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ABSTRACT
Treatment of ovarian cancer (OC) remains the biggest challenge among gynecological malignancies.
Immune checkpoint blockade therapy is promising in many cancers but shows low response rates in OC
because of its heterogeneity. Although the biological and molecular heterogeneity of OC has been
extensively investigated, heterogeneity of immune microenvironment remains elusive. We have col-
lected the expression profiles of 3071 OC patients from 22 publicly available datasets. CIBERSORT was
applied to infer the infiltration fraction of 22 immune cells among 2086 patients with CIBERSORT P < .05.
We then explored the heterogeneity landscape of immune microenvironment in OC at three levels
(immune infiltration, prognostic relevance of immune infiltration, immune checkpoint expression pat-
terns). Multivariable Cox regression model was used to investigate the associations between survival risk
and immune infiltration. Constructed immune risk score stratified patients with significantly different
survival risk (HR: 1.47, 95% CI: 1.31–1.66, P < .0001). The immune infiltration landscape, prognostic
relevance of immune cells, and expression patterns of 79 immune checkpoints exhibited remarkable
clinicopathological heterogeneity. For instance, M1 macrophages were significantly associated with
better outcomes among patients with high-grade, late-stage, type-II OC (HR: 0.77–0.83), and worse
outcomes among patients with type-I OC (HR: 1.78); M2 macrophages were significantly associated with
worse outcomes among patients with high-grade, type-II OC (HR: 1.14–1.17); Neutrophils were signifi-
cantly associated with worse outcomes among patients with high-grade, late-stage, type-I OC (HR:
1.14–1.73). The heterogeneous landscape of immune microenvironment presented in this study pro-
vided new insights into prognostic prediction and tailored immunotherapy of OC.

ARTICLE HISTORY
Received 1 October 2019
Revised 2 April 2020
Accepted 3 April 2020

KEYWORDS
ovarian cancer; immune
infiltration; prognosis;
heterogeneity;
immunotherapy

Introduction

Treatment of ovarian cancer (OC) remains the biggest chal-
lenge for oncologists among gynecological malignancies.1,2

Although the combination of surgery and chemotherapy is
initially effective in most patients, it is often ineffective in
eliminating residual lesions and preventing metastasis and
recurrence of OC.2 Immunotherapy has established itself as
a promising therapeutic modality with its better specificity,
long-term benefits, and fewer side effects, which is the ulti-
mate goal of cancer treatment. Immune checkpoint blockade
therapy has achieved an unprecedented therapeutic effect in
many cancers such as melanoma and lung cancer.3,4 However,
the response rate of checkpoint blockade therapy is merely
around 15% in OC, which is largely attributed to its extensive
heterogeneity.3–5 Even so, patients with OC who respond to
immune checkpoint blockade therapy will achieve long-term
benefits because successful immunotherapy could effectively
clear tumor lesions, prevent recurrence of tiny lesions as
a result of the immune surveillance and memory functions.5

Thus, precisely identifying potential benefits in patients is

critical to improving the current plight of immunotherapy
in the context of OC heterogeneity. Although the biological
and molecular heterogeneity of OC has been extensively
investigated through massive omics sequencing data,2 the
heterogeneity of immune microenvironment remains elusive.

Immune response was orchestrated between various
immune cells and immune checkpoints. Accumulating evi-
dence suggested that both the type and extent of immune
infiltration correlate with responses to immunotherapy
among patients with OC.6 Immune cells (e.g., NK cells)
might exercise different antitumor activities within the
tumor depending on the FIGO stages of OC.7,8 Moreover,
different pathological grades of OC also presented with dis-
tinct patterns of immune cells (e.g., CD8 T cells) infiltration.9

Given the heterogeneous nature of OC, a dualistic model
(type-I and type-II tumors) was proposed to categorize var-
ious types of OC. These two types of OC exhibited quite
distinct morphological and molecular characteristics and
were recognized as completely distinct types of tumors.
Type-I OC was characterized by resistance to chemotherapy,
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indolent progression, infrequent TP53 mutation, and good
prognosis, while type-II OC seemed on the contrary.10

Heterogeneity of immune infiltration is not only reflected in
patients with different clinical characteristics but also closely
related to the patients’ epithelial to mesenchymal transition
(EMT) status. Increasing evidence indicated that EMT played
an essential role in mediating tumor metastasis, chemoresis-
tance, and immune escape.11–13 Furthermore, EMT has been
reported to be associated with immune infiltration and
expression of immune checkpoints.13,14 However, ways in
which immune infiltration and its prognostic relevance, as
well as the expression patterns of immune checkpoints, differ
by stage, grade, type, and EMT status of OC have not yet been
systematically elucidated.

