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Objective: There is evidence that type 2 diabetes (T2DM) is affected by gut microbiota,

and gut microbiota diversity modified by diet. To investigate its modifications in Uyghur

patients with different glucose tolerance, we enrolled 561 subjects: newly diagnosed

T2DM (n = 145), impaired glucose regulation (IGR) patients (n = 138) and in normal

control (NC) population (n = 278).

Methods: The nutrient intake in food frequency questionnaire was calculated by R

language. The regions V3-V4 of 16S ribosomal RNA were sequenced by using Illumina

Miseq platform. Sequences were clustered by operational taxonomy units, gut microbiota

composition, and diversity was analyzed. Correlations between bacterial composition at

different level and dietary factors were evaluated.

Results: The α-diversity was highest in NC, followed by T2DM and IGR; β-diversity

distinguished between patients and NC. Compared to NC, Saccharibacteria was

significantly increased in T2DM and IGR. Deferribacteres was significantly increased in

T2DM compared to NC and IGR. Veillonella, Pasteurellaceae, and Haemophilus were

over-represented in IGR. Abundance of Bacteroidetes was negatively correlated with

LDL-C; Abundance of Tenericutes was negatively correlated with hip circumference

and total cholesterol, positively correlated with HDL-C and cake intake; Actinobacteria

was positively correlated with BMI and folic acid intake, negatively correlated with

oil intake. Firmicutes was negatively correlated with beverage and alcohol intake.

Spirochaetae was negatively correlated with fungus, fruits, beans, vitamin C, dietary

fiber, and calcium. Fusobacteria was positively correlated with beans intake, and was

negatively correlated with fat intake. Proteobacteria was positively correlated with tuber

crops intake. Synergistetes was positively correlated with cholesterol, nicotinic acid, and

selenium intake. Deferribacteres was negatively correlated with magnesium intake.

Conclusions: At the phylum and genus level, the structure and diversity of intestinal

microbiota of T2DM and IGR was altered, the number of OTUs, the relative abundance,

and diversity were all decreased. The gut microbiota of the newly diagnosed T2DM, IGR,

and NCwere related to age, blood lipids, BMI, blood pressure, and dietary nutrient intake.

Unbalanced nutrient intake in the three groups may affect the structure and abundance

of the gut microbiota, which may play a role in the occurrence and development of T2DM.
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INTRODUCTION

Recent studies on Type 2 diabetes mellitus (T2DM) reported
that there are direct links between diet, gut microbiota, and
biological metabolic markers (1). Gut microbiota is associated
with metabolic diseases such as obesity and diabetes, and the
changes in the gut microbiota diversity are one of the important
environmental risk factors for metabolic disease (2). In addition,
gut microbiota is also with diverse body functions like dietary
calorific bioavailability (3). T2DM and obesity are characterized
by insulin resistance and low levels of inflammatory response,
while the gut microbiota regulates host energy balance and
inflammatory response and is closely related to the occurrence
of metabolic diseases (4). The gut microbiota is rich in diversity
in normal people, while the reduced microbial diversity and
dysbiosis are linked with obesity, T2DM, and low inflammation
(5). According to the forecast of international diabetes federation
(IDF) in 2015, the number of T2DM patients in China will
increase to 150 million by 2040, and the increase in T2DM
patients is proportional to the increase in obesity. The incidence
of diabetes (including type 1 and type 2) in China has increased
from 0.9% in 1980 to 11.6% in 2013. The number of diabetic
patients in the country has reached 100 million, and it is
increasing year by year, and another 50.1% of adults are in the
pre-diabetes status (6). Diabetes is top risk factor for health in
Xinjiang of China, and the incidence rate in the population
is as high as 10.47% (7). Diabetes is a chronic disease, and
impaired glucose regulation (IGR) is a pre-diabetic status of
diabetes, including impaired fasting glucose (IFG), and impaired
glucose tolerance (IGT). According to IDF statistics, as of 2015,
352 million of the world’s population are IGR patients, with a
prevalence rate of 14.1%. In recent years, the number of IGR
patients in China has increasing, and the prevalence rate has
increased from 15.5% in 2008 to 35.7% in 2013 (8). Pre-diabetes
can progress to diabetes or cardiovascular disease (9), and about
9–20.8% of IGR patients develop diabetes within 3 years (10).

Diet is an important factor in regulating gut microbiota.
Regulating gut microbiota imbalance through dietary pathways
has become a new research direction. The investigation and
analysis of dietary structure and dietary adjustment have
also played an increasingly important role in the study of
gut microbiota and metabolic diseases (11). By integrating
dietary and metagenomics information, we would be better
understanding the interplay between diet, gut microbiota, and
host metabolism.

To explore potential characteristics of gut microbiota that
associated with newly diagnosed T2DM and IGR sufferer,
dietary survey and gut microbial diversity analysis are applied
to find relationship between specific dietary pattern and gut
microbiota diversity.

MATERIALS AND METHODS

A total of 561 Uyghur subjects aged 30–70 years old were
enrolled in the present study from six community health
service centers of Urumqi, Xinjiang Uyghur Autonomous Region
of China. Among them, 145 subjects were newly diagnosed

with T2DM by oral glucose tolerance test (OGTT). They did
not use any hypoglycemic drugs by that time. One hundred
and thirty eight subjects were grouped in IGR. We defined
diabetes by using the AmericanDiabetes Association (ADA) 2014
criteria. The NC group comprised 278 normoglycemic subjects
who were randomly selected and matched for age, gender to
cases from the general population. We excluded those subjects
who reported already having diabetes, cardiovascular disease
(myocardial infarction, angina pectoris, coronary artery surgery,
or stroke), kidney disease and cancer because diagnosis of these
diseases may affect diet. Pregnant women, lactating women were
not included in the study. People who could not provide written
consent for the study, or who had neurological impairments,
and/or severe mental illness were excluded from the study.

