studied, showing that it was not beneficial for the experiments tested,
against our expectations.

Regarding the prioritization branch experiments, the priority baseline was established
using the images cropped with 30% tolerance and no metadata, similar to what was found
to return the best results for the differential diagnosis branch (test set 2—accuracy 42.71%,
weighted F1 40.96%, and macro F1 40.51%). This baseline was highly surpassed when
considering only the diagnostic branch with the knowledge map (Naive Sum), reaching in
test set 2 an accuracy of 50.52%, weighted F1 of 44.39%, and macro F1 of 43.61%. Against
our expectations, the Simple Approach global results, which incorporate both diagnostics
with the knowledge map, and prioritization models, although superior to the baseline
(accuracy of 48.96%, weighted F1 of 41.17%, and macro F1 of 40.35%), did not improve in
comparison with Naive (Sum). Nevertheless, the Combined Approach achieved the best
general results regarding weighted (44.93%) and macro F1 (43.93%) and the priority class
achieved better sensitivity results. However, this result comes at the cost of having worse
results for the normal class. From the clinical point of view, it might be preferable to choose
the Combined Approach, as it gives more importance to the results for priority classes.

In what concerns future work, we identify different open research lines, namely
regarding data acquisition. The DermAI project was able to design a new mobile acquisition
software to support even non-specialists in capturing higher quality and more standardized
lesion images. We believe that a new iteration of the proposed framework using newly
acquired data in real-world settings will overcome some of the limitations shown by the
current dataset, especially regarding image focus and variability. Moreover, following
the potential demonstrated by the experiments with image cropping based on automatic
lesion segmentation, we believe there is still margin for improvement in this important
task, resorting to specific image processing techniques that could not be explored in this
work. Regarding the learning schemes, although curriculum learning returned the overall
best results, the shared clinical features of some diagnostic categories lead us to believe
that hierarchical classification deserves to be further explored. In this context, we think
an iterative approach where we use the misclassifications at a specific iteration to group
fine-grained categories into higher levels could yield interesting results. Finally, concerning
the inclusion of explicit domain knowledge, the standard deviation information should be
also considered in the model.

In conclusion, we firmly believe that existing pre-trained models, especially for image
classification, encompass more-than-enough complexity for most tasks, even the most
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complex ones such as dermatological case prioritization. On the other hand, research
should focus on data-centric approaches to extract the most value from existing data or to
improve the acquisition process and on strategies to use essential domain knowledge, be it
to inspire new learning schemes or to include it explicitly to guide the predictions.
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