Moreover, previous studies have limitations regarding the
immune infiltration of cancers. The experimental protocols to
detect the immune infiltration lacked standardized assays and
evaluation system. For example, the primary detection
method, immunohistochemistry, has some limitations. First,
it relies on restricted phenotypic biomarkers, and the judg-
ment of staining intensity is subjective and poorly reproduci-
ble. Second, immunohistochemistry can only cover a minute
subset of immune cells.7 Last but not least, the impact of
myeloid and erythroid cells on survival is not well studied.
Therefore, it is of paramount importance to objectively deci-
pher the full landscape of immune infiltration microenviron-
ment in OC based on large patient cohorts.

In this study, we explored the immune infiltration based
on CIBERSORT, which is a computational method to deci-
pher the infiltration fractions of 22 immune cell types from
tissue bulk mRNA profiles.15 The present study enrolled
large-scale expression profiles of 3071 patients with OC
from 22 publicly available expression data sets. Then, we
systematically investigated the heterogeneous landscape of
immunological infiltration and its prognostic implications as
well as the expression patterns of 79 immune checkpoints
under different clinicopathological characteristics of OC
patients. Finally, we reviewed the potential guidance of the
heterogeneous immune microenvironment for prognostic
prediction and immunotherapy for OC.

Materials and methods

Study design and participants

A systematic search of Gene Expression Omnibus (GEO),
Array Express, The Cancer Genome Atlas (TCGA), and
related literature was conducted to locate expression datasets
of OC with samples >20. As a result, we collected OC samples
from 22 publicly available data sets with survival information
encompassing 19 databases from GEO, one from
ArrayExpress, one from OV-AU, and one from TCGA
(Table 1). The primary endpoint was overall survival (OS).
OS refers to the date of diagnosis to death or last follow-up.
Early stage was defined as FIGO stage I and stage II, and late
stage was defined as FIGO stage III and stage IV.16,17 Low
grade includes grade I and grades I to II; high grade includes
grades II and above. Optimal debulking indicates no evident
disease or minimal residual disease (≤1 cm); suboptimal

debulking indicates gross residual disease (>1 cm) or no
operation.17 Type-I tumors encompass endometrioid, clear
cell, and seromucinous carcinomas, low-grade serous carcino-
mas, mucinous carcinomas, and malignant Brenner tumors;
Type-II tumors comprise high-grade serous carcinomas, car-
cinosarcoma, undifferentiated carcinoma, and primary peri-
toneal carcinoma.10 Samples without “overall survival
information” or “overall survival” equal to 0, samples belong
to “normal” or “benign tissues,” and GEO samples belong to
TCGA were excluded, which resulted in a total cohort of 3071
samples from 22 datasets (Table 1, Table S1).

The use of datasets and the processing protocol was
approved by the Ethical Committee of Tongji Medical
College, Huazhong University of Science and Technology
according to the principles of the Declaration of Helsinki.

Data collection and preprocessing

Data collection and preprocessing followed the guideline of Ali
et al.18 and Shen et al.19 21 microarray datasets were normalized
and scaled. To make RNA sequencing datasets OV-AU and
GSE102073 suitable for the downstream linear modeling, we
utilized voom20 to transform the raw count into log2-counts
per million and scale it. Then, we adopt ComBat to adjust the
batch effects 1) between repetitions within each dataset; 2)
between different datasets within the same platform; 3) between
different platforms step by step. The detail of preprocessing and
normalization procedure for each dataset and platform is listed
in Table S2. As illustrated from Figure S1 PCA plot, patients
across cohorts and platforms were mixed together, suggesting
the batch effects were well eliminated.

Deciphering the composition of infiltrating immune cells

Utilizing CIBERSORT computational tool, prepossessed
mRNA expression data were used to infer the absolute frac-
tion score of 22 subtypes of infiltrating immune cells. The
immune cells consist of granulocytes and myeloid cells.
CIBERSORT is a computational program based on support
vector regression used to decipher the immune cell-type frac-
tions from mixed cell-type tumor samples, which uses 547
gene signature values as a reference baseline.15 The overlap
between 547 genes in CIBERSORT L22 reference and genes in
different platforms was shown in Figure S2.

In this study, the mRNA expression matrix was analyzed
using CIBERSORT R script downloaded from “http://ciber
sort.stanford.edu,” with 1000 permutations, without quan-
tile normalization, and “absolute” mode turned on. The
LM22.txt signature matrix was used as input reference.