The study protocol was approved by the Ethics Committee
of the firth affiliated Hospital of Xinjiang Medical University.
Written informed consent was obtained from all subjects.

Assessments of Anthropometric and
Biochemical Measurements
Anthropometric measurements data, including gender, age were
collected. Height, weight, waist, and hip circumference (WC,
HC) were measured. Body mass index (BMI) was calculated.
Fasting plasma glucose (FPG), 2 h OGTT, total cholesterol (TC),
triglyceride (TG), high-density lipoprotein cholesterol (HDL-C),
low-density lipoprotein cholesterol (LDL-C) were measured by
chemical analysis (Beckman Coulter AU5800 Clinical Chemistry
System, Newark, USA).

Dietary Assessment
Food consumption including the type and amount of food and
meal was collected by using a validated semi-quantitative food
frequency questionnaire (SQFFQ), referring to nutrition, and
health status survey of Chinese residents of 2010 and based
on the local Chinese Uyghur population diet characteristics in
Urumqi of Xinjiang. The SQFFQ included 84 food items and 16
categories, which covered 90% of the commonly consumed foods
of Chinese Uyghur population in Urumqi. All participants were
asked to recall the frequency of each food item over the previous
12months and the estimated portion size bymaking comparisons
with the specified reference portion. Participants were requested
to recall the frequency of consumption of each food item (daily,
weekly, monthly, annually, never). The amount of vegetable
oil, animal oil, and salt were asked according to the family
consumption per month as the unit. Data was converted into
grams (g)/day. The daily food intake, caloric intake and various
nutrients are calculated by converting into an adult male (that
is, a standard person) according to age and sex in the following
analysis. The Chinese Food Composition Tables (Yang YX,
Wang GY, Pan XC. China Food Composition. Beijing: Beijing
University Medical Press, 2009) were used to estimate intake of
dietary energy (kcal/day), macronutrients and micronutrients.

The SQFFQ was designed for and validated in this population.
Pearson correlation coefficients for reliability of the SQFFQ
ranged from 0.65 to 0.91. The average correlation coefficient is
0.73. Generally, these data indicate that the SQFFQ provides
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reasonably valid and reliable measures of the average long-term
dietary intake.

Microbial Diversity Analysis
Stool samples were collected from 20 newly diagnosed T2DM
patients, 20 IGR patients, and 20 NC who were selected by
inclusion criteria. Microbial DNA was extracted from stool
sample using the QIAamp DNA Stool Mini Kit (Qiagen,
Germany) according to manufacturer’s protocols. The V3-V4
region of the 16S ribosomal RNA was amplified for sequencing
using Illumina Miseq platform (Illumina, San Diego, USA)
according to the standard protocols by Major Bio-Pharm
Technology Co. Ltd., (Shanghai, China). Raw fastq files were
demultiplexed, quality-filtered by Trimmomatic and merged by
FLASH with the following criteria: (i) the reads were truncated
at any site receiving an average quality score <20 over a 50 bp
sliding window. (ii) Primers were exactly matched allowing 2
nucleotide mismatching, and reads containing ambiguous bases
were removed. (iii) Sequences whose overlap longer than 10 bp
were merged according to their overlap sequence. Operational
taxonomic units (OTUs) were clustered with 97% similarity
cutoff using PARSE (version 7.1 http://drive5.com/uparse/) and
chimeric sequences were identified and removed usingUCHIME.
The taxonomy of each 16S rRNA gene sequence was analyzed by
RDP Classifier algorithm (http://rdp.cme.msu.edu/) against the
Silva (SSU123) 16S rRNA database using confidence threshold
of 70%.

Univariate Statistical Analysis
All the analyses were performed by using SPSS version 21. The
Shapiro-Wilk test, Q-Q plots, and histograms were applied to
ensure the normal distribution of variables. Log transformation
was performed for non-normally distributed variables.

Sample characteristics were presented as mean values and
standard deviations for continuous variables, and percentages
for categorical variables. Baseline characteristics were compared
between three groups by using the analysis of chi-square test
(categorical variables) and student’s T-test or one-way ANOVA
test (continuous variables). A Kruskal-Wallis H rank non-
parametric test was used for non-normally distributed variables.

The nutrient intakes of each sample in semi quantitative
frequency questionnaire were calculated by R language (version
3.2.2). Differences in α-diversity were tested using student’s
T-test or one-way ANOVA test. Differences in microbiota
composition as assessed by β-diversity metrics were tested by
one-way ANOVA.

Multivariate Statistical Analysis
Correlations between gut microbiota and dietary intake were
analyzed by RDA/CCA test implemented in R vegan package
and p heatmap package. Linear discriminant effect size analysis
(LEfSe) based on the non-parametric factorial Kruskal-Wallis
test was performed using the default parameters at phylum
to genus taxonomic level to find microbial biomarkers for
the gut microbiota of T2DM and IGR groups. LEfSe used
linear discriminant analysis (LDA) to estimate the effect of the
abundance of each component (species) on the difference effect.

The threshold on the linear discriminant analysis (LDA) score for
discriminative biomarkers was 2.0. All statistical analyses were
conducted using R 3.2.2.

RESULTS

A total of 561 participants (270 females, 291males) were included
in this study. The characteristics of the study population were
shown in Table 1. The average values of age, WC, SBP, FPG, and
TC of the T2DM and IGR patients were significantly (P < 0.01)
higher than that of the NC, and the HC, DBP of the NC were
significantly lower than that of T2DM group (P < 0.01). TG and
LDL-C in the NC group were significantly lower than in T2DM
and IGR groups. There were not statistically significant among
three groups by gender, smoking status, and HDL-C.

