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Abstract

S100A8 and S100A9 are two calcium binding Myeloid Related Proteins, and important mediators of inflammatory diseases.
They were recently introduced as partners for phagocyte NADPH oxidase regulation. However, the precise mechanism of
their interaction remains elusive. We had for aim (i) to evaluate the impact of S100 proteins on NADPH oxidase activity; (ii) to
characterize molecular interaction of either S100A8, S100A9, or S100A8/S100A9 heterocomplex with cytochrome b558; and
(iii) to determine the S100A8 consensus site involved in cytochrome b558/S100 interface. Recombinant full length or S100A9-
A8 truncated chimera proteins and ExoS-S100 fusion proteins were expressed in E. coli and in P. aeruginosa respectively. Our
results showed that S100A8 is the functional partner for NADPH oxidase activation contrary to S100A9, however, the
loading with calcium and a combination with phosphorylated S100A9 are essential in vivo. Endogenous S100A9 and S100A8
colocalize in differentiated and PMA stimulated PLB985 cells, with Nox2/gp91phox and p22phox. Recombinant S100A8,
loaded with calcium and fused with the first 129 or 54 N-terminal amino acid residues of the P. aeruginosa ExoS toxin,
induced a similar oxidase activation in vitro, to the one observed with S100A8 in the presence of S100A9 in vivo. This
suggests that S100A8 is the essential component of the S100A9/S100A8 heterocomplex for oxidase activation. In this
context, recombinant full-length rS100A9-A8 and rS100A9-A8 truncated 90 chimera proteins as opposed to rS100A9-A8
truncated 86 and rS100A9-A8 truncated 57 chimeras, activate the NADPH oxidase function of purified cytochrome b558

suggesting that the C-terminal region of S100A8 is directly involved in the molecular interface with the hemoprotein. The
data point to four strategic 87HEES90 amino acid residues of the S100A8 C-terminal sequence that are involved directly in the
molecular interaction with cytochrome b558 and then in the phagocyte NADPH oxidase activation.
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Centre Hospitalier Universitaire, Grenoble’’. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mvchuong@yahoo.fr

. These authors contributed equally to this work.

Introduction

Myeloid-Related Proteins (MRP), S100A8 (MRP8) and S100A9

(MRP14), are two calcium-binding proteins of the multigenic S100

family, specifically linked to innate immunity [1]. They are mainly

expressed in cells of myeloid origin such as neutrophils or

monocytes, but are absent in Epstein-Barr-Virus (EBV) immor-

talized B lymphocytes [2]. They were also identified in epithelial

cells and keratinocytes [3,4]. In phagocytes, S100A8 and S100A9

associate to form physiologically oligomeric structures (dimer or

tetramer) that bind polyunsaturated fatty acids such as arachidonic

acid in a calcium dependent manner [5]. The in vivo S100A8/

S100A9 heterocomplex, named S100A8/S100A9, accounts for

the entire arachidonic acid-binding capacity of neutrophil cytosol.

The fatty acid carboxyl group is bound by consecutive histidine

residues within the unique C-tail of S100A9 [6].

S100 proteins such as S100A8 and S100A9, form non-covalent

and antiparallel associated S100A8/S100A9 complexes in vivo,

which exhibit various functional intra and extra cellular properties

[7]. In neutrophils, they are involved in cell differentiation,

inhibition of casein kinase II, and trans-endothelial migration. But

one of their main functions is to be partners of phagocyte NADPH

oxidase regulation [8]. Indeed, S100A8/S100A9 favors the

activation of NADPH oxidase. The process is dependent on the

transfer of arachidonic acid to plasma membrane level onto

cytochrome b558; during this transfer, S100A8/S100A9 associates

with p67phox and Rac [9,10]. p67phox translocates with other

associated cytosolic factors, p47phox and p40phox, at the plasma

PLoS ONE | www.plosone.org 1 July 2012 | Volume 7 | Issue 7 | e40277



membrane to form an active NADPH oxidase complex with

cytochrome b558. Moreover, the relevant role of S100A8 and

S100A9 in the oxidative response depends on the presence of

calcium and on a phosphorylation-dependent translocation to

plasma membrane where NADPH oxidase assembles and is

activated [11,12,13]. S100A8 and S100A9 are also secreted

outside of the cells through a Golgi-independent pathway [14].

They bind to heparin sulfate proteoglycans resulting in accumu-

lation at the endothelium surface of extracellular complexes of

S100A8 and S100A9 that interact with specific binding sites. In

this context, both proteins were reported at local sites of

inflammation, [15,16] in neoplastic tumors [17], and in skin

diseases [3], where they trigger a crucial danger signal. The term

‘‘Alarmin’’ was introduced recently for these molecules [18].

However S100A8, and to some extent S100A9, are also

particularly susceptible to oxidation: recent data suggest that

post-translational oxidative modifications of both S100 proteins

may act as a regulatory switch and have an important protective

role in inflammation [19]. An oligomeric structure of S100A8/

S100A9 was reported: while S100A8/S100A9 heterodimers are

formed in the absence of calcium, a tetramer structure construc-

tion is strictly calcium dependent [20], and was recently crystal-

lized [21]. S100A8 and S100A9 contain two calcium-binding sites

of EF-hand type; the heterodimer binds four Ca2+ ions. Besides

calcium, S100A8 and S100A9 are also able to bind zinc, but the

binding requires a heterodimer structure that is necessary to form

a zinc-binding site. The heterotetramer displays a high affinity for

Zn2+: two HXXXH motifs per dimer (residues 83–87) in S100A8

and (residues 91–95) in S100A9 were suggested to be responsible

for Zn2+ binding. The HXXXH motifs are located at the interface

between the respective S100 sub-units; a similar motif was also

involved for the zinc-dependent matrix metalloproteinase activity

[1]. However, it was reported that the binding of zinc could

reverse the calcium-induced arachidonic acid-binding capacity of

S100A8/S100A9 heterocomplex [5]. Two prominent roles were

assigned to S100A8/S100A9 hetero-oligomers : not only a role in

regulation of inflammatory processes, immune response, and

wound repair, but also a role in zinc sequestration, inhibiting zinc-

dependent enzymes, as well as microbial growth [21].

Nox2 is the prototype of the NADPH oxidase Nox-Duox

family, from which 7 members were characterized in humans [22].

In neutrophils, cytochrome b558 is the redox core of NADPH

oxidase [23,24] and the membrane anchorage site for assembly

with cytosolic factors, p67phox, p47phox, p40phox, and Rac1/2.

NADPH oxidase is unassembled and inactive in resting cells, but

upon stimulation by inflammatory mediators or during phagocy-

tosis, the phosphorylation of phox proteins induces intra and

intermolecular rearrangements that stabilize all the partners as an

oxidase complex at the plasma membrane. This gives an optimal

cytochrome b558 conformation and NADPH oxidase activity.

An allosteric regulation of NADPH oxidase activity was

reported [25]: gp91phox or Nox2, was introduced as the catalytic

sub-unit of cytochrome b558, while p22phox may stabilize the

Nox2/p22phox heterodimer. The cytosolic activating factors are

regulatory effectors: p47phox behaving as an adaptor, while the

interaction between p67phox and Nox2 initiates both assembly and

activation. In fact, the binding of p67phox to cytochrome b558,

mediates the transition from an inactive to an active conformation

of the hemoprotein [26]. Recent data suggested that S100A8/

S100A9 could be new allosteric effectors of NADPH oxidase

activation in neutrophils [2]; they might potentiate activation of

NADPH oxidase and radical oxygen species production. However

the mechanisms by which the S100A8/S100A9 heterocomplex

increases NADPH oxidase activity remain unknown.

The present article emphasizes the respective functions of

S100A8 and S100A9 in neutrophils, and their role in NADPH

oxidase activation. Our data confirm that S100A8 is the privileged

interactive partner of cytochrome b558. Furthermore, we show that

four amino-acid residues of the C-terminal sequence of S100A8

are directly involved in NADPH oxidase activation. But the in vivo

interaction of S100A8 with cytochrome b558 proceeds through a

strategic calcium mediated 3D structure conformation involving

both S100A8 and S100A9.

Results

Generation of Monoclonal Antibodies Against S100
Proteins

In order to study the function of S100 proteins, we first

generated monoclonal antibodies raised against S100A8 and

S100A9 by intra-peritoneal injection of 4 mice with S100 proteins

purified from cytosol of human neutrophils. The IgGs were

produced from hybridoma in ascetic fluid and were purified as

described in Material and Methods. The specificity of two selected

clones, 5A10 (IgG1) and 2H9 (IgG2a), was controlled referring to

rS100A8, rS100A9, or S100 proteins purified from cytosol of

neutrophils, and rS100A9-A8 chimera proteins. Moreover, a

purified rHIS-S100A12 expressed in E.coli was used as negative

control (Figure S1A) and identified by Western blot with

monoclonal antibodies anti-S100A12 (19F5), and anti-histidine

(Figure S1B and Figure 1A). 2H9 and 5A10 antibodies both

recognized native S100 proteins in the neutrophil cytosol and in

differenciated PLB985 cells (Figure 1A, B) but not rS100A12

proteins. Additionally, 2H9 antibody labeled specifically native

(Figure 1A) or denatured (Figure 1C, lane 3) rS100A9 but not

rS100A8. On the contrary, 5A10 bound only native S100 proteins

prepared from cytosol of neutrophils but not rS100A8 or rS100A9

(Figure 1A). Furthermore, 5A10 antibody seemed to recognize

S100 proteins only when they were in their native (Figure 1A, in

the neutrophil cytosol and Figure 1C, lane 8) or chimera

(Figure 1C, line 4) dimerisation states but not when S100 proteins

are in monomer status. These results suggest that 5A10 is a

conformational antibody and therefore that rS100A9-A8 chimera

protein may be in a correct native 3D-like conformation. Finally,

as shown on lane 7 of the figure 1C and on lane 7 of the figure 1D,

the rS100A9-A8D57 chimera protein was not labeled by 5A10

which suggests that the epitope targeted by this antibody could be

located between the 86 and 57 amino acid residues of S100A8. A

polyclonal antibody (pAb), recognizing both S100A8 and S100A9,

was used as a control.