Calculating prognostic risk score from infiltrating
immune cell composition

Univariate Cox regression model implemented in R package
“survival” was applied for the selection of prognostic asso-
ciated infiltrating immune cells. We fit infiltrating immune
cells absolute fraction to a survival regression model and
obtained its prognostic risk score. To stratify patients into
different prognostic risk groups, we set the mean value
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1.486e-17 and standard deviation (SD) as 0.225 of the entire
data set as the cutoff value. A patient was predicted to be at
high risk if the prognostic risk score was greater than the
cutoff value and vice versa.

Patient stratification by EMT gene signature

Utilizing EMT signatures consisting of 77 genes,21 EMT
scores were calculated as the mean expression of the 25
“mesenchymal (M)” markers subtracted by the mean expres-
sion of the 52 “epithelial (E)” markers; a higher EMT score
indicates a more mesenchymal phenotype. EMT signatures
and calculation methods are described as before.21 Here, we
categorized the patient as “E” type if the EMT score was
negative, and as “M” type if the score was positive.

Survival analysis

Kaplan–Meier curve and univariate/multivariate Cox regres-
sion model implemented in R package “survival” were used to
illustrate the difference in survival outcomes among different
patient subgroups. P < .05 was considered statistically

significant by the log-rank test; 95% confidence intervals
(CIs) were reported if necessary.

Prognostic interpretation of inferred immune cells

Associations between inferred proportions of immune cell types
and survival among different patient cohorts were tested using
multivariate Cox regression. Analyses were conducted separately
for “low- and high-grade,” “early- and late-stage,” and “type-I
and type-II” subgroups, with OS as the survival outcome. In
order to derive smaller Hazard ratio (HR) values in a Cox model,
the absolute immune cell fraction scores for each cell were
classified into quantiles according to the infiltrating distribution
landscape (Figure S3) and subsequently treated as category vari-
ables in the Cox model, where 0% ≤ Q1 (low) < 50%, and 50% ≤
Q2 (high) ≤ 100%. In the multivariate Cox model, variables
containing only a single quantile fraction were excluded.

Differential expression of immunomodulators

Seventy-nine immunomodulators were collected from
Thorsson et al.22 Expression differences between “low-” and
“high-risk,” “low-” and “high-grade,” “early-” and “late-stage,”
“type-I” and “type-II,” “E” and “M” subgroups were con-
ducted using “limma” for 2086 patients, respectively.

Results

Infiltration fraction overview of 22 immune cells across
patients

The baseline characteristics of patients and datasets were sum-
marized in Table S1 and Table 1, respectively. Patients in this
study included various stages, grades, and pathological subtypes
of OC. In order to understand the immune status of patients
with OC, we first analyzed the infiltration fraction of immune
cells. CIBERSORT derived a P value for each patient according
to the deconvolution of infiltration fraction, and only patients
with CIBERSORT P < .05 were included in the main analysis. As
a result, 985 patients with CIBERSORT P ≥ 0.05 were excluded
from the total patients of 3071. Distinct infiltration patterns of
22 immune cell types among 2086 patients with CIBERSORT
P < .05 were shown in Figure 1. It could be seen that the
infiltration fraction of immune cells varied across OC samples.
We speculated that variations in immune infiltration might be
an intrinsic characteristic representing individual immune
microenvironment differences. To better interpret Figure 1, we
showed the infiltration fraction of 22 immune cells in Table 2. In
general, we found that M2 macrophages (12.28%), T follicular
helper cells (6.60%), and resting memory CD4 T cells (6.31%)
had the highest mean infiltration fraction, whereas naive CD4 T
cells (0.12%), eosinophils (0.31%), and resting NK cells (0.66%)
had the lowest infiltration fraction (Table 2).

An immune risk model based on the fraction of 22
immune cells and patient outcome

To procure a prognostic implication of immune cell subtypes, we
grouped the cells of 2086 CIBERSORT P < .05 patients into

Table 1. Baseline characteristics of datasets.

Datasets Platform Patients

TCGA Affymetrix HT Human Genome U133a microarray/
AffyU133a

562

E-MTAB-
386

Illumina HumanRef-8 v2 Expression BeadChip/A-MEXP-
931

129

OV-AU Illumina HiSeq Illumina TruSeq/Illumina HiSeq 93
GSE102073 Illumina HiSeq 2500 (Homo sapiens)/GPL16791 84
GSE49997 ABI Human Genome Survey Microarray Version 2/