Dietary Intake Analysis
Compared with the recommended amount of Chinese dietary
guidelines, the intakes of vegetables, fish, shrimp and dairy
products were insufficient for T2DM patients, and the intakes of
cereals, meat, salt, and oil were excessive (Tables 2, 3).

Compared with recommended nutrient intakes (RNI), the
intakes of vitamin B6, vitamin D, folic acid, calcium, and iodine
were insufficient in T2DM patients, and intakes of fat, nicotinic
acid, vitamin E, potassium, iron, copper, and manganese were
excessive (Tables 4, 5).

The daily intakes of vegetables, tuber crop, fruits, nuts,
cakes, cholesterol, vitamin B6, vitamin E, folic acid, calcium,
phosphorus and sodium were statistically different in three
groups (P < 0.05) (Table S1).

Gut Microbiota Diversity
Sequencing Coverage and Bacterial Diversity

Analysis
The participants’ clinical information was listed in Table 6. We
obtained 3,269,951 usable optimized raw sequences; average
length of optimized sequence is 436.82 bp. The sequences were
clustered into OTU. Seven hundred and twenty six OTUs were
clustered form 60 samples by bioinformatics statistical analysis,
and species classification information of each OTUwas obtained.

Changes in the richness and diversity of the gut microbiota
were estimated by Sobs index, Shannon index, Simpson index,
ACE index, and Chao index. The differences of Shannon index,
Sobs index, and Simpson index were statistically significant in
three groups (P < 0.05; Table 7). Sobs index and Shannon index
of IGR were significantly lower than that of NC, Simpson index
of IGR was significantly higher than that of NC (P < 0.05).
No significant differences were detected between T2DM and
NC groups, T2DM and IGR based on indexes reflecting the
α-diversity (Figure 1).

Gut Microbiota at Different Taxonomic
Levels
According to the Venn map analysis, it was found that there
were 516 common OTU of the three groups, 540 species were
common in IGR and NC, 548 species were common in the IGR,
and T2DM, and 568 species were common in the T2DM and
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TABLE 1 | Clinical characteristics of three groups.

Parameters T2DM group (n = 145) IGR group (n = 138) NC group (n = 278) χ
2/F P

Sex (male/female) 75/69 65/73 129/149 1.46 >0.05

Age (years) 53.31 ± 9.84 48.87 ± 10.62 42.95 ± 8.65 60.2 <0.01

BMI (kg/m2) 28.81 ± 4.06 28.31 ± 4.54 26.82 ± 4.35 11.95 <0.01

WC (cm) 102.97 ± 10.03 97.21 ± 12.31 92.08 ± 12.30 41.63 <0.01

HC (cm) 107.55 ± 10.03 105.40 ± 10.10 102.45 ± 9.87 13.17 <0.01

SBP (mmHg) 134.04 ± 17.49 128.44 ± 20.32 119.93 ± 16.27 32.73 <0.01

DBP (mmHg) 80.59 ± 10.00 79.53 ± 12.84 74.44 ± 11.73 16.85 <0.01

FPG (mmol/L) 9.50 ± 3.91 6.23 ± 0.43 5.06 ± 0.40 233.24 <0.01

TC (mmol/L) 4.85 ± 1.39 4.71 ± 1.12 4.20 ± 0.93 20.27 <0.01

TG (mmol/L) 2.84 ± 2.74 2.06 ± 1.25 1.78 ± 1.23 17.37 <0.01

LDL-C (mmol/L) 2.76 ± 0.92 2.64 ± 0.93 2.23 ± 0.70 23.73 <0.01

HDL-C (mmol/L) 1.54 ± 1.05 1.61 ± 1.56 1.57 ± 0.54 0.2 >0.05

Smoking status (smoke/not smoke) 28/117 31/107 66/212 1.084 >0.05

BMI, body mass index; WC, waist circumference; HC, hip circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG, Fasting plasma glucose; TC, total cholesterol;

TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.

TABLE 2 | Daily average intake of staple food and soybean nuts in T2DM group.

Foods Cereals Tuber crop Cereal potato and miscellaneous grains Beans Nuts Beans and nuts

Daily intake(g) 477.89 64.54 542.43 21.35 67.25 88.60

Recommended amount (g) 250∼400 30∼50

Ratio (%) 135.61 177.20

TABLE 3 | Daily average intake of other foods in T2DM group.

Foods Vegetables Fruits Fish, Shrimp Dairy products Egg

Daily intake(g) 279.09 354.50 10.23 209.55 43.13

Recommended amount(g) 300∼500 200∼400 50∼100 300 25∼30

Ratio (%) 93.03 163.50 20.46 69.85 143.77

Foods Meats Water Salt Oil

Daily intake(g) 151.55 1481.80 6.75 38.67

Recommended amount(g) 50∼70 1200 6 25∼30

Ratio (%) 216.50 123.48 112.50 128.90

Bold values indicate compared with recommended nutrient intakes (RNI), the intakes of calcium, and iodine were insufficient in T2DM patients.

NC. There were 22 species specific to the IGR group, 56 species
specific to the T2DM group, and 24 species specific in the normal
group (Figure 2).

Fifteen phyla, 223 genera and 452 species were identified.
At the phylum level, dominant bacterial phyla in three groups
were Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria,
Verrucomicrobia, Cyanobacteria, Fusobacteria, Elusimicrobia.
Among them, Firmicutes, and Bacteroidetes had the highest
abundance in three groups, Bacteroidetes accounted for 32.13,
38.35, and 36.41%, respectively, and Firmicutes accounted for
62.05, 55.53, and 52.95%, respectively. The abundance of the
bacterial phyla including Proteobacteria and Actinomycetes was
2.94 and 2.13% in the T2DM group, 3.14 and 2.47% in the IGR
group, and 4.79 and 4.57% in the normal control group. At the

phylum classification level, the structural components of the gut
microbiota of the newly T2DM, IGR, andNC showed differences.
Compared with the NC, the abundance of gut microbiota in
T2DM and IGR was decreased, gut microbiota diversity was
reduced, the relative abundance of Firmicutes and Actinobacteria
were increased, and the relative abundance of Bacteroidetes and
Proteobacteria were reduced (Figures 3, 4).