Ex vivo S100 Protein Delivery by P. aeruginosa Type Three
Secretion System (TTSS) into EBV-B Lymphocyte Cells
Stimulates NADPH Oxidase Acticity

In a previous work, we have shown that the NADPH oxidase

activity was enhanced after transfection in EBV-B lymphocytes of

the genes encoding for S100A8 and S100A9 [2]. To further

confirm this finding and to investigate the impact of S100A8 and

S100A9 alone or as heterodimer on NADPH oxidase activity, we

decided to use the TTSS of Gram (-) P. aeruginosa to deliver both

proteins inside the cytosol of EBV-B lymphocytes. This delivery

system was previously successfully used to reconstitute a functional

NADPH oxidase in p67phox deficient EBV-B lymphocytes of

Chronic Granulomatous Disease patients by injecting ExoS129-

p67phox [27]. Furthermore, the EBV-B lymphocytes constitute an

appropriate cellular model for this study since they are totally

devoid of S100A8 and S100A9, and also because they display a

very low NADPH oxidase activity [2].

S100A8-Mediated NADPH Oxidase Activation
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rExoS-S100A8 and rExoS-S100A9 fusion proteins were con-

structed in frame with the first 54 or the first 129 N-terminal

amino acid residues of Exotoxin S (ExoS) toxin sequence, from P.

aeruginosa, as described in the Figure 2. An adequate folding status

was maintained by a specific interaction with chaperone Orf-1

(design of constructions in Table S1) [28] and [29]. We first

verified that rExoS-S100A8 and rExoS-S100A9 were effectively

secreted by the P. aeruginosa CHA strain. After induction by

calcium-depletion, the fusion proteins with an apparent molecular

mass of ,30–35 kDa were identified by specific polyclonal

antibodies raised against S100 proteins of neutrophil cytosol and

were found only in the extracellular medium of induced

P. aeruginosa (Figure 3A). We next used P. aeruginosa CHA-

S100A8 and CHA-S100A9 to deliver the hybrid fusion rExoS129

Figure 1. Characterization of two new monoclonal antibodies raised against purified S100 proteins from cytosol of human
neutrophils: Validation of recombinant chimera proteins. Monoclonal antibodies were purified from ascetic fluid after mice immunization as
described in Materials and Methods. Two monoclonal antibodies (2H9 and 5A10) were characterized by Slot blot (A) against 1.25 ug of rS100A8,
rS100A9 and rHis-S100A12, expressed in E. coli, S100 proteins purified from neutrophil cytosol [2]. Recombinant His-S100A12 (Figure S1) was used as
control and specifically labeled by a commercial monoclonal 19F5 antibody. The results with 5A10 and 2H9 were compared to the ones obtained
with rabbit polyclonal antibodies purified from neutrophil cytosol (pAb). Specificity of the mAbs was assessed by FACS (B) in PLB985 cells
differentiated (D) or not (ND). Monoclonal antibodies 5A10 and 2H9 were used to validate recombinant chimera proteins by Western blot (C) and Slot
blot (D) on neutrophil cytosol (1), recombinant r100A8 (2), rS100A9 (3), rS100A9-A8 chimera (4), rS100A9-A8D90 chimera (5), rS100A9-A8D86 chimera
(6), rS100A9-A8D57 chimera (7) and rS100A8 plus rS100A9 (8). 5 ug of protein were loaded in (D). Immune complexes were detected by ECL as
described in Materials and Methods section.
doi:10.1371/journal.pone.0040277.g001

S100A8-Mediated NADPH Oxidase Activation
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or rExoS54 proteins into the cytosol of normal EBV-B lympho-

cytes. NADPH oxidase activity of (phorbol-myristate-acetate)

PMA-stimulated EBV-B lymphocytes was then measured by

chemiluminescence. There was no enhancement of oxidase

activity of EBV-B lymphocytes over the control value when

CHA strain was transformed with the empty vector pUCP20 or

with CHA-ExsA-, a mutated strain unable to secrete proteins (not

shown). Interestingly, we observed an increase of the NADPH

oxidase activity after the delivery of rExoS129-S100A8 into EBV-

B lymphocytes (Figure 3B) but not for rExoS-S100A9. It can be

also observed that injection of both rExoS-S100A9 and rExoS-

S100A8 had no positive activation of oxidase mediated by rExoS-

S100A8 on its own, probably because of an unbalanced secreted

rExoS-S100A9/rExoS-S100A8 ratio. Indeed, the amount of

rS100A9 secreted by P. aeruginosa CHA strain (Figure 3A) or

expressed in E.coli (data not shown) is higher than for rS100A8.

However, a negative effect of rExoS129-S100A9 proteins on the

conformation of rExoS-S100A8 could not be excluded.

In order to keep a 1/1 S100A9/S100A8 ratio, we decided to

generate fusion S100A8 and S100A9 chimera proteins in frame

with the ExoS54 or ExoS129: one with the S100A9 on the N

terminal side (rS100A9-A8) and one on the C terminal side

(rS100A8-A9) (Figure 2). A significant activation of NADPH

oxidase was obtained with rExoS129-S100A9-A8 chimera delivery

contrary to rExoS129-S100A8-A9 showing a preferential orienta-

tion of the chimera with S100A8 at the C terminal side in order to

have a correct functional conformation (Figure 3B). Those results

were confirmed with ExoS54-S100 fusion proteins: both rExoS54-

S100A8 and rExoS54-S100A9-A8 chimera but not the rExoS54-

S100A8-A9 increased NADPH oxidase activity of EBV-B

lymphocytes after delivery of fusion proteins (Figure 3B). The

presence of rExoS54-S100A9-A8 chimera after delivery by P.

aeruginosa to EBV-B lymphocytes was controlled by confocal

microscopy (Figure 3C). The injected rExoS54-S100A9-A8

chimera protein was partitioned between cytosol and plasma

membrane of the EBV-B cells. 129 ExoS toxin of CHA strain

toxicity was addressed as shown in Table S2 and the results

indicate that there was no toxic effect of the toxin before 2.5 h of

contact.

Effects of ExoS-S100 Fusion Proteins on NADPH Oxidase
Turnover Measured in a Cell-free Assay with Purified
Cytochrome b558

Recombinant rExoS-S100A8 and rExoS-S100A9 fusion pro-

teins were collected from the cultured medium of EGTA induced

bacteria and were tested in vitro on NADPH oxidase activity in a

cell-free assay. We first evaluated the NADPH oxidase activity of

the purified cytochrome b558 in the presence of the cytosol of EBV-

B lymphocytes that contained p67phox, p47phox, p40phox, and Rac

1/2 as activating factors but no S100 proteins. Incubation was

performed in the presence of 10 mM FAD, 40 mM GTPcS, and

5 mM MgCl2. The reaction was initiated by introducing 150 mM

NADPH and an optimal amount of arachidonic acid (1 mM) as

described in Materials and Methods. The addition of calcium

loaded rExoS129-S100A8 or that of a (1/1) rS100A8 and

rS100A9 mixture to cytochrome b558 and then to cytosol and

other reagents of the cell-free assay medium, led to a specific

enhancement of NADPH oxidase activity up to 88610 s21 for

rExoS129-S100A8 versus 5963 for cytochrome b558 plus cytosol,

or 2667s21 for cytochrome b558 alone (Figure 4A). Moreover,

there was no effect of rExoS129-S100A9, of the 1/1 rExoS129-

S100A8 and rExoS129-S100A9 or as expected without calcium

which confirms the results obtained earlier with the EBV-B

lymphocyte cells and could suggest that in the presence of

rExoS129-S100A9, the conformation of rExoS129-S100A8 is lost

or defective because of inadequate folding. Interestingly, as noticed

in the Figure 3B in EBV-B lymphocyte cells, when fused with

ExoS129, S100A8 becomes capable of stimulating the NADPH

oxidase, as in vivo with S100A9 or in vitro with rS100A9 (Figure 4A).