GPL2986
194

GSE18520 [HG-U133_Plus_2] Affymetrix Human Genome U133
Plus 2.0 Array/GPL570

53

GSE19829 [HG-U133_Plus_2] Affymetrix Human Genome U133
Plus 2.0 Array/GPL570

28

GSE26193 [HG-U133_Plus_2] Affymetrix Human Genome U133
Plus 2.0 Array/GPL570

107

GSE30161 [HG-U133_Plus_2] Affymetrix Human Genome U133
Plus 2.0 Array/GPL570

58

GSE63885 [HG-U133_Plus_2] Affymetrix Human Genome U133
Plus 2.0 Array/GPL570

75

GSE9891 [HG-U133_Plus_2] Affymetrix Human Genome U133
Plus 2.0 Array/GPL570

276

GSE17260 Agilent-014850 Whole Human Genome Microarray
4 × 44 K G4112 F (Probe Name version)/GPL6480

110

GSE32062 Agilent-014850 Whole Human Genome Microarray
4 × 44 K G4112 F (Probe Name version)/GPL6480

260

GSE32063 Agilent-014850 Whole Human Genome Microarray
4 × 44 K G4112 F (Probe Name version)/GPL6480

40

GSE53963 Agilent-014850 Whole Human Genome Microarray
4 × 44 K G4112 F (Probe Name version)/GPL6480

160

GSE73614 Agilent-014850 Whole Human Genome Microarray
4 × 44 K G4112 F (Probe Name version)/GPL6480

106

GSE13876 Operon human v3 ~ 35 K 70-mer two-color
oligonucleotide microarrays/GPL7759

157

GSE14764 [HG-U133A] Affymetrix Human Genome U133A Array/
GPL96

80

GSE23554 [HG-U133A] Affymetrix Human Genome U133A Array/
GPL96

28

GSE26712 [HG-U133A] Affymetrix Human Genome U133A Array/
GPL96

185

GSE3149 [HG-U133A] Affymetrix Human Genome U133A Array/
GPL96

116

GSE51088 Agilent-012097 Human 1A Microarray (V2) G4110B
(Probe Name version)/GPL7264

128

GSE19829 [HG_U95Av2] Affymetrix Human Genome U95 Version
2 Array/GPL8300

42
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quantiles according to the absolute immune cell fraction score and
treated quantiles as category variables in subsequent analyses.
Quantiles of the absolute infiltration proportion of each immune
cell were computed for OS analysis. First, we calculated the
survival risk score by fitting the absolute infiltration fraction into
the survival regression model (Table S3). Then, we assigned
patients whose risk score was larger than the mean value of
1.486e-17 (SD: 0.225) to the high-risk group and others to the low-
risk group. Patients with higher survival risk score mean they
would have worse outcomes and vice versa. The model robustly
stratified patients with better (median OS: 55.0 months) and
worse (median OS: 39.8 months) outcomes (HR: 1.47, 95% CI:
1.31–1.66, P < .0001; Table S4, Figure 2a, b). Risk stratification
remained statistically significant after adjusting for confounding

factors such as grade, stage, and debulking status (HR: 1.51, 95%
CI: 1.29–1.76, P < .00001; Figure 2c).

Infiltration fraction of 22 immune cells across
clinicopathological subgroups of patients

Next, we analyzed the infiltration fraction of immune infiltra-
tion with clinicopathological characteristics. As shown in
Table 3, the infiltration fraction of 22 immune cells varied
significantly across different clinicopathological (grade, stage,
type, survival risk, and EMT) subgroups of patients. The
number of immune cell types with significant infiltration
differences was most among patients with different survival
risks and EMT status (Table 3). Notably, the infiltration frac-
tion of the most infiltrating M2 macrophages was 10.20%
among patients with low survival risk versus 14.25% among
patients with high survival risk (P = 3.60e-61), and 11.54%
among patients with epithelial type versus 12.94% among
patients with mesenchymal type (P = 4.50e-08). There was
no statistical difference in the infiltration of M2 macrophages
among other patient subgroups.

Prognostic relevance of immune cells under distinct
clinicopathological characteristics

Long-term clinical practice showed that clinicopathological
characteristics such as grade, stage, and type status might affect
the prognosis of OC. Our data in Table S4 also confirmed the
different OS among patients with distinct grades, stages, and
types. Given prognostic differences across these patient sub-
groups, we tried to explore the prognostic relevance of
a particular immune cell type and how these associations varied
by clinical characteristics. Prognostic relevant immune cells var-
ied among OC patients with distinct clinicopathological

Figure 1. Absolute infiltration fraction overview of 22 immune cells across 2806 OC patients with CIBERSORT P-value <0.5. Each blue dot represents the infiltration
fraction of certain immune cells in a patient. OC, ovarian cancer.

Table 2. Infiltration fraction of 22 immune cells among 2086 OC patients.