Compared to NC, Saccharibacteria was significantly
increased in T2DM and IGR. Deferribacteres was
significantly increased in T2DM compared to NC and
IGR (Figure 5). Overall IGR patients had increased level
of Megamonas, Haemophilus, norank_p_Saccharibacteria,
had decreased levels of Ruminococcaceae, Barnesiella,
Sutterella, Ruminiclostridium, Clostridiales, Coriobacteriaceae,
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TABLE 4 | Comparison of daily vitamin intake and recommended amount in

T2DM group.

Vitamin Daily intake RNI Ratio (%)

Vitamin A (µgRE) 1053.08 800 131.64

Vitamin B1 (mg) 1.48 1.4 105.71

Vitamin B2 (mg) 1.50 1.4 107.14

Vitamin B6 (mg) 0.47 1.4 33.57

Vitamin C (mg) 131.10 100 131.10

Vitamin D (µg) 1.51 10 15.10

Vitamin E (mg) 35.20 14 251.43

Folic acid (µg) 113.16 400 28.29

Nicotinic acid (mg) 22.40 14 160.00

Bold values indicate compared with recommended nutrient intakes (RNI), the intakes of

calcium, and iodine were insufficient in T2DM patients.

Flavonifractor compared to NC, had decreased levels of
Moryella, Lachnospiraceae_NC2004_group compared to T2DM.
T2DM had increased level of Lachnospiraceae_ND3007_group,
Tyzzerella_3, norank_p_Saccharibacteria, Cetobacterium,
Mucispirillum, Proteiniphilum, had decreased level of
Barnesiella, Ruminiclostridium_9, unclassified_o_Bacteroidales
that compared to NC.

About 50% of the total microbial abundance in three groups
was represented by seven genera: Prevotella, Faecalibacterium,
Bacteroides, Eubacterium_rectale_group, Megasphaera,
Megamonas, and Dialister.

Linear Discriminant Effect Size (LEfSe)
Analysis
Many microbial taxa significantly differed between the
T2DM, IGR, and NC groups with LDA score >2 using
LEfSe analysis. We found that Saccharibacteria, Veillonella,
Pasteurellaceae, and Haemophilus taxa were over-represented
in IGR group; Family Ruminococcaceae of the phylum
Firmicutes, genus Mucispirillum, and class Deferribacteres
were apparently more abundant in the T2DM groups.
Genus Ruminococcaceae_UCG_002, genus Dielma, family
Porphyromonadaceae, genus norank_f__Ruminococcaceae were
more abundant in NC group (Figure 6).

Association Between Microbiota
Composition and Dietary Factors
Environmental factor analysis assesses the correlation between
microbes and environmental variables. There are many
environmental factors related to the composition of the gut
microbiota, but many of them are auto-correlated. Therefore,
before the environmental factor analysis, the environmental
factor screening can be prioritized, and the environmental factors
with less interaction are retained for subsequent research. The
environmental factors collected in this study that including basic
clinical data and dietary intake. Variance inflation factor (VIF)
analysis is a commonly used environmental factor screening
method. By analyzing the index of the variance expansion factor
>10, it can be considered as an auto-correlation environmental
factor and can be excluded. The VIF values of iron and zinc

TABLE 5 | Comparison of daily mineral intake and recommendation amount in

T2DM group.

Minerals Daily intake RNI Ratio (%)

Calcium (mg) 642.93 800 80.37

Phosphorus (mg) 971.82 720 134.98

Potassium (mg) 2515.91 2000 125.80

Sodium (mg) 3026.47 2200 137.57

Magnesium (mg) 410.51 330 124.40

Iron (mg) 28.18 20 140.90

Iodine (µg) 32.49 150 21.66

Zinc (mg) 17.22 12.5 137.76

Selenium (µg) 78.95 60 131.58

Copper (mg) 4.00 2 200.00

Manganese (mg) 7.14 4.5 158.67

Bold values indicate compared with recommended nutrient intakes (RNI), the intakes of

calcium, and iodine were insufficient in T2DM patients.

elements after dietary environmental factor analysis were >10
and were therefore excluded. All environmental factors in this
study were divided into four parts, which first part were basic
data and clinical data, including age, gender, and blood glucose
and blood lipids. The second part includes all kinds of main food
intakes, the third part is about macro nutrient intake, and the
fourth part related to vitamin and trace element intake. RDA
and CCA analysis were used to detect the relationship between
environmental factor and microbial composition.

Correlation Study of Bacterial Phylum and
Environmental Factors
Abundance of Bacteroidetes was negatively correlated with
LDL-C; Abundance of Tenericutes was positively correlated
with HDL-C and cake intake; Actinobacteria was positively
correlated with BMI, WC, HC and folic acid intake, negatively
correlated with fat intake. Firmicutes was negatively correlated
with beverage and alcohol intake. Spirochaetae was negatively
correlated with age, and negatively correlated with fungus,
fruits, beans, vitamin C, dietary fiber, and calcium intake.
Fusobacteria was positively correlated with beans intake, and
was negatively correlated with oil intake. Proteobacteria was
positively correlated with tuber crops intake. Synergistetes was
positively correlated with FBG, cholesterol, nicotinic acid, and
selenium intake. Deferribacteres was negatively correlated with
FBG and magnesium intake (Figure 7).