We next investigated whether the stimulating effect of the S100

proteins could act directly on purified cytochrome b558. A similar

experiment with recombinant fusion proteins and purified

cytochrome b558 was performed but this time in the absence of

EBV-B lymphocyte cytosol. Oxidase activity was measured as

described in Figure 4A. The addition of calcium loaded rExoS129-

S100A8 or rExoS54-S100A8 to cytochrome b558 led to a specific

enhancement of NADPH oxidase activity up to 5867 s21 and

4366 s21 respectively, versus control 26±5 s21, contrary to what

was observed with rS100A8 alone or with rExoS54-S100A9

(Figure 4B). The enhancement of oxidase turnover is dependent

on rExoS54-S100A8 and rExoS54-S100A9-A8 chimera concen-

trations with an optimum at 2 mg (Figure 4C) and at 1.1 mg

(Figure 4D) respectively. As expected, rExoS54-S100A9

(Figure 4C) and rExoS54-S100A8-A9 (Figure 4D) had no effect.

Similar results were obtained with rExoS129-S100A8 and rExoS-

129 S100A9 (not shown).

All these results highlight a specific interface between S100A8

and the cytochrome b558 and confirm that S100A9 is not involved

in the intracellular activation of NADPH oxidase. They also

suggest that the activation of NADPH oxidase is mediated by

S100A8 in vivo, either by association with S100A9 in the presence

of calcium, or in vitro by using a fusion protein with the first 54 or

129 N-terminal amino-acid residues of P. aeruginosa ExoS toxin;

leading to the idea that the portion of ExoS fused with S100A8

may provide a proper conformation for S100A8 protein required

for oxidase activation through cytochrome b558 interface. In

order to determine the sequence of ExoS responsible for this effect,

we therefore evaluated the NADPH oxidase activity in the

presence of S100A9 or S100A8 fused with different length of

ExoS (129, 54, 30 and 17 N-terminal amino-acid residues).

Recently, the first 54 N terminal amino acids of ExoS was reported

to correspond to the minimal domain required for a secretion by

the P. aeruginosa [28,30]. Therefore, since P. aeruginosa CHA strain

is unable to secrete the S100 recombinant proteins fused with the

ExoS30 or ExoS17, we produced those proteins (rExoS30- or 17-

S100A8) in IPTG induced E. coli, as described in Material and

Methods. A cell-free assay was performed by incubating purified

cytochrome b558 with the various recombinant proteins expressed

either from P. aeruginosa or E. coli. NADPH oxidase activity was

measured after arachidonic acid stimulation. An optimum oxidase

turnover of 5867 s21 was obtained with rExoS129-S100A8 versus

control 2865 s21 as shown in Figure 4B; the stimulation effect

disappeared when the length of the N-terminal domain of ExoS is

shorter than 54 or is absent. Those results suggest that rExoS129

or rExoS54 may serve as a scaffold for the conformational

required by S100A8 to stimulate the NADPH oxidase.

The C-terminal Domain of S100A8 Proteins is Implicated
in the NADPH Oxidase Activation

We have demonstrated that S100A8 is a positive effector of

NADPH oxidase (Nox2) activation (1) in vivo, after transfection of

the genes encoding the S100A8 and S100A9 proteins [2], (2) ex vivo

after injection of ExoS129 or rExoS54-S100A8 by P. aeruginosa to

EBV B-lymphocytes, and (3) in vitro (cell-free assay) by using

recombinant ExoS129 or rExoS54-S100A8 or a 1:1 mixture of

rS100A8 and rS100A9 proteins. We further wanted to analyze the

role of different S100A8 domains on NADPH oxidase activity.

Since S100A8 protein possesses EF-hand binding sites for the

S100A8-Mediated NADPH Oxidase Activation
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calcium and one motif of S100A8/S100A9 heterodimer zinc

binding site, we first evaluated the implication of these two

compounds in the S100A8-mediated NADPH oxidase activity.

The effect of preloading with calcium versus zinc of S100 proteins

was carried out to evaluate a putative role of zinc in mediating

NADPH oxidase activation. First incubation with Zn2+ or Ca2+

alone (Figure 5A, lane 2, 3 and 4) did not modify the NADPH

oxidase turnover. Recombinant rS100A9-A8 chimera protein,

preloaded with 20 mM CaCl2 or only 500 nM, displays a

significant enhanced oxidase activity, as shown on Figure 5A,

lane 5 and 6. However, there was no activation when

20 mM ZnCl2 was added instead of calcium (Figure 5A, lane 7).

The addition of first calcium and then zinc (Figure 5A, lane 8 and

9) or vice/versa (not shown), inhibits the oxidase activation by the

rS100A9-A8 chimera protein. As reported previously [5,20], it is

likely that in the presence of both cations, Zn2+ replaced Ca2+ on

Figure 2. Schematic representation of the recombinant proteins. (A) Proteins expressed in Pseudomonas aeruginosa. The name of
recombinant proteins matched with the represented schematic constructions. S100A8 and S100A9 are in frame with ExoS129 or ExoS54. Chimera
proteins are the result of the binding of S100A8 with S100A9 by 6 Glycine amino acid residues. (B) In E. coli, recombinant S100 proteins are fused to
GST and produced by a pGEX5x2 plasmid. The GST cleavage is performed by the XA factor. Some S100A9-A8 chimera proteins are truncated (D) at
the C-terminal part of S100A9-A8, at amino acid 90 (D90), 86 (D86) or 57 (D57) compared to the full length S100A9-A8.
doi:10.1371/journal.pone.0040277.g002

S100A8-Mediated NADPH Oxidase Activation
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the EF-hand binding sites and therefore annihilated the activation

of NADPH oxidase by the rS100A9-A8 chimera protein.

In order to determine the domain of S100A8 involved in the

stimulation of NADPH oxidase activity, several truncated forms of

the rS100A9-A8 chimera proteins were designed to remove

sequentially important domains of S100A8 necessary for their

function. Therefore, the chimera rS100A9-A8 was truncated from

the C terminal side to excise progressively the putative zinc motif

and calcium binding domains of S100A8 (Figure 5B). Those

proteins correspond to rS100A9-A8 full length or truncated at 57

(rS100A9-A8D57), 86 (rS100A9-A8D86), or 90 (rS100A9-A8D90)

amino acid residues of S100A8 sequence. They were produced in

E. coli (Figure 2) and purified proteins were identified by slot blot

and Western blot as shown earlier (Figure 1D and E). These

chimeras were incubated (1 mg each) after calcium loading

(500 nM), with purified cytochrome b558 (0.2 pmol) in the

presence of FAD, GTPcS, and MgCl2. NADPH oxidase activity,

expressed as turnover (s21), was measured after adding (150 mM)

NADPH upon arachidonic acid stimulation as described in

Materials and Methods. The results demonstrated that there was

no effect of rS100A9-A8D86 or rS100A9-A8D57 contrary to

rS100A9-A8 and rS100A9-A8D90 (Figure 5C). These data

support the important role of the short sequence between the

amino acid residues 86 and 90 of S100A8 protein for NADPH

oxidase activation. This sequence was also reported to be part of

zinc-binding site of S100A8/S100A9 heterocomplex [7].

rS100A9-A8 Induces Active Conformational Change of
Cytochrome b558

Membrane cytochrome b558 was extracted and then purified

from stimulated neutrophils; it was isolated on a heparin affinity

matrix (Figure S2). After washing the matrix with cytosol of either

stimulated neutrophils or that of EBV-B lymphocytes, cytochrome

b558 was eluted and then filtrated on Sephacryl S-300. Purified

cytochrome b558 displayed a constitutive NADPH oxidase activity

as previously described [25]. The optimum oxidase turnover

(constitutive activity) was in the range of 129 s21 with cytosol of

neutrophils and 54 s21 with cytosol of EBV-B lymphocytes versus

3.7 s21 for the control (without washing). The oxidase turnover

with the cytosol of EBV-B lymphocytes increased up to 108 s21

after adding a 1/1 mixture of rS100A8 and rS100A9, and 1 mM

arachidonic acid in the eluates (Figure 6A and Figure 6F).

Cytochrome b558 was also directly activated when the rS100A9-A8

chimera (pre-incubated with calcium) was used instead of cytosol,

confirming that S100 proteins mediate the change of cytochrome

b558 conformation directly onto the heparin matrix. Cytochrome

b558 becomes active with an oxidase turnover of 17 s21 versus

3.7 s21 for the control (cytochrome b558 without washing)

Figure 6F. Similar experiments were carried out with rS100A9-

A8 truncated chimera proteins as illustrated by Figure 6C, D, and

E. The results revealed that the cytochrome b558 constitutive

oxidase activity depends on the length of S100A8. Only the

rS100A9-A8D90 chimera activated cytochrome b558, whereas

rS100A9-A8D86 and rS100A9-A8D57 chimeras did not. All

together, these data strongly suggest that the C-terminal sequence

of S100A8, between 86 and 90 amino acid residues, is necessary

for NADPH oxidase activation through a specific interaction of

S100 proteins with cytochrome b558.