Cell type Mean infiltration fraction Cibersort P value

Naive CD4 T cells 0.0012 <0.05
Eosinophils 0.0031 <0.05
Resting NK cells 0.0066 <0.05
Activated memory CD4 T cells 0.0128 <0.05
Neutrophils 0.0137 <0.05
Gamma delta T cells 0.0166 <0.05
Resting dendritic cells 0.0177 <0.05
Naive B cells 0.0188 <0.05
Resting mast cells 0.0191 <0.05
Activated mast cells 0.0207 <0.05
Regulatory T cells 0.0233 <0.05
Memory B cells 0.0240 <0.05
Monocytes 0.0243 <0.05
Activated dendritic cells 0.0263 <0.05
Plasma cells 0.0406 <0.05
Activated NK cells 0.0423 <0.05
CD8 T cells 0.0587 <0.05
M1 Macrophages 0.0590 <0.05
M0 Macrophages 0.0630 <0.05
Resting memory CD4 T cells 0.0631 <0.05
Follicular helper T cells 0.0660 <0.05
M2 Macrophages 0.1228 <0.05

OC, ovarian cancer.
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characteristics (Figure 3). Among patients with high-grade OC,
M1 macrophages (HR: 0.83, 95% CI: 0.72–0.95, P = .008) were
significantly associated with better outcomes, whereas M2
macrophages (HR: 1.14, 95% CI: 1.00–1.30, P = .04) and neu-
trophils (HR: 1.16, 95% CI: 1.02–1.32, P = .02) were significantly
associated with worse outcomes (Figure S4a). Among patients
with low-grade OC, activated dendritic cells (HR: 0.20, 95% CI:
0.04–0.96, P = .04) were significantly associated with better out-
comes, whereas follicular helper T cells (HR: 9.20, 95% CI:
1.70–49.76) were significantly associated with worse outcomes
(Figure S4b).

Among patients with late-stage OC, M1 macrophages (HR:
0.80, 95% CI: 0.70–0.92, P = .001) were significantly associated
with better outcomes, whereas neutrophils (HR: 1.14, 95% CI:
1.00–1.30, P = .04) were associated with worse outcomes (Figure
S5a). Among patients with early-stage OC, none immune cell
was significantly associated with patient outcome (Figure S5b).
Among patients with type-II OC, M1 macrophages (HR: 0.77,
95% CI: 0.66–0.90, P = 9e−04) were significantly associated with
better outcomes, whereas M2 macrophages (HR: 1.17, 95% CI:
1.01–1.35, P = .03) were significantly associated with worse out-
comes (Figure S6a). In contrast, among patients with type-I OC,
no immune cells were found to be significantly associated with
better outcomes, whereas neutrophils (HR: 1.73, 95% CI: 1.03–-
2.93, P = .04) and M1 macrophages (HR: 1.78, 95% CI: 1.02–-
3.10, P = .04) were significantly associated with worse outcomes
(Figure S6b).

In general, M1 macrophages appeared to have opposite
effects on the prognosis of OC patients with different types.

Follicular helper T cells had the greatest negative effect on
prognosis (HR: 9.20, P = .01) in patients with low-grade
OC among all prognostic relevant immune cells.

Correlation between EMT and immune infiltration

Considering the potential effect of EMT on patients’ prognosis
and immune escape inOC, we further explored the correlation of
EMT between prognostic risk score and 22 immune cells. There
was a significant positive correlation between EMT and survival
risk score (R = 0.16, P = 5.7e−13, Figure 4a). In total, 16 of the 22
immune cells showed a significant correlation with EMT. Eleven
immune cell types were positively correlated with EMT, and five
were negatively correlated (Figure 4 and Figure S7). M2 macro-
phages showed the strongest positive correlation (R = 0.14,
P = 6.3e−11) with EMT, whereas Tregs showed the strongest
negative correlation (R = – 0.18, P < 2.2e−16) with EMT among
all 16 cell types (Figure 4b, c).