Correlation Study of Bacterial Genus and
Environmental Factors
Among the basic clinical indicators, age (P < 0.05), BMI,
LDL-C, and HC had a greater impact on the structure of
bacteria genus in the three groups; there was a positive
correlation between environmental factors; Prevotella_9 was
negatively correlated with WC, HC, and BMI; Megamonus was
positively correlated with HDL-C. Ruminococcaceae_UGC-002
was negatively correlated with BMI; Phascolarctobacterium was
negatively correlated SBP, BMI, WC, and HC; Bifidobacterium
was positively correlated with BMI, WC, and HC; Dialister was
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TABLE 6 | Comparison of clinical characteristics between three groups.

Parameters T2DM

(n = 20)

IGR

(n = 20)

NGT

(n = 20)

χ
2/F P

Sex

(male/female)

11/9 12/8 12/8 0.14 0.934

Age (years) 49.85 ± 11.40 45.55 ± 7.14 45.30 ± 3.47 2.04 0.140

BMI (Kg/m2) 25.76 ± 2.03 24.42 ± 4.24 23.83 ± 3.03 1.87 0.164

SBP (mmHg) 131.70 ± 21.74 129.70 ± 16.56 120.30 ± 16.55 2.18 0.123

DBP (mmHg) 78.10 ± 10.06 80.75 ± 10.10 73.20 ± 12.64 2.43 0.098

FPG (mmol/L) 8.58 ± 2.23 6.49 ± 0.28 4.87 ± 0.29 40.60 <0.001

TC (mmol/L) 4.31 ± 0.92 4.42 ± 0.78 4.02 ± 1.09 0.96 0.388

TG (mmol/L) 2.10 ± 0.84 2.21 ± 1.09 1.87 ± 1.48 0.44 0.645

LDL-C (mmol/L) 2.31 ± 0.51 2.41 ± 0.68 2.31 ± 0.72 0.16 0.856

HDL-C (mmol/L) 1.60 ± 0.0.36 1.77 ± 0.73 1.55 ± 0.63 0.82 0.448

Smoking status

(smoke/not

smoke)

5/15 7/13 10/10 2.73 0.256

BMI, body mass index; WC, waist circumference; HC, hip circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG, Fasting plasma glucose; TC, total cholesterol;

TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.

positively correlated with SBP, DBP, and LDL-C; Ruminococcus_1
and Faecalibacterium was positively correlated with age. In the
analysis of food intake and bacterial genus correlation, the
intake of cakes, eggs, dairy products and fruits had a great
influence on the structure of bacterial genus in three groups;
The intake of salt, beverage (P < 0.05) and alcohol (P <

0.05) also has a greater degree of influence on bacterial genus
composition. Prevotella_7 was positively correlated with fruits,
meat and beverage intake;Megasphaera was positively correlated
with beverage intake; Megamonas was positively correlated with
cake intake; Ruminococcus_1 was negatively correlated with
fungus, alcohol, bean and meat intake; Dialister was positively
correlated with water intake, negatively correlated with eggs
and alcohol intake; Subdoligranulum was negatively correlated
with crops, alcohol, and beverage intake RDA/CCA analysis of
macronutrient and bacterial genus found that cholesterol intake,
energy intake and protein intake had a greater impact on the
bacteria composition in three groups. Prevotella-7 was positively
correlated with protein and energy intake; Megasphaera was
positively correlated with cholesterol intake; Dialister was
positively correlated with carbohydrate intake. The intake of
vitamin A (P < 0.05), vitamin D, niacin and folic acid had a great
influence on the structure of the bacteria; the intake of copper (P
< 0.05), sodium and manganese also had a great influence on the
structure of the bacteria; Megasphaera was positively correlated
with Fe, Co, K and Vitamin A intake; Dorea was positively
correlated with Mg intake; Prevotella_7 was positively correlated
with Vitamin B2, Se, Zn, and Fe intake; Ruminococcus_2 was
positively correlated with Mg and folic acid intake. Blautia was
positively correlated with Mg (Figure S1).

DISCUSSION

The gut microbiota is a complex, diversified ecosystem that
is symbiotic with humans. The gut microbiota and its

TABLE 7 | Comparison of microbiota diversity index between three groups.

Diversity

index

T2DM group

(n = 20)

IGR group

(n = 20)

NC group

(n = 20)

Sobs index 225.1 ± 66.80 198.25 ± 52.03* 231.7 ± 45.31

Shannon index 3.26 ± 0.50 2.96 ± 0.56* 3.32 ± 0.47

Simpson index 0.1 ± 0.06 0.13 ± 0.08* 0.087 ± 0.04

ACE index 266.66 ± 64.43 244.6 ± 46.63 263 ± 49.96

Chao index 267.74 ± 54.26 244.94 ± 54.26 266.66 ± 47.99

*IGR vs. NC, P ≤ 0.05.

genes and metabolites plays an important role in a series
of pathophysiological processes such as pathogens invasion,
establishment of immunity, nutrient digestion and absorption,
body growth andmetabolism, immunity and anti-tumor process,
and can be combined with intestinal epithelial cells and
other genes, and interact with organs and the entire human
body. The diversity of intestinal microbiota is related to the
occurrence of metabolic diseases such as obesity and diabetes.
The interaction between gut microbiota and host may be one
of the environmental risk factor for the development of T2DM
(12). Diabetes is a complex clinical syndrome that arises from
the interaction of environmental, genetic, and health behaviors,
with environmental factors (diet, gut microbiota, age, lifestyle,
and obesity); especially in T2DM that plays an important role.
IGR is the pre-existing status of diabetes. Whether the regulation
of gut microbiota can effectively improve the blood glucose level
of IGR needs further study. Early prevention of environmental
risk factors of diabetes from the IGR stage is beneficial to reduce
the incidence of T2DM.