Direct Interaction of Cytochrome b558 with Chimera
S100A9-A8 Evidenced by Cross-linking Experiments

A dissuccinimidyl suberate, DSS cross-linking experiment was

carried out with rS100A9-A8 chimera and cytochrome b558 to

investigate the molecular interaction between S100 proteins and

cytochrome b558. A (1/1) mixture of rS100A8 and rS100A9,

preloaded with calcium, was used in a preliminary experiment, to

determine the optimum concentrations of DSS for cross-linking

(not shown). A similar experiment was performed in the presence

of cytochrome b558. Thus, purified and relipidated cytochrome

b558 (10 pmol) was incubated with 2 mM DSS. Calcium loaded

S100 proteins were added to cytochrome b558 in a medium

containing FAD, GTPcS, MgCl2, and then arachidonic acid, as

described in Materials and Methods. Fractionation of proteins was

performed by 7% SDS-PAGE followed by Western blot after

incubation or not with DSS. The results illustrated by Figure 7

lanes 4 and 6, highlight a significant interaction of cytochrome b558

with a 1/1 rS100A8 and rS100A9 mixture (revealed by the

disappearance of the cytochrome b558 band and the presence of

complexed cytochrome b558 and the S100 protein at the molecular

size indicated by an arrow), or with rS100A9-A8 chimera versus

control (lanes 3 and 5) or versus cytochrome b558 without DSS

(lane 1), or cytochrome b558 plus DSS (lane 2). A similar

experiment performed with rS100A9-A8D90 (lane 8) and with

rS100A9-A8D86 (lane 10) showed an efficient cross-linking of the

chimera with cytochrome b558, compared to that of rS100A9-

A8D57 (lane 12), and to controls without DSS (Figure 7, lanes 7, 9

and 11). These data highlight the necessity of the C terminal

domain of S100A8 in rS100A9-A8 chimera for the interaction

with the cytochrome b558 as previously suggested in the cell-free

assay (Figure 5B).

Co-localization of Endogenous S100A8/S100A9 and
Cytochrome b558 in PLB985

PLB985 cells were used to investigate, by confocal microscopy,

the subcellular localization of endogenous S100A8/S100A9

Figure 3. Delivery of ExoS-S100 proteins by Pseudomonas aeruginosa Type Three Secretion System (TTSS) increased NADPH
oxidase activity of EBV-B lymphocytes. (A) The P. aeruginosa wild type strain or the one transformed with empty plasmid pUCP20 or pUCP20
containing cDNA encoding for rExoS129-S100A8 or rExoS129-S100A9 were induced in vitro upon calcium depletion by 5 mM EGTA as described in
Materials and Methods. Recombinant ExoS129-S100A8 and rExoS129-S100A9 secreted by TTSS in the culture medium, were detected by Western blot
with rabbit polyclonal antibodies raised against purified S100 proteins of neutrophils cytosol as described previously [25] and in Materials and
Methods. Immune complexes were stained by ECL. (B) TTSS properties of P. aeruginosa were induced ex vivo by the contact between CHA strains and
EBV-B lymphocytes (MOI 10) in the presence of 10% (v/v) human AB serum (RPMI 1640 medium,) in order to deliver recombinant ExoS-S100 fusion
proteins (rExoS129-S100A8, rExoS129-S100A9, rExoS54-S100A8, rExoS54-S100A9, ExoS129-S100A9-A8, ExoS54-S100A9-A8, or ExoS54-S100A8-A9
chimeras). In some experiments, bacteria CHA S100A9 and CHA S100A8 were concomitantly induced by contact for 90 min at 37uC with EBV-B
lymphocytes (MOI 5 each) in RPMI 1640 medium. NADPH oxidase activity of 26106 EBV-B lymphocytes, collected after injection of fusion proteins by
TTSS, was measured by chemiluminescence, upon stimulation by 130 nM PMA. Activity was expressed as RLU. Number of experiments n = 3 to 5.
Data represent means6SD. *p,0.05, significant difference versus control (NADPH oxidase activity of EBV-B lymphocytes after contact with pUCP20
transfected P. aeruginosa). (C) EBV-B lymphocytes, either control cells or cells after rExoS 54-S100A9-A8 chimera injected by P. aeruginosa, were fixed,
permeabilized, and labeled with goat polyclonal antibody anti human S100A8, C19 (dilution 1:1,000) for confocal microscopy analysis, as described in
Materials and Methods. An Alexa Fluor 488 anti-goat antibody was used to detect the fusion proteins, stained in green, in cells when rExoS54-S100A9-
A8 proteins were present. EBV-B lymphocyte nuclei were stained in blue with Hoechst 33258.
doi:10.1371/journal.pone.0040277.g003
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proteins. Fixed differentiated PLB985 cells, unstimulated and

PMA stimulated were permeabilised with 0.1% (w/v)6100 Triton

and co-labeled with a rabbit polyclonal anti-p22phox [31], or with a

mouse monoclonal 13B6 anti-gp91phox [32] and a mouse

S100A8/S100A9 monoclonal antibodies (2H9). The results

showed that endogenous S100A8/S100A9 heterocomplex in

resting PLB985 (upper panel) was partitioned between cytosol

and plasma membrane of PLB985 cells, while after PMA

stimulation (lower panel), it translocated to the plasma membrane

similar to p22phox or gp91phox revealed by a continuous labeling

signal (yellow) along the plasma membrane which highlights the

co-localization of the S100 proteins with p22phox (Figure 8A) as

with gp91phox (Figure 8B).

Discussion

We previously demonstrated, through in vitro and ex vivo

approaches, that two proteins of the S100 family, S100A8 and

S100A9, highly expressed in myeloid cells and mainly in

neutrophils, are able to promote NADPH oxidase activation

[2,8,25]. Our results strongly suggest a specific interaction of

S100A8 with cytochrome b558, the redox component of phagocyte

NADPH oxidase, and introduce S100A8 as a privileged partner

for NADPH oxidase activation. In this respect, a consensus site of

the S100A8 C-terminal sequence is critical and should be directly

involved in the interface with cytochrome b558.

Pseudomonas aeruginosa is an opportunistic bacterium; one of its

major toxins, ExoS, is translocated into EBV-B lymphocytes

through a type III secretion pathway [27]. This original procedure

of injection into a deficient target cell allowed determining which

of S100A8 or S100A9 is the main effector of NADPH oxidase

activation. The ex vivo delivery of ExoS129-S100A8 fusion proteins

activated NADPH oxidase of EBV-B lymphocytes as after

transfection of the genes encoding for both S100A8 and S100A9

suggesting that S100A8 is the privileged partner of cytochrome

b558. Interestingly, although it served primary as molecular

‘‘messenger’’ for protein delivery, ExoS also permitted a specific

interaction of the injected protein with its partner suggesting that

ExoS may facilitate a proper functional conformation for S100A8

[27]. However, this property disappears when the length of ExoS

is shorter than 54 N terminal amino-acid residues. Rucks and

Olson [33] reported that the N-terminal region of ExoS included a

GTPase activating GAP domain [33]. The smallest GAP ExoS

domain described is composed of the N-terminal 130 amino acid

residues [34]. We confirmed that, in vitro, ExoS129-S100A8 and

ExoS54-S100A8 had a similar enhancing effect on NADPH

oxidase activity, while the helix involved in GAP activity was only

present in the ExoS129 domain, and not in ExoS54. The data

exclude any involvement of GAP activity in ExoS-S100A8 oxidase

activation. The high affinity of S100A9 to S100A8 could stabilize

S100A8 in vivo and facilitate the translocation to plasma

membrane. The flexible ExoS of ExoS-S100A8 fusion protein

could have a similar stabilizing conformation effect. Therefore, the

3D tertiary structure of the critical S100A8 domain involved in

oxidase activation is probably similar in the calcium-loaded ExoS-

S100A8 and in the calcium-loaded S100A8/S100A9 heterocom-

plex.

S100A8 and S100A9 are EF-hand molecules that need calcium

to modulate target proteins. Cell calcium concentration is an

important determinant for the biologic relevance of S100 proteins

oligomerisation. The oligomeric status of S100A8 and S100A9 is

rather complex in human: S100A8 and S100A9 are able to

heterodimerize [21]. In the presence of calcium, they associate to

form oligomers [35]. As a consequence, two different putative

zinc-binding sites emerge at the S100A8/S100A9 subunit

interface that may explain the well-known Zn2+ binding activity

of hetero-complex. We observed that, not only S100A8/S100A9

heterocomplex (not shown) but also rS100A9-A8 protein chimera

(this paper) do not activate NADPH oxidase after loading with

zinc, as opposed to what is observed with calcium. These data

confirm that only calcium is necessary for the S100A9/S100A8

heterocomplex to modulate the activity of the target cytochrome

b558. Although, zinc and calcium bind to different consensus sites,

our results suggest that in the presence of zinc, calcium is removed

from its binding sites as previously reported [5,20]. The transitory

elevation of calcium in neutrophils after inflammatory stimuli,

initiates reaction cascades beginning in cytosol with phosphoryla-

tion of the cytosolic activating factors of oxidase, mainly p47phox

and p67phox, and also with phosphorylation of S100A9 [2].

Phosphorylation could enhance S100A9 affinity for calcium as

described recently for Nox5 [36,37] and improve the Ca2+ loading

of S100A8/S100A9 and translocation to plasma membrane [12].

However, the calcium source leading to its mobilization has not

been formally identified.