Expression patterns of immune checkpoints varied by
clinicopathological status

Only by understanding the prognostic relevance of certain
immune cell types under the influence of clinical and mole-
cular characteristics can we specifically target immune cells.
Immune checkpoint blockade therapy provides therapeutic
targets for particular immune cells. However, the mechanism
by which expression of immune checkpoint varied by clinico-
pathological characteristics remained unclear. Therefore, we

Figure 2. Patient stratification by immune infiltration derived prognostic immune score. (a) Risk score landscape among dead and alive OC patients, the dashed line
denotes the mean. Patients with risk score larger than mean are categorized as “high risk,” otherwise “low risk.” (b, c) Kaplan–Meier and Cox survival analysis of “low-
risk” and “high-risk” groups with OS as endpoint. OC, ovarian cancer. OS, overall survival.
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examined the expression patterns of crucial immunomodula-
tors across 2086 patients. A total of 79 immunomodulators
involved in the analysis encompassed sets of stimulators,
inhibitors, ligands, receptors, cell adhesion, antigen presenta-
tion, and other modulators. The differential expression of
these immunomodulators varied significantly across five (sur-
vival risk, type, stage, grade, and EMT status) patient sub-
groups (Figure 5). The most differentially expressed immune
checkpoints between the cohorts included CXCL10, VEGFA,
HLADRB1, and HLADRB5. IFNG and TNFSF9 were differ-
entially expressed across all five subgroups. The latest identi-
fied immune checkpoint inhibitor FGL1,23 as a major
immune inhibitory ligand of LAG-3, demonstrated different
expression levels only in patient with different pathological
grades. In general, expression levels of immunosuppressors
were higher, and expression levels of stimulators were much
lower among patients (high-risk, type II, late-stage, high-
grade, and M-type) with worse outcomes (Figure 5, Table S4).

Discussion

Based on the tissue bulk expression profiles of 3071 patients with
OC from 22 cohorts, we uncovered the diverse infiltration pat-
terns of 22 immune cells across 2086 patients with CIBESORT
P < .05. The heterogeneous prognostic implications of immune

infiltration and the expression patterns of immune checkpoints
under different clinicopathological characteristics were also
revealed. To our knowledge, the present study was the most
extensive report to investigate the heterogeneity of immune
microenvironment in OC to date. The immune microenviron-
ment has always been intricate; our findings provided the pos-
sibility to understand the low response rate of immunotherapy
in OC and yielded new insights into the prognostic prediction
and tailored immunotherapy for patients with OC.

First, we constructed an immune risk model to stratify OC
patients with different survival risks, which could complement the
prognostic value of the existing FIGO staging. For patients with
low survival risk indicated by the immune risk model, conven-
tional treatments may be sufficiently effective for most patients.
However, for patients with a higher survival risk, a combination of
surgery and chemotherapy is often insufficient to inhibit disease
progression, and hence, prognosis prediction based on this risk
model for these patients is more clinically instructive. This
unbiased model included various clinicopathological features of
patients with OC in the context of heterogeneity. So far, many
prognostic models based on expression profiles have been devel-
oped for OC.19 In this study, we applied the state-of-the-art tool
CIBERSORT and enrolled large heterogeneous patient cohorts to
explore the association between immune infiltration and prog-
nosis; thus, our model was universal.

Table 3. Differential infiltration of immune cells across patient subgroups.