In this study, high-throughput sequencing of microbial
diversity was applied to study the gut microbiota diversity
between T2DM patients (n = 20), IGR patients (n = 20),
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FIGURE 1 | Comparison of α-diversity indexes in T2DM, IGR, and NC groups. *Compare two group, P < 0.05 (A) α diversity-Sobs index bar chart (B) α

diversity-Shannon index bar chart (C) α diversity-Simpson index bar chart.

FIGURE 2 | Venn map of OTUs.

and normal healthy controls (n = 20) with dietary survey by
food frequency questionnaire (FFQ) in Uyghur population. We
used strict inclusion criteria, all of Chinese Uyghur population
in this study were Urumqi city citizen. T2DM patients are
newly diagnosed, without using any kind of anti-diabetes

medicines. Antibiotic had influence to the gut microbiota
diversity (13). So we excluded people who used the antibiotics
in the previous month, while excluded people who had some
conditions, such as medication for hypertension, prescribed
lipid lowering drugs, cardiovascular disease history, special diet,
dietary supplement use, mental problems. The mean age, WC,
SBP, FPG, TC of the T2DM and IGR patients were significantly
(P < 0.01) higher than that of the NC in the dietary survey
population, but we controlled the compound factors in the
60 subjects that had metagenomics study. The main regulator
of the gut microbiota is including age, ethnicity, diet and the
immunity. This study undergone in one ethnic population,
and newly diagnosed T2DM and IGR population, reduced the
interaction effect of nationality, dietary habit, and drug on the
gut microbiota.

A high-fat diet may induce dysbiosis of gut microbiota,
which can result in a low grade inflammatory state, obesity
and other metabolic disorders (14). In our study, compared
with the recommended amount of Chinese dietary guidelines
and RNI, the daily intakes of vegetables, fish, shrimp and dairy
products, vitamin B6, vitamin D, folic acid, calcium, and iodine
were insufficient for T2DM patients, and the intake of cereals,
meat, salt, oil, fat, nicotinic acid, vitamin E, potassium, iron,
copper, and manganese were excessive. The daily intake of
vegetables, tuber crop, fruits, nuts, cakes, cholesterol, vitamin
B6, vitamin E, folic acid, calcium, phosphorus, and sodium
was statistically different in three groups (P < 0.05). The
fruit and dairy pattern may a protective factor for metabolic
syndrome and hypertension and the meat eating patterns
may a risk factor for fasting hyperglycemia and obesity and
the Uyghur specific pattern of diet may a protective factor
for fasting hyperglycemia (15). Results in our study are not
completely consistent with the results of above research, which
may be related to different regions where the study population
was located.
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FIGURE 3 | Pie charts of gut microbiota at phylum level in three groups. (A) T2DM group (B) NC group (C) IGR group.

FIGURE 4 | Ternary chart of three groups. Three angles represent three groups, colored circle in the triangle represents species at phylum level, and smaller circle

represent species at genus level, the size of the circle represent the relative abundance of the species.

The sequencing depth was adequate for all samples, and the
sequencing coverage depth was >97%. The α-diversity analysis
showed that the Sobs index, Shannon index, and Simpson
index of the three groups were statistically significant, indicating
that there were differences in gut microbiota diversity in the
three groups. The Shannon index and Sobs index of the NC
group larger than that of IGR group indicated that the bacterial
abundance of the NC group was high; the Simpson index
of the IGR group was larger than that of the NC group,
indicating that the bacterial community diversity of the IGR
group was low.

The bacterial structure analysis showed that the common
dominant bacteria in the intestinal tract of the three groups

were Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria,
Verrucomicrobia, Cyanobacteria, Fusobacteria, Elusimicrobia,
and others. Firmicutes is the most abundant phylum in this
population, which has commonly been found to be the most
abundant bacteria (16–18). Firmicutes and Bacteroidetes are the
two main bacteria phylum involved in the metabolism of the host
and fat accumulation. Changes in the ratio of Bacteroidetes to
Firmicutes are associated with multiple disease states.

On the phylum level, Saccharibacteria has different abundance
between three groups, the abundance of Saccharibacteria in the
T2DM and IGR group was significantly higher than that in the
NC group (P < 0.05). Deferribacteres was significantly increased
in T2DM compared to NC and IGR.
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FIGURE 5 | Bar plot of gut microbiota comparison at phylum level of three groups. (A) Gut microbiota comparison in three groups. (B) Saccharibacteria comparison in

NC and IGR groups. (C) Deferribacteres comparison in NC and T2DM groups. (D) Deferribacteres comparison in T2DM and IGR groups; *Compare groups, P < 0.05.

The Saccharibacteria known as TM7 (19), is a newly
discovered candidate bacteria (20). In the recent study, TM7
was cultured from human oral cavity, and showed that TM7 is
extremely tiny cocci (200–300 nm) whose unique lifestyle has
never been observed in human-related micro-organisms (21).
In 2014, a study reported the aseptic culture of oral TM7,
but did not provide sequence and culture methods (22). The
TM7 in the environment is similar to TM7 in human skin
and oral cavity, indicating that TM7, which is metabolically
active in environmental sites, can be used as a model organism
to better understand the role of TM7 in human health (23).
Recently, Erin K. Crowley et al studied the effects of dietary
supplements containing a mixture of magnesium-rich marine
minerals on the diversity of the gastrointestinal microbiota, and
found that the abundance of TM7 in the intervention group
was reduced, indicating that the abundance of the bacteria has a
certain correlation with trace element magnesium (24). Studies
have reported that TM7 is associated with diseases such as
periodontitis, vaginitis and IBD (21). In addition, this bacterium
has been reported in the study of Crohn’s disease and IBD,
and it is shown that TM7 is associated with intestinal mucosal
inflammatory diseases (25). Saccharibacteria may play a role in
the intestinal mucosal inflammatory response of T2DM, and the
mechanism needs further study.