S100A8/S100A9 is an intracellular reservoir for arachidonic

acid in neutrophils [6]. Contrary to what was observed in the

presence of calcium, arachidonic acid binding capacity to the S100

complex is not induced in the presence of zinc but may moreover

reverse the effect of calcium [5]. However the concentration of

Zn2+ used was within the range of 10 to 20 mM while, in cells and

tissues, it is assumed to be below 1 mM; in consequence, this

inhibition effect is negligeable and S100A8 and S100A9 may bind

Figure 4. Effect of recombinant S100A8 and rS100A9 expressed as ExoS fusion proteins on NADPH oxidase activity measured in
vitro in a cell-free assay. (A) Recombinant rExoS129-S100 fusion proteins, rS100A8 and rS100A9 were used in a cell free assay as follows with the
purified cytochrome b558 from human neutrophils as indicated in the Materials and Methods section. Optimal amount of rExoS-S100 proteins used:
2.4 mg rExoS129-S100A8, 3.75 mg rExoS129-S100A9, 3.75 mg rExoS129 alone, or a mix of 0.38 mg rS100A8 and 0.38 mg rS100A9. All recombinant ExoS-
S100 fusion proteins were preincubated first with 500 nM CaCl2 for 20 min before adding first cytochrome b558, and then cytosol of EBV-B cells and
then the other reagents. NADPH oxidase activity was expressed as turnover (s21). Number of experiments n = 4 to 5. *p,0.05 versus control (NADPH
oxidase activity of cytochrome b558 plus 500 nM CaCl2 and EBV-B lymphocytes cytosol). (B) The effect of ExoS protein length fused to S100A8 or
S100A9 was tested on NADPH oxidase activity in a similar cell free assay as described in Figure 4A but without addition of EBV-B lymphocytes cytosol.
Recombinant ExoS129-S100A8, rExoS129-S100A9, rExoS54-S100A8, and rExoS54-S100A9 fusion proteins were expressed in P. aeruginosa and purified
from the culture medium, after secretion. Recombinant rS100A8 and rS100A9 or rExoS30-S100A8 and rExoS17-S100A8 were expressed in E. coli after
IPTG induction as previously described in Materials and Methods. Calcium (500 nM) loaded recombinant S100 proteins were used at the following
optimal concentrations: ExoS129-S100A8 (2.4 mg), ExoS129-S100A9 (3.75 mg), ExoS54-S100A8 (5 mg), ExoS54-S100 A9 (5 mg), ExoS30-S100A8 (0.7 mg),
ExoS17-S100A8 (0.8 mg) and rS100A8 or rS100A9 (0.38 mg each). NADPH oxidase activity was expressed as turnover (s21). Number of experiments
n = 6 *p,0.05 compared to control (NADPH oxidase activity of cytochrome b558 plus 500 nM CaCl2). (C and D) The effect of different protein quantity
of rExoS54-S100A8, rExoS54-S100A9, ExoS54-S100A8-A9 chimera, ExoS54-S100A9-A8 chimera, rS100A8 and rS100A9 was evaluated on NADPH
oxidase activity after loading with 500 nM CaCl2, in a cell-free assay as described in Figure 4A and Figure 4B. Oxidase activity was expressed as
turnover (s21). Number of experiments n = 3 to 6. *p, 0.05 compared to control (NADPH oxidase activity of cytochrome b558 plus calcium). Cyt b558,
Cytochrome b558.
doi:10.1371/journal.pone.0040277.g004
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Figure 5. NADPH oxidase activation by rS100A9-A8 chimera full length and truncated forms. (A) Effect of zinc versus calcium on the
NADPH oxidase activity measured in a cell-free assay as described in Figure 4 and in Materials and Methods. Cytochrome b558 (0.2 pmol) was
incubated in the presence (or not) of (20 mM or 500 nM) calcium loaded rS100A9-A8 chimera, and then with FAD, GTPcS, MgCl2 and an optimal
amount of arachidonic acid (1 mM). The effect of pre-incubation of S100 chimera proteins with zinc versus calcium was tested on NADPH oxidase
activity. The conditions are cytochrome b558 incubate alone (1), with calcium (2–3), with zinc (4), with rS100A9-A8 chimera plus calcium (5–6), with
rS100A9-A8 chimera plus zinc (7) and with rS100A9-A8 chimera plus calcium then plus zinc (8–9). NADPH oxidase activity was expressed as turnover
(s21). Number of experiments n = 6. *,0.05 compared to control (NADPH oxidase activity of cytochrome b558 plus calcium). (B) Schematic
representation of the C terminal sequence of full length and truncated S100A8 of the recombinant chimera proteins. The four chimera S100A9-full
length S100A8 named rS100A9-A8, S100A9-truncated S100A8 named rS100A9-A8D90, S100A9-A8D86, or rS100A9-A8D57 were expressed in E. coli as
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arachidonic acid in vivo, as both S100 proteins are calcium

saturated [5]. When bound to arachidonic acid, S100A8/S100A9

changed tertiary structure conformation. Arachidonic acid is an

anionic amphiphile which elicits oxidase activation in a cell-free

system and which was reported to be a physiological activator of

the NADPH oxidase in stimulated neutrophils [24]. A siRNA

strategy supported the hypothesis that inducible phospholipase A2

controlled S100A8/S100A9 translocation and Nox2 activity,

suggesting a close association between S100 proteins and the

oxidase complex [12]. Furthermore, the plasma membrane

concentration of arachidonic acid was locally enhanced upon

assembly of NADPH oxidase complex. Thus, the long hydropho-

bic chain of arachidonic acid may facilitate the access of S100A8/

S100A9 to cytochrome b558 and favors activation of NADPH

oxidase [38,39].

S100A8/S100A9 complex potentiates activation of the phago-

cyte oxidase. It enhances the affinity of p67phox to cytochrome b558

in the presence of arachidonic acid and the change of cytochrome

b558 conformation, as highlighted by Atomic Force Microscopy,

suggesting a specific molecular interface with the hemoprotein

[2,25]. The S100A8/S100A9 complex and p67phox play a similar

role in the oxidase activation process as being the signal that

initiates, upon assembly of the oxidase complex, the change of

both cytochrome b558 conformation and electron transfer. We

observed that co-localisation of S100 proteins and cytochrome b558

differs at resting versus PMA stimulation and confirmed that

assembly of the NADPH oxidase complex may proceed in

microdomains as reported [40]. In fact, Jesaitis and coworkers

reported that the change of cytochrome b558 conformation may

result from a 10Å movement of p22phox away from the

hemoprotein center. We have shown that the S100A8/S100A9

complex or the rS100A9-A8 chimera protein promotes activation

of inducible (with arachidonic acid) or of constitutive (without

arachidonic acid) NADPH oxidase. The data specifically highlight

that S100A8 is directly involved in the activation process and that

arachidonic acid is not enough to act by itself.

Finally, despite specificity of S100A8/cytochrome b558,

interface, this interaction could be transitory with a rapid

protein/protein dissociation process from an already active

NADPH oxidase. Our cross-linking and co-localisation results

suggest a molecular interaction between S100A8 protein and

cytochrome b558. Four amino acid residues of the C-terminal

sequence of S100A8, 87HEES90 are required and directly

involved in this interface and are critical for oxidase activation.

This portion has been shown to be involved in the dimerisation

process that allows a correct conformation to the heterodimer

S100A9/S100A8 [21]. Therefore, in its absence, the conforma-

tion of S100 protein could be disrupted and may explain the

inefficiency of the truncated chimera rS100A9-A8D86 to

stimulate NADPH oxidase activity.

These findings have implications for the mechanisms of

NADPH oxidase activation. Arachidonic acid was proposed to

mediate a transition between different coordinated forms of heme

b that may induce the electron transfer to oxygen [10,38]. A

structural rearrangement of p22phox mediated by anionic lipids

was also suggested to increase the NADPH oxidase activity [40].

Kerkhoff’s group proposed a model in which S100A8/S100A9

was involved in the enhanced phagocyte NADPH oxidase

activation by transferring the arachidonic acid to gp91phox via

an interaction with p67phox [9]. We hypothesize that, additionally

to the arachidonic acid effect on cytochrome b558, it is most likely

that the S100A9-A8 chimera reported here or otherwise functional

S100 oligomers interact specifically with the hemoprotein. The

change of cytochrome b558 conformation, mediated by this

interaction, could expedite the electron transfer and enhance the

affinity of p67phox to cytochrome b558. Our data suggest further

that the C-terminal sequence 87HEES90 of S100A8 plays an

essential role in the interface, serving as a specific binding domain

with a corresponding consensus site on cytochrome b558, the

nature of which remains to be determined. However, the

possibility that this sequence may be necessary for the formation

of a correct and functional refolding of S100A8 itself, required to

activate cytochrome b558, cannot be excluded.

Materials and Methods

Materials
Chemical reagents used in this study were obtained from the

following sources: Heparin agarose, arachidonic acid, phorbol

myristate acetate, carbenicillin, luminol (5-amino2, 3-dihydro-1, 4-

phtalazinedione), monoclonal antibodies anti polyHistidine (Sigma

Chemicals Co., St Louis, MO, USA); S100A8 (Calgranulin A, C-

19) goat polyclonal antibody, donkey-anti-goat IgG antibody,

S100A12 (Calgranulin C, 19F5) monoclonal antibody (Santa Cruz

Biotechnology, Inc., Santa Cruz, CA, USA); Anti-goat and anti-

rabbit IgG Alexa Fluor 488 or 546, or anti-mouse IgG Alexa Fluor

546 or 488 antibodies (Molecular Probes Europe BV Leiden, The

Netherlands); PIA (DIFCO Laboratories, Detroit, MI, USA); ECL

Western blot detection reagent, Sephacryl S-300 HR, diethylami-

noethyl (DEAE) Sepharose CL-6B, CM-Sepharose CL-6B, N-

amino octyl-Sepharose CL-4B,protein G Sepharose (Amersham

Pharmacia Biotech, Uppsala, Sweden); N-octyl glucoside (Roche

diagnostic, Meylan, France); DSS (Disuccinimidyl suberate)

(Pierce Chemical Co, USA); TrizolH was from Invitrogen Life

Technologies, Grand Island, NY , USA; TalonH SuperflowTM

Metal Affinity was from Clonetech, Mountain View, Ca, USA;

Nitrocellulose membrane 0.45 mm was from Bio-Rad Laborato-

ries, Hercules, CA, USA. Polyclonal antibodies raised against

S100 proteins purified from cytosol of neutrophils were described

previously [2].