Cohort Cell type Infiltration fraction P value

Survival risk (low vs high) M2 Macrophages 0.1020 vs 0.1425 3.60e-61
Survival risk (low vs high) M1 Macrophages 0.0716 vs 0.0471 2.90e-54
Survival risk (low vs high) Follicular helper T cells 0.0785 vs 0.0543 9.00e-42
Survival risk (low vs high) Activated memory CD4 T cells 0.0198 vs 0.0062 1.70e-28
Survival risk (low vs high) Resting memory CD4 T cells 0.0509 vs 0.0745 1.00e-23
Survival risk (low vs high) Monocytes 0.0316 vs 0.0174 1.60e-20
Survival risk (low vs high) Naive B cells 0.0132 vs 0.0241 4.30e-17
Survival risk (low vs high) Resting dendritic cells 0.0238 vs 0.0120 8.30e-15
Survival risk (low vs high) Neutrophils 0.0104 vs 0.0169 4.50e-14
Survival risk (low vs high) Gamma delta T cells 0.0112 vs 0.0216 2.80e-13
Survival risk (low vs high) Eosinophils 0.0016 vs 0.0044 9.90e-13
Survival risk (low vs high) M0 Macrophages 0.0724 vs 0.0541 1.80e-12
Survival risk (low vs high) Regulatory T cells 0.0278 vs 0.0191 5.50e-11
Survival risk (low vs high) Activated mast cells 0.0166 vs 0.0246 1.30e-07
Survival risk (low vs high) Naive CD4 T cells 0.0022 vs 0.0002 4.60e-06
Survival risk (low vs high) Resting NK cells 0.0084 vs 0.0050 3.40e-05
Survival risk (low vs high) CD8 T cells 0.0633 vs 0.0543 0.00043
Survival risk (low vs high) Resting mast cells 0.0177 vs 0.0205 0.024
Grade (low vs high) M1 Macrophages 0.0392 vs 0.0600 2.40e-06
Grade (low vs high) Follicular helper T cells 0.0474 vs 0.0675 1.90e-05
Grade (low vs high) Activated NK cells 0.0346 vs 0.0421 0.030
Grade (low vs high) Resting memory CD4 T cells 0.0783 vs 0.0623 0.049
Stage (early vs late) Activated mast cells 0.0136 vs 0.0215 0.00012
Stage (early vs late) Activated NK cells 0.0367 vs 0.0428 0.0082
Stage (early vs late) Activated memory CD4 T cells 0.0191 vs 0.0122 0.011
Type (I vs II) M1 Macrophages 0.0456 vs 0.0606 7.60e-08
Type (I vs II) Follicular helper T cells 0.0586 vs 0.0680 0.0015
Type (I vs II) Activated NK cells 0.0375 vs 0.0426 0.021
Type (I vs II) Activated dendritic cells 0.0221 vs 0.0276 0.024
Status (E vs M) Regulatory T cells 0.0282 vs 0.0190 1.20e-11
Status (E vs M) Resting mast cells 0.0151 vs 0.0227 4.00e-10
Status (E vs M) Activated dendritic cells 0.0314 vs 0.0217 1.90e-09
Status (E vs M) M2 Macrophages 0.1154 vs 0.1294 4.50e-08
Status (E vs M) Resting memory CD4 T cells 0.0563 vs 0.0690 9.30e-08
Status (E vs M) Follicular helper T cells 0.0694 vs 0.0630 0.00041
Status (E vs M) Naive B cells 0.0164 vs 0.0210 0.00061
Status (E vs M) Gamma delta T cells 0.0139 vs 0.0189 0.00062
Status (E vs M) Resting NK cells 0.0079 vs 0.0055 0.0041
Status (E vs M) Eosinophils 0.0026 vs 0.0035 0.012
Status (E vs M) Memory B cells 0.0261 vs 0.0222 0.015
Status (E vs M) Monocytes 0.0226 vs 0.0258 0.031

Only immune cells with significantly differential infiltration between patient subgroups were shown.
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Figure 3. Hazard ratio of immune infiltration level in patients with different grades, stages, and types of OC, respectively, with multivariate cox as a model. Twenty-
two immune cell infiltration quarantine level as variables, and OS as the endpoint. Only significant results were presented and thus data of patients with early-stage
OC were not shown. The absolute infiltration fraction for each immune cell was grouped by median, where 0% ≤ Q1 (low) < 50%, and 50% ≤ Q2 (high) ≤ 100%. OC,
ovarian cancer.

Figure 4. Correlations between EMT and immune infiltration. The Pearson correlation between EMT score and (a) immune risk score (R = 0.16, P = 5.7e−13), (b) M2
macrophages (R = 0.14, P = 6.3e−11), and (c) regulatory T cells (R = – 0.18, P < 2.2e−16), respectively. “High risk” and “E” OC were colored with “dark gray,” “high
risk” and “M” OC were colored with “red,” “low risk” and “E” OC were colored with “blue,” “low risk” and “M” OC were colored with “light gray.” OC, ovarian cancer. E,
epithelial. M, mesenchymal.
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This study showed several interesting findings regarding
the prognostic relevance of several well-known immune cells
(e.g., M1 macrophages, CD8 T cells, and Tregs). M1 macro-
phages and CD8 T cells have been reported to be associated
with better outcomes, whereas Tregs associated with worse
outcomes in OC.9,24,25 Our study indicated that M1 macro-
phages were associated with better outcomes among patients
with high-grade, late-stage, and type-II OC, while associated
with worse outcomes among patients with type-I OC.
Abdullah et al. observed two different phenotypes within M1

macrophages.26 Furthermore, Cho et al. proved M1 macro-
phages augmented ovarian cancer cell metastasis through
activation of NF-κB.27 Therefore, our study, together with
previous studies, suggested the heterogeneous effects of M1
macrophages on the prognosis of patients with OC.