About 50% of all bacteria were represented by
seven genera: Prevotella, Faecalibacterium, Bacteroides,
Eubacterium_rectale_group, Megasphaera, Megamonas, and
Dialister. Overall IGR patients had increased level ofMegamonas,
Haemophilus, norank_p__Saccharibacteria, had decreased levels

of Ruminococcaceae, Barnesiella, Sutterella, Ruminiclostridium,
Clostridiales, Coriobacteriaceae, Ruminiclostridium,
Flavonifractor compared to NC, had decreased levels of
Moryella, Lachnospiraceae_NC2004_group compared to T2DM.
T2DM had increased level of Lachnospiraceae_ND3007_group,
Tyzzerella_3, norank_p__Saccharibacteria, Cetobacterium,
Mucispirillum, Proteiniphilum, had decreased level of
Barnesiella, Ruminiclostridium_9, unclassified_o__Bacteroidales
that compared to NC. We found that Saccharibacteria,
Veillonella, Pasteurellaceae, and Haemophilus taxa were
over-represented in IGR group; Family Ruminococcaceae
of the phylum Firmicutes, genus Mucispirillum, and class
Deferribacteres were apparently more abundant in the T2DM
groups. Genus Ruminococcaceae_UCG_002, genus Dielma,
family Porphyromonadaceae, genus norank_f__Ruminococcaceae
were more abundant in NC group.

Megamonas belongs to the Firmicutes, which is useful for
organic nutrient, fermenting various carbohydrates, and the
final products of Megamonas are acetic acid, propionic acid
and lactic acid. Studies have shown that the abundance of
Megamonas in the intestinal tract of Chinese population is lower
than that of Africans (26), especially in the intestinal tract of
centenarians (27). Chiu et al. (28) reported that the abundance of
Megamonas in the intestines of Chinese Taiwanese obese people
was higher. The abundance of Megamonas in the intestines of
healthy people of Yao nationality in China is low, which is
related to the special healthy eating habits of the ethnic group
(29). Studies have shown that a decrease in Bacteroidetes, an
increase in Firmicutes, or a decrease in the ratio of Bacteroidetes
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FIGURE 6 | LEfSe cladogram and LDA bar chart. Circular cladogram for niche

specialization of microbial compositions in three groups using the linear

(Continued)

FIGURE 6 | discriminant analysis effect size (LEfSe) analysis of the abundance

patterns of bacterial taxa. The circles used in this diagram represent the

taxonomic categories of organisms from the genus level as the outermost

circle to phylum level as the innermost cycle. Within each given taxon, each

small cycle represents its lower clade. The yellow nodes indicate no statistically

significant differences of a given taxon between the samples of three groups,

the red nodes indicate significantly higher relative abundance in T2DM than

other two groups, the green nodes indicate significantly higher relative

abundance in the IGR than other two groups, and the blue nodes indicate

significantly higher relative abundance in NC than other two groups. The size of

the node is in proportion to the LDA score. The links (lines) between the nodes

mean hypothetically phylogenetic relationships among organisms, which can

be traced back to where the lines branch off (hypothetical ancestor).

and Firmicutes can cause obesity, so it is proposed that
the ratio of Firmicutes and Bacteroidetes can be used as a
biomarker for T2DM. This study found that the abundance
of Megamonas in the T2DM and IGR group increased, which
may be related to the occurrence and development of T2DM.
Haemophilus belongs to the Proteobacteria, which is a gram-
negative facultative anaerobic bacterium. It is only parasitic on
the intestinal mucosa of human or animal, and is sensitive to
chloramphenicol, tetracycline and sulfonamide. There are several
subspecies of this genus, some of which are related to clinical
pathogenesis (30). This study only analyzed the differences
in genus levels, and the differences in species levels are for
further study. Ruminococcaceae belongs to the gram-positive
bacteria of the thick-walled bacteria and produces butyric acid.
The immune response caused by intestinal flora, especially the
immune response caused by the short-chain fatty acids (SCFA)
of the flora, plays an important role in the development of
metabolic diseases such as diabetes (31). Intestinal bacteria can
convert carbohydrates and polysaccharides in food that cannot be
decomposed by the host itself into SCFA. SCFA is considered to
be an important potential metabolic target in glucose metabolism
and insulin resistance, preventing obesity and T2DM. The main
components of SCFAs, acetic acid, propionic acid, and butyric
acid, are absorbed by the intestinal mucosa, affecting 10% of the
host’s nutrient intake. Studies have found that people with a lack
of butyrate-producing bacteria in the body are prone to T2DM,
and patients with T2DM have reduced SCFAs in the intestine
(32). In this study, the abundance of butyric acid producing
bacteria in the IGR group was reduced, which was consistent with
the results of Karlsson et al. (32).

Barnesiella belongs to the genus Bacteroides and is a newly
discovered genus (33). In this study, the abundance of Barnesiella
was reduced in the IGR group. Sutterella belongs to the
Proteobacteria and is a common commensal bacteria in the
human intestine. The bacteria adhere to the intestinal epithelial
cells and are associated with low pre-inflammatory state of the
intestine and have immunomodulatory effects (34). Clostridiale
in Clostridium belongs to the Firmicutes, is a gram-positive
anaerobic bacterium, cannot survive in an aerobic environment,
and has strong spore resistance (35). Kelly et al. (36) reported
that changes in the structure of Clostridiale are closely related to
the mucosal integrity of the intestinal mucosa, and its structural
changes are related to metabolic diseases such as diabetes. The
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FIGURE 7 | Correlation heatmap between bacterial phylum and clinical data (A), Correlation heatmap between bacterial phylum and daily foods (B), Correlation

heatmap between bacterial phylum and daily average intake of macro nutrient (C), Correlation heatmap between bacterial phylum daily average intake of Vitamins and

Minerals (D).

abundance of Clostridiale in the intestinal flora of Danish pre-
diabetic populations was reduced and correlated with low-grade
inflammation, consistent with the results of this study (9). It
is suggested that the abundance of Clostridiale bacteria changes
during the IGR phase, and this change may play an important
role in the development of diabetes.