Neutrophils, Lymphoid Cell Line, and PLB985 Cells
Buffy coat containing human neutrophils and B lymphocytes

from healthy donor were purchased from the Etablissement

Français du Sang (EFS, la Tronche, France) and were isolated

according to previously described methods [41]. B lymphocytes

were immortalized with the B95-8 strain of Epstein-Barr Virus

(EBV) [42]; the EBV-B lymphocytes were cultured in RPMI 1640

supplemented with 10% (v/v) fetal calf serum, 2 mM L-glutamine

at 37uC in 5% CO2 atmosphere. Cytosolic and membrane

fractions from EBV-B lymphocytes and human neutrophils

respectively, both cells being previously treated with 3 mM DFP,

were prepared as described [31]. PLB985 cells [43] were grown in

RPMI 1640 medium supplemented with 2 mM glutamic acid,

described in Materials and Methods. (C) Recombinant rS100A9-A8, rS100A9-A8D90, rS100A9-A8D86, rS100A9-A8D57 chimeras were used in a cell-free
assay as described in the Figure 4. The effect of each rS100 chimera proteins (1 mg) was compared to a mix of 1/1 rS100A9 and rS100A8 (0.38 mg),
each S100 protein was preloaded with 500 nM CaCl2 for 20 min, before measuring NADPH oxidase activity and showed that the C-terminal domain of
S100A8 is involved in the NADPH oxidase activation. NADPH oxidase activity was expressed as turnover (s21). Number of experiments N = 5 to 8. *p,
0.05 compared to control (NADPH oxidase activity of cytochrome b558 plus calcium). Cyt b558, Cytochrome b558.
doi:10.1371/journal.pone.0040277.g005
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Figure 6. Constitutive NADPH oxidase turnover of the purified cytochrome b558 isolated from stimulated neutrophils on heparin
affinity matrix in the presence of rS100A9-A8 full length or truncated chimeras. Purification of cytochrome b558 from stimulated
neutrophils followed a standard protocol until it bound to the heparin affinity matrix as reported [25] and as described in Materials and Methods. The
cytochrome b558 bound to the affinity heparin matrix was washed with: (A) EBV-B lymphocyte cytosol; in some experiments, a 1/1 mixture of rS100A8
and rS100A9 was added to the Sephacryl eluted cytochrome b558 and then the activity of NADPH oxidase was measured in the presence of (1 mM)
arachidonic acid (grey square). (B) S100A9-A8; (C) S100A9-A8D90; (D) S100A9-A8D86; (E) S100A9-A8D57. S100 chimera proteins were preloaded with
calcium (500 nM). After the washing step, eluted fractions containing cytochrome b558 were pooled and filtrated on Sephacryl-S300. The
concentration of cytochrome b558 in the Sephacryl eluted fractions (open circle) was determined by measuring the ‘‘reduced minus oxidized’’
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10% (v/v) fetal bovine serum, 100 U/ml penicillin, 100 mg

streptomycin at 37uC and 5% CO2 atmosphere. PLB 985 cells

(56105 cells/ml) were treated with 0.5% (v/v) DMF (1–6 days) for

granulocyte differentiation [44].

Bacterial Strains and Growth Conditions
The Pseudomonas aeruginosa wild type strain (CHA) was grown

from a mucoid bronchopulmonary isolate, obtained from a cystic

fibrosis patient (Grenoble University Hospital), in Luria-Bertani

broth, at 37uC. After overnight culture, bacteria were suspended

in Luria-Bertani medium; they were diluted to A600 nm = 0.2 in the

later medium containing 300 mg/ml carbenicillin, and then

cultured for 1 to 5 h. P. aeruginosa type III secretion properties

were induced ex vivo upon cell contact with serum opsonization

(human AB serum) or in vitro upon calcium depletion by 5 mM

EGTA in the presence of 20 mM MgCl2 [27].

Plasmid Constructions (Table S1)
Plasmids, containing respectively the ExoS-S100A8 and ExoS-

S100A9 DNA in frame fusion, were obtained by ligating the ExoS

XbaI-SalI fragment and the S100A8 SalI-SphI or S100A9 SalI-SphI

fragments in the XbaI-SphI-opened E. coli-Pseudomonas shuttle

vector pUCP20, as previously described [27]. The ExoS clone

that contained the coding sequence corresponding to the N-

terminal amino acid of ExoS and Orf 1, its specific chaperone, was

amplified by PCR, from the genomic DNA of the P. aeruginosa

CHA strain [29]. S100A8-SalI-SphI and S100A9-SalI-SphI were

obtained by reverse transcription PCR, using total RNA from

fresh human neutrophils; they were confirmed by sequencing.

A SalI-S100A8GGG-BamHI and a BamHI-GGGS100A9-SphI

fragment were developed by PCR and ligated in a SalI-SphI

pUCP20 ExoS opened plasmid for the chimera fusion protein

ExoS-S100A8-A9 plasmid construction. At the same time, the

ExoS-S100A9-A8 plasmid was generated by ligation of SalI-

S100A9GGG-BamHI and BamHI-GGGS100A8-SphI amplified frag-

ments in the SalI-SphI pUCP20 ExoS plasmid.

A S100A9-S100A8 SalI-NotI fragment was developed by PCR,

using the previous ExoS-S100A9-A8 plasmid. It was inserted in

the SalI-NotI opened pGEX 562 E. coli protein production

plasmid. Then, various forms of S100A9-A8 chimera proteins,

truncated at amino acid 90, 86, and 57 of S100A8, were also

generated and cloned in frame with GST in the pGEX 562

plasmid, instead of the full length S100A9-A8 chimera protein.

The ExoS17–S100A8 and ExoS30-S100A8 fusion proteins

were also produced in E. coli, using the pGEX 562 plasmid. We

extracted in Xba-SalI the ExoS54 DNA from the pUCP20 ExoS54-

S100A8 plasmid, and replaced it by ExoS17 Xba-SalI or ExoS30 Xba-

SalI fragment developed by PCR. Then ExoS17-S100A8 or ExoS30-

S100A8 BamHI-XhoI fragments, obtained by PCR, were ligated in

the BamHI-XhoI pGEX 562 linearized plasmid (Figure S2).

The cDNA encoding for S100A12 protein was obtained by

Reverse Transcription of neutrophil total RNA extracted by

Figure 7. Disuccinimidyl suberate (DSS) complex formation between cytochrome b558 and recombinant S100A8 and S100A9
proteins. Recombinant rS100A8 and rS100A9 proteins (1.5 nmol) or rS100A9-A8 full-length and truncated chimera proteins (1.5 nmol ) were pre-
incubated with 500 nM calcium before adding 10 pmol of purified cytochrome b558 in the presence of 10 mM FAD, 40 mM GTPcS, 5 mM MgCl2 and
1 mM of arachidonic acid and then 2 mM DSS (or not). After 1 h incubation at room temperature, the protein complexes were separated by 7% SDS-
PAGE and electro transferred on nitrocellulose for Western blotting. Cytochrome b558 was labeled with rabbit polyclonal antibodies raised against the
C terminal sequence of gp91phox [31]. The immune complexes were stained by ECL. The representative results represented correspond to one out of
five experiments performed. Cyt b558, Cytochrome b558.
doi:10.1371/journal.pone.0040277.g007

differential spectrum at 426 nm. NADPH oxidase activity of purified cytochrome b558 was measured in a cell free assay with 0.2 pmol cytochrome
b558/assay, in the presence of 10 mM FAD, 40 mM GTPcS, and 5 mM MgCl2 but without arachidonic acid, and after adding 150 mM NADPH. The
NADPH oxidase activity was expressed as turnover (s21) (black squares). No S100A9-A8 chimera or EBV-B lymphocyte cytosol was added to the
heparin matrix, in control experiments. (F) Table representing the optimum NADPH oxidase turnovers obtained in A, B, C, D, E conditions, or by using
cytosol of stimulated neutrophils instead of that of EBV-B lymphocytes [25]. Number of experiments n = 6 *p,0.05 compared to control (constitutive
NADPH oxidase activity of purified cytochrome b558 in control experiment).
doi:10.1371/journal.pone.0040277.g006
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Figure 8. Co-localization of p22phox or Nox2 with endogenous S100A8/S100A9 in PLB985 differenciated cells illustrated by
confocal microscopy. Resting or PMA-stimulated differentiated PLB985 cells were incubated on poly-L-lysine-coated cover slips. They were fixed
with 4% (w/v) paraformaldehyde and then permeabilized with 0.1% (w/v)6100 Triton as described in Materials and Methods. Permeabilized cells
were co-labeled with a polyclonal anti-p22phox IgG [31] and a 2H9 monoclonal antibody anti-S100A9 (A) or co-labeled with a 13B6 monoclonal anti-
Nox2 and a polyclonal anti-S100A8/A9 [32] (B) to investigate the co-localization of cytochrome b558 with endogenous S100A8/A9 proteins. A) Green,
p22phox and red, S100A8/A9. B) Green, Nox2 and red, S100A8/A9. Cell nuclei were stained in blue with Hoechst 33258. The figure represents one
experiment out of three performed.
doi:10.1371/journal.pone.0040277.g008
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TRIzol and amplified by PCR using specific primers including the

cDNA encoding for the restriction site for NdeI and XhoI enzymes.