However, CD8 T cells and Tregs cells were not found to be
associated with prognosis in any patient subgroup in this
study. Although Tregs were well known to be associated
with poor prognosis, a meta-study of 800 patients with OC
found no association between Tregs and patient outcomes.28

Figure 5. Differential expression patterns of 79 immunoregulators across patient subgroups with “high-risk” against “low-risk,” “type-II” against “type-I,” “late-stage”
against “early-stage,” “high-grade” against “low-grade,” and “M-type” and “E-type” OC, respectively. The right histogram sums up the total “up” (blue) and “down”
(red) absolute log FC values of each immunomodulator. OC, ovarian cancer. E, epithelial. M, mesenchymal.
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These seemingly contradictory findings may be attributable to
the following three aspects. On the one hand, from the per-
spective of immune checkpoints, the different prognostic
impact of immune cells across patient subgroups may be
attributed to the immunosuppressive tumor microenviron-
ment. On the other hand, there may be functional subtypes
of immune cells that could not yet be identified by
CIBERSORT.29 For instance, exhausted CD8 T cells charac-
terized by the immunosuppressive hallmarks of PD1, LAG3,
and IL10 showed antitumor activity dysfunction in many
cancers.30,31 Last but not least, functional heterogeneity may
also result from different histological localization of immune
cells in OC.32 Goode et al. reported the positive prognostic
role of CD8 T cells among patients with high-grade serous,
endometrioid, and mucinous ovarian cancer but not clean cell
and low-grade serous ovarian cancer.9 However, they only
considered CD8 T cells in the intraepithelial component of
the tumor. In this study, the prognostic relevance of immune
infiltrates we discussed was the combined effects of intrae-
pithelial and stromal immune cells.

Furthermore, findings of the heterogeneous immune
microenvironment revealed in this study also provided
instructive immunotherapeutic strategies. In general, the pre-
sent study revealed that among all investigated immune cells,
M2 macrophages (12.28%) were the ones with the largest
infiltration fraction, whereas that of activated NK cells was
only 4.23%. OC has been deemed as “cold tumor.”33

Exploring effective means to turn the “cold” to “hot” cancer
is a topic, such as how to increase the infiltration of antitumor
NK cells. Among all patients, the high-grade subgroup had
the most prognostic relevant immune cells, which meant that
patients in this group would have more targeted options in
immunotherapy.

Previous studies indicated that activated M1 macrophages
had antitumor properties, whereas alternatively activated M2
macrophages had pro-tumoral properties. Given the plasticity
and opposite prognostic effect of M1 macrophages on OC
patients, the phenotype reprogramming of M1 into M2
macrophages would be an important direction of immu-
notherapy in patients with type-I OC. The present study
revealed that among all investigated immune cells, M2 macro-
phages (12.28%) were the ones with the largest infiltration
fraction. Omentum and ascites are specific mediators of OC
metastasis, and macrophages account for more than 60% of
the total cells in these areas,34 which is consistent with the
conclusion of this study. Neutrophils also reported promoting
the formation of premetastatic omental niche in OC.35 Thus,
blocking the influx of neutrophils and macrophages might be
an effective way to inhibit the abdominal metastasis of OC.

Transcoelomic spread and resistance to chemotherapy were
essential hallmarks of refractory OC where EMT played an
important role.14 Macrophages and dendritic cells were
reported to regulate the process of EMT through immunosup-
pressive TGFβ,36,37 which bridge the interplay between immune
cells, immune checkpoints, and EMT. Furthermore, plasticity
was a hallmark of macrophages. Therefore, plastic process of
EMT lies at the core of regulatory networks composed of
immune cells and immune checkpoints. Considering the exten-
sive association between immune cells, EMT, and immune

checkpoints, our findings suggest that multipronged approaches
may be more effective for future immunotherapy. Moreover,
differential expression patterns revealed that inhibitory check-
point targets, such as PD1, might be more effective among
patients with high-risk, late-stage, and high-grade OC than
patients with low-risk, early-stage, and low-grade OC. Another
strategy was to relieve the inhibition of immune cells such as
exhausted CD8 T cells by immune checkpoints such as PD1, IL-
10, LAG3 and restore their antitumor immunity.

The study on the heterogeneity of the immune microenvir-
onment of ovarian cancer by introducing the unbiased tool
CIBERSORT and the large number of heterogeneous patient
samples provides us several inspirations in the future. First, to
explore the immune microenvironment of specific tissue loca-
tions, we need to purify different parts of the tumor tissue
with the help of microdissection, because the prognostic
impact of immune cells varied depending on their location,
such as Tregs.38 Second, to explore the interaction between
immune cells and between immune checkpoints, we will
explore the interaction network at the level of the entire
immune system. Third, considering the important role of
chemotherapy in the current treatment of OC, which could
increase neoantigen and immune infiltration,39 the modifica-
tion of the immune microenvironment needs to take into
account by the multi-pronged combined therapy strategy.

This multicenter, large cohort study showed the extensive
heterogeneity of immune cell infiltration, prognostic relevance
of immune infiltration, and immune checkpoint expression in
OC. The heterogeneous immune microenvironment might
yield new insights into the dilemma of immunotherapy in
OC and help offer guidance for the prognostic prediction
and tailored immunotherapy of OC.
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