This study found that Bacteroidetes was negatively correlated
with LDL-C, Tenericumes was negatively correlated with HC
and TC, Teneriquets was positively correlated with HDL-C, and
Actinobacteria was positively correlated with BMI. Kasselman
et al. (37) reported that the proportion of Bacteroidetes and
Firmicutes in the intestinal flora of obese people was significantly
lower than that of normal body mass. This study suggests that
Bacteroidetes, Firmicutes, and Actinobacteria may be involved in
lipid metabolism, but the mechanism is unclear. This study tried
to achieve a balance between groups and reduced the impact of
other confounding factors on the gut microbiota.

Diet is an important determinant of the structure and diversity
of the gut microbiota. Diets that consume high fats and high
sugars alter the composition of healthy microbiota, leading
to microbial imbalance in the gut, a phenomenon known as

“microbial dysbiosis” (38). Studies have shown that metabolic
diseases such as obesity and DM are the result of interactions
between gut microbiota, diet, and host (39). Numerous studies
have shown that dietary intake plays an important role in shaping
the gut microbiota and maintaining gut health. In healthy
individuals, more than 90% of nutrients are absorbed by the small
intestine and transported throughout the body to maintain the
health. Complex carbohydrates (fibers) are not easily absorbed
by the small intestine; enter the colon as food debris, protein
residues and primary bile acids secreted by the liver in response
to fat intake also enter the colon. Food entering the colon
maintains intestinal health through fermentation, determines the
composition and function of intestinal microbes, and plays a key
role in the health of the body (40).

Dietary fiber is one of the main factors affecting microbial
diversity. A comparative study of fecal samples from vegetarians,
vegans, and omnivores showed that Enterobacteriaceae,
Bacteroides, Bifidobacteria were significantly reduced in vegan
compared to the omnivorous control group. Enterobacteriaceae
levels were between vegans and controls (41). Another study
conducted in remote parts of Africa and children in Europe
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showed that the gut microbiological structure of the two groups
was significantly different, possibly related to the different
dietary fiber intakes of the two groups (European children
8.4 g/day, African children 14.2 g/day) (42). Another research
team conducted a two-week food exchange diet intervention
experiment. After African Americans ingested a high-fiber,
low-fat diet, while Africans in remote areas ingested a high-fat,
low-fiber Western diet, the gut microbiota has changed in both
groups (43).

Fat stimulates the secretion of bile acids, further affecting
the gut microbiota. Bile acids are digested by the bacteria into
secondary bile acids in the colon. Taira et al reported (44) that
when themice were changed from a low-fat diet to a high-fat diet,
the structure of the gut microbiota changed, with thick-walled
bacteria increasing and the number of Bacteroidetes decreasing.
Similarly, in the another animal studies (45), when the animals
were fed high-fat diet, flora changes, reducing Lactobacillales and
Clostridium increase the subpopulations XIVa. However, because
the mixed consumption of meat and fat is often accompanied by
a decrease in fiber intake, there is still a lack of evidence that fat
has a direct effect on the human gut microbiota.

The dietary fiber required for human body is usually obtained
from whole grains of fruits, vegetables, and grains. Long-term
dietary fiber-led diet may alter the gut microbiota, accompanied
by an increase in the abundance of thick-walled bacteria, so
dietary fiber may have some immunomodulatory and anti-

inflammatory functions, affecting the host’s immune response
and function (46). In the previous discussion, it was found that an

unbalanced diet leads to disorders in the structure and function

of the gut microbiota, accompanied by an increase in metabolites
that promote inflammation, promote proliferation, and increase

disease risk. Based on evidence from epidemiological, animal,
and human experimental studies, supportive diet plays an

important role in the development and evolution of T2DM. For

example, fiber andmilk are associated with reduced risk of T2DM
(47), while red meat and processed meat are associated with

elevated T2DM risk, and this study has strong and consistent

evidence in prospective studies (48). At the same time, dietary

interventions can reshape the gut flora and alter the dietary
residue entering the colon. Therefore, dietary intervention and

intestinal flora intervention are promising options for preventing
T2DM. Based on available evidence, it is recommended that

people at high risk of T2DM adopt a balanced diet with a fiber-

rich diet. Based on the results of studies on the intestinal flora
and mechanisms of humans and animals, we believe that it is

full of possibilities to prevent T2DM by continuing to study

dietary strategies.
This study tried to achieve a balance between groups and

reduced the impact of other confounding factors on the intestinal
flora. However, there are many factors affecting the intestinal
flora (dietary habits, lifestyle, disease status, etc.), so in order
to further verify the results, it is necessary to increase the
sample size for further research. This study analyzed the
distribution characteristics of IGR from the perspective of
intestinal flora, and tried to find the key bacteria to promote the
development of diabetes, and provide theoretical basis and new

therapeutic approaches for further intervention and treatment
of diabetes.

CONCLUSION

In summary, imbalance of intestinal microbiota may be related
to the occurrence of IGR and T2DM in Uyghur population,
but its mechanism needs further study. This study analyzed the
distribution of intestinal microbiota IGR and newly diagnosed
T2DM patients, which showed a significant decrease in the
diversity and abundance of the IGR group than healthy people,
and speculated that Bacteroidetes and Saccharibacteria may be
related to the occurrence of T2DM. It provides a theoretical basis
and a new therapeutic approach for further intervention and
treatment of diabetes.
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