The 305 pb cDNA obtained was ligated in the NdeI-XhoI opened

pIVEX2.4d vector.

Expression of Recombinant ExoS-S100A8 and ExoS-
S100A9 Fusion Proteins by P. Aeruginosa (Figure 2 and
Table S1)

Plasmids pUCP20 (empty vector), pUCP20-ExoS (expressing

the 54 N-terminal or the 129 N-terminal residues of ExoS),

pUCP20-ExoS-S100A8 and pUCP20-ExoS-S100A9, and fusion

protein chimeras pUCP20-ExoS-S100A9-A8 or pUCP20-ExoS-

S100A8-A9 were electroporated into CHA P. aeruginosa strains

[27]. Secretion of recombinant proteins was induced by adding

5 mM EGTA when bacterial growth, evaluated by A600 nm,

reached 0.6. Culture medium was supplemented with 20 mM

MgCl2. After incubation at 37uC for 3 h, the induced culture

suspensions were centrifuged at 12,000 g for 15 min at 4uC. The

secreted proteins were pelleted down overnight with 55% (w/v)

ammonium sulfate. After 12,000 g centrifugation (20 min, 4uC)

the pellet was resuspended in 6 ml PBS and dialyzed overnight at

4uC. Proteins of the suspended pellet were fractionated by 11%

SDS-PAGE. S100A8 and S100A9 proteins were immunodetected

by Western blot using specific polyclonal antibodies raised against

purified S100 proteins from cytosol of neutrophils [2].

Delivery of S100A8 or S100A9 in EBV-B Lymphocytes by
P. Aeruginosa Type Three Secretion System (TTSS)

The induced bacteria and EBV-B lymphocytes (86107 cells/ml)

were suspended in RPMI 1640 medium containing 10% (v/v)

human AB serum with a multiplicity of infection (MOI) of 10.

Incubation at 37uC and mixing for 90 min allowed mutual

adhesion. At the end of incubation, the mixture of bacteria and

EBV-B lymphocytes was submitted to 300 g centrifugation.

Bacteria remained in the supernatant. After washing with PBS,

the pellet containing EBV-B lymphocytes was used to measure

NADPH oxidase activity by chemiluminescence upon stimulation

of 26106 cells with 130 nM PMA [27].

Expression of Recombinant rExoS17-S100A8, rExoS30-
S100A8, rS100A9 or rS100A8 or rS100A9-A8 Chimera
Proteins, and rHis-S100A12 in E.coli (Figure 2 and Table
S1)

BL21(DE3) competent E. coli were transformed with pGEX

562 containing DNA encoding for ExoS17-S100A8, ExoS30-

S100A8, S100A9 or S100A8, and S100A9- full length or truncated

A8 chimera proteins. Bacteria were grown in Luria-Bertani

medium supplemented with 100 mg/ml ampicillin at 37uC, until

A600 nm reached 1.5. The production of recombinant proteins was

induced by 0.2 mM IPTG, overnight, at 16uC. Bacteria were

broken up by sonication and soluble GST fusion proteins were

separated by ultracentrifugation at 100,000 g for 1 h and at 4uC.

They were then affinity purified on glutathione-Sepharose in the

presence of 10 mM DTT. After a washing step in PBS,

recombinant proteins were cleaved directly on the matrix by

using the XA factor in PBS overnight at 4uC. The matrix and

soluble recombinant proteins were separated by filtration;

recombinant proteins were stored at 220uC until further use.

pIVEX2.4d containing cDNA encoding for S100A12 in

BL21(DE3) E. coli was used for the production of recombinant

S100A12 in frame to 6 histidine residues at its N terminal side.

Bacteria were lysed by sonication and the 10,000 g supernatant

was ultra-centrifuged at 100,000g for 1 h and at 4uC. Soluble

proteins were incubated for 1 h with Talon Metal affinity resins

equilibrated in 50 mM Tris-HCl pH 7.5. The matrix was washed

with 50 mM Tris-HCl pH 7.5 containing 100 mM imidazole,

before elution of the bound rHis-S100A12 by previous buffer with

300 mM imidazole. The matrix and soluble recombinant proteins

were separated by filtration; recombinant proteins were stored at

220uC until further use.

Measurement of NADPH Oxidase Activity in EBV-B
Lymphocytes by Chemiluminescence

Intact EBV-B lymphocytes (26106 cells), or EBV-B cells after

injection of rExoS-S100A8, or rExoS-S100A9 or rExoS-S100

chimera fusion proteins, suspended in 50 ml PBS were added to

200 ml PBS containing 0.9 mM CaCl2, 0.5 mM MgCl2, 20 mM

glucose, 20 mM luminol, and 10 U/ml horseradish peroxidase.

Superoxide production was measured by chemiluminescence after

adding 130 nM PMA [2]. Photon emission was recorded at 37uC
for 1 h with a Luminoscan (Labsystem, Pontoise, France). Oxidase

activity was expressed as relative light unit (RLU) per 26106 cells.

NADPH Oxidase Activity Measurement in a Cell-free
Assay with Purified Cytochrome b558

Cytochrome b558 was purified from the plasma membranes of

1010 PMA stimulated human neutrophils as previously reported

[26]. It was then quantified by reduced-minus-oxidized difference

spectra using an absorption coefficient of 106 mM21.cm21.

Oxidase activity was reconstituted by incubating purified cyto-

chrome b558 (0.2 pmol) that was previously relipidated with L-a-

phosphatidylcholine II with or without cytosol (300 mg proteins)

isolated from EBV-B lymphocytes in the presence of 10 mM FAD,

40 mM GTPcS, 5 mM MgCl2, and an optimal amount of (1 mM)

arachidonic acid in a final volume of 100 ml of PBS. In some

experiments, a mixture of rS100A8 and rS100A9 or rExoS-S100

fusion proteins, preincubated for 20 min with 500 nM CaCl2 were

added to cytochrome b558 and then to cytosol, FAD, GTP(c)S,

MgCl2, and arachidonic acid [2]. The reaction was initiated by

introducing 150 mM NADPH in the medium. Oxidase activity

was estimated by measuring the reduction of cytochrome c in the

absence or the presence of superoxide dismutase at 550 nm

(e550 = 21.1 mM21 cm21), and was expressed as turnover (s21)

[45].

Purification of Cytochrome b558 Activated by rS100A9-A8
(Full Length or Truncated) Chimera Proteins (Figure S1)

Purified membranes from PMA stimulated neutrophils were used

for extraction of cytochrome b558 in the presence of 2% (w/v) n-octyl

glucoside followed by fractionation of extracted proteins by various

ion exchange chromatography columns, combined to heparin

agarose affinity matrix as previously described [25]. The procedure

of cytochrome b558 purification was standard until it bound to the

heparin affinity matrix. Briefly, the protein fractionation from

soluble extract was carried out in the presence of 0.1% (w/v)6100

Triton first onto anion exchange columns prepared with a mixture

(1v/1v/1v) of CM-Sepharose, DEAE Sepharose, and N-amino-

octyl-Sepharose, and then onto a heparin agarose affinity matrix.

Cytochrome b558 bound to the later matrix. At this stage,6100

Triton was replaced by 40 mM n-octyl glucoside added to the

purification buffer. Cytosol of stimulated or non stimulated EBV-B

lymphocytes (10 mg proteins), or intact or truncated rS100A9-A8

(3 mg) chimera preloaded with 500 nM CaCl2 for 20 min, were

applied to the matrix for extensive washing [8,25]. Cytochrome b558

bounded to the heparin agarose was eluted using a NaCl gradient

ranging from 0 to 0.5 M. The presence of cytochrome b558 was
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detected in the elution fractions by measuring the ‘‘reduced minus

oxidized’’ differential spectrum. It was quantified at 426 nm using a

e426 value of 106 mM21 cm21. The eluates containing cytochrome

b558 were pooled and filtrated on Sephacryl S-300 column. NADPH

oxidase activity of the final fraction was measured in a cell-free assay

with 0.2 pmol of the later purified cytochrome b558/assay in the

presence of 10 mM FAD, 40 mM GTPcS, and 5 mM MgCl2. The

reaction was initiated by adding 150 mM NADPH, but without any

stimulation by arachidonic acid; activity was expressed as turnover

(s21) [25]. A control experiment was performed without any washing

of the heparin matrix.

Covalent Cross-linking
The method was described previously [46]. Briefly, 10 pmol of

purified and relipidated cytochrome b558 were incubated with

1.5 nmol of S100 proteins: the four rS100A9-A8 chimeras, or a 1/

1 mixture of rS100A8 and rS100A9. rS100 proteins were

preincubated in a 500 nM CaCl2 medium for 20 min before

adding: first 10 pmol of cytochrome b558, then 10 mM FAD,

40 mM GTPcS, 5 mM MgCl2, and finally 1 mM arachidonic

acid. After 10 min of incubation at room temperature, 2 mM of

Disuccinimidyl Suberate (DSS) was added (or not). After 1 h of

incubation at room temperature, the cross linking was stopped by

adding 10 mM Tris-HCl pH 7.5 for 10 min. Protein samples were

incubated in a denaturating sample buffer [47] containing 2%

SDS and 2.5% b-mercapto-ethanol. Fractionation of complexed

proteins was performed by SDS-PAGE (7%), followed by Western

blotting using rabbit polyclonal antibodies raised against the C-

terminal peptide of gp91phox [31].

Confocal Microscopy
Confocal microscopy was carried out as previously described

[32,44]. Briefly, control EBV-B lymphocytes, P. aeruginosa incu-

bated-EBV-B lymphocytes, and 6 days differentiated PMA-

stimulated or unstimulated PLB985 cells (26105 cells in PBS)

were coated onto a poly-L-lysine- round glass cover-slip, before

fixing with 4% (w/v) paraformaldehyde during 10 min for EBV-B

lymphocytes or during 20 min for PLB985 cells. The cells were

permeabilised with 0.1% (w/v)6100 Triton (1 min at room

temperature). After an extensive washing with PBS, and quench-

ing the fluorescence of paraformaldehyde by 50 mM NH4Cl, the

cells were subsequently incubated during 1 h for EBV-B

lymphocytes or during 45 min for PLB985 cells with primary

antibodies as follows: polyclonal goat anti-S100A8 antibodies

(2 mg), purified monoclonal anti-S100 antibodies 2H9 (1,9 mg),

rabbit polyclonal anti-p22phox [31], mouse monoclonal anti-Nox2

13B6 [32], rabbit polyclonal anti-S100A8/A9 [25]; followed by

45 min incubation with secondary antibodies anti-goat Alexa

Fluor 488, anti-mouse Alexa Fluor 546, Alexa Fluor 488 or anti-

rabbit Alexa Fluor 488 or Alexa Fluor 546 (1:1,000). Cell nuclei

were stained with Hoechst 33258. Fixed cells were imaged at room

temperature using the inverted confocal and two-photon laser-

scanning microscope (LSM 510 NLO, Carl Zeiss) equipped with a

406/1. 3 Plan-Neofluar oil immersion lens [44].

Flow Cytometry
Undifferenciated or 6 days differentiated PLB985 cells

(107 cells/ml in PBS) were fixed by paraformaldehyde 2% (v/v)

for 15 min at 4uC. The cells were washed and resuspended in PBS

containing 0.5 mM CaCl2 and 0.2% (w/v) BSA. They were

permeabilised with 0.01% (w/v) saponin for 10 min on ice.

Monoclonal antibodies raised against S100 proteins of neutrophil

cytosol, 5A10 or 2H9 (5 mg each) were added to 106 cells that were

differentiated or not for 30 min at 4uC. Irrelevant IgG2a and IgG1

(5 mg each) were used as controls, for 2H9 and 5A10 respectively.

After washing, anti-mouse secondary antibodies conjugated to

phycoerythrin were used for the fluorescence detection. Fluores-

cence was measured on a FACScalibur cytomoter (Becton

Dickinson).

Production of Monoclonal Antibodies Against S100A8
and S100A9

Mice immunization, monoclonal antibody production, and

isotype identification were performed by Hybrisere (Grenoble,

France). Briefly 4 mice were immunized by 4 peritoneal injections

of S100 proteins (10 mg) purified from neutrophils cytosol [2] and

pre-incubated with 500 nM CaCl2. The mice sera were tested by

ELISA. Hybridization was performed after a supplementary

injection. Monoclonal antibodies from hybridoma were evaluated

by ELISA and produced in ascetic fluid. Two clones were selected:

5A10 (IgG1) and 2H9 (IgG2a).

IgGs were produced from ascetic fluid. After centrifugation at

10,000 g for 10 min, at 4uC, IgGs were precipitated from

supernatant by 50% (w/v) saturation ammonium sulfate for

10 min. The pellet was resuspended in 100 mM borate buffer

pH 8.9 containing 3 M NaCl for IgG1, or in 50 mM borate

buffer, pH 8.9, 3 M NaCl for IgG2a and dialyzed overnight.

IgG2a was purified on Protein G Sepharose equilibrated in the

same buffer, and after an extensive washing of the matrix, it was

eluted with 0.1 M Glycine pH 3; then the pH was readjusted with

1 M Tris to pH 8.5. IgG1 bound to Protein G Sepharose in

100 mM borate, 3 M NaCl pH8.9, and was washed first with

50 mM borate buffer, 3 M NaCl pH 8.9 and second with 10 mM

borate buffer, 3 M NaCl pH 8.9 before the elution in 0.1 M

Glycin pH 3. The pH was then equilibrated to pH 8.5 with 1 M

Tris. The presence of IgG in the fractions was measured at

280 nm and purity was controlled by 11% SDS PAGE.

Slot Blot
Purified rS100A8, rS100A9, or rS100A12 proteins, or purified

S100 proteins from cytosol of neutrophils (1.25 mg or 5 mg), or

rS100A9-A8 full-length or truncated chimeras (5 mg) were adsorbed

on nitrocellulose membrane under vacuum. The experiment was

carried out in the Bio Dot system (Bio-Rad) as previously described

[32]. After adding 1% (w/v) low-fat milk proteins, in TBS/0.05%

Tween for membrane saturation, nitrocellulose was incubated with

the primary antibodies, non-immune, 2H9, 5A10, 19F5, or

polyclonal antibodies raised against S100 proteins from cytosol of

neutrophils (1:1,000 each) and then with secondary antibody labeled

with peroxidase (1:5,000). Peroxidase activity was detected by ECL.

SDS-PAGE and Western Blot
Proteins were fractionated by 7%, 11%, 12.5%, or 15% SDS-

PAGE [47] and electrotransferred to nitrocellulose [48]. Immu-

nodetection was performed using rabbit polyclonal antibodies

raised against S100 proteins purified from cytosol of neutrophils

(IgG dilution, 1:1,000), or anti peptide polyclonal antibodies raised

against gp91phox, (serum dilution, 1:500). When necessary,

monoclonal antibodies were used as follows: 2H9, 5A10, 19F5,

monoclonal anti-histidine, 1:1,000 each. Immune complexes were

detected with goat secondary antibody combined with peroxidase

(1:5,000). Peroxidase was detected by ECL.

Toxicity of the CHA Strain Assessment
Toxicity of the CHA strain was assessed by measuring lactate

dehydrogenase activity in the medium: it started after 2.5 h of

contact with normal EBV-B lymphocytes [49].
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Statistical Analysis
Data represent means6SD. ANOVA and a test a posteriori

PLSD Fisher was used to determine the statistical significance of

the results (p,0.05).

Supporting Information

Figure S1 Schematic representation of the isolation of
active cytochrome b558 from heparin agarose matrix
procedure. Cytochrome b558 was extracted with 2% (w/v) octyl-

glucoside from the membrane of stimulated human neutrophils as

described in Materials and Methods. Proteins of the soluble extract

were loaded onto a mixture of CM, DEAE, and n-amino-octyl

Sepharose combined to heparin agarose. Cytochrome b558 bound

to the heparin affinity matrix. The matrix was extensively washed

with either rS100A9-A8 chimera or with cytosol of stimulated

EBV-B lymphocytes. The cytochrome b558 containing fractions

eluted from heparin agarose were pooled and filtrated on S-300

Sephacryl. Purified cytochrome b558 recovered from Sephacryl

displayed a constitutive NADPH oxidase activity.

(TIF)

Figure S2 Purification and identification of rHis-
S100A12. (A) Recombinant rHis–S100A12 was affinity purified

from the 100,000 g supernatant of IPTG induced BL21 (DE3) E.

Coli lysis medium as described in Materials and Methods. U stands

for the 100,000 g supernatant; E1 to E4 are the 300 mM

imidazole eluted fractions from the Talon matrix. Proteins of

samples U and E were fractionated by 15% SDS-PAGE and

stained with Coomassie Blue. (B) rHis-S100A12 proteins were

identified by Coomassie bleu staining and by Western blot with a

monoclonal antibody anti-S100A12 (19F5) or a monoclonal anti-

histidine antibody. Cyt b558, Cytochrome b558.

(TIF)

Table S1 Plasmid construction for protein expression.
cDNA encoding for S100A8, S100A9, S100A12 or fusion chimera

proteins were introduced in pUCP20, pGEX5x2 or pIVEX2.4d

plasmids using the indicated restriction enzyme. Protein expres-

sion was carried out in Pseudomonas aerugina (1) or Escherichia coli (2).

(DOC)

Table S2 Evaluation of EBV-B lymphocytes viability
incubated with Pseudomonas aeruginosa by Lactate
Dehydrogenase (LDH) activity. LDH activity was evaluated

in the incubation medium after 90 min incubation of EBV-B

lymphocytes with Pseudomonas aeruginosa or not. Unit represents

the number of mmol of substrate transformed per min in 200 ml of

contact medium.

(DOC)
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