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Abstract
We have previously reported negative energy balance and health benefits during 
an Alaska backcountry expeditionary hunting (ABEH) immersion in two males. 
The purpose of our present study was to increase the number of participants, in-
clude females, and evaluate macronutrient intake and serum lipids. Four men (age: 
46  ±  6  year, BMI: 26  ±  1  kg/m2) and three women (age: 46  ±  11  year, BMI: 
25 ± 3 kg/m2) were recruited. Doubly labeled water methodology and dietary recall 
were utilized to assess energy expenditure and energy intake, respectively. Data 
were collected during pre- and post-ABEH visits. Body composition was measured 
using dual-energy x-ray absorptiometry and the cross-sectional area of skeletal 
muscle in the upper leg (XT), and intrahepatic lipid (IHL) was determined using 
magnetic resonance imaging and/or spectroscopy (MRI/MRS). Blood parameters 
were measured by LabCorp. Paired T-tests were used for statistical analysis. Data 
are reported as mean ± SD and considered significant at p < 0.05. Total energy in-
take was 7.7 ± 3.4 MJ/day and total energy expenditure was 17.4 ± 2.6 MJ/day, re-
sulting in a negative energy balance of −9.7 ± 3.4 MJ/day. Protein intake(grams)/
body weight(kilograms)/day was 1.0 ± 0.4. There were reductions in body weight 
(Δ-1.5 ± 0.7 kg), BMI (Δ-0.3 ± 0.2 kg/m2), fat mass (Δ-1.7 ± 0.9 kg), and IHL (Δ-
0.3 ± 0.3% water peak). There were no changes in lean tissue mass (Δ0.6 ± 1.4 kg) 
or XT (Δ-1.3 ± 3.3  cm2). There were significant reductions in total cholesterol 
(Δ-44  ±  35  mg/dl), LDL-cholesterol (Δ-25  ±  14  mg/dl), VLDL-cholesterol 
(Δ-7 ± 7 mg/dl), and triglycerides (Δ-35 ± 33 mg/dl). The ABEH immersion re-
sulted in considerable negative energy balance and provided comprehensive ben-
efits in metabolic health without any reduction in skeletal muscle.
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1 |  INTRODUCTION

The complex etiology of obesity and metabolic diseases on 
morbidity and mortality in the United States has been an intense 
point of investigation over the last century (Akram et al., 2000). 
Cumulative influential factors consistent with the agricultural, 
industrial, technological, and digital revolutions have led to un-
healthy dietary and activity patterns potentially responsible for 
diseases linked to obesity (Hochberg, 2018; Speakman, 2013). 
To put the problem in perspective, the negative impact of “mod-
ernization” on health was mentioned in the Boston Medical and 
Surgical Journal over a hundred years ago, but the underlying 
drivers responsible for the deterioration of metabolic health 
may still be underappreciated (Jones et al., 2012).

Before the advent of modernization, humans derived 
inherent benefits from physical activity for 84,000 genera-
tions (O’Keefe et al., 2011). In less than 0.4% of that time 
period, humans rapidly accelerated into the current digital 
age (O’Keefe et al., 2011). Access to food has dramatically 
improved but unhealthy dietary and activity patterns have 
emerged (Pradhan, 2007), and we are now experiencing a 
worldwide obesity pandemic (Pontzer et al., 2012) respon-
sible for almost 5 million premature deaths/year (Stanaway 
et al., 2018). Small populations of hunter-gatherer societies 
remain well protected against chronic metabolic diseases as 
long as they do not adopt the patterns of a Westernized di-
etary and activity lifestyle (Pontzer et al., 2018). Movement 
constancy and the quality/quantity of nutrient intake seem 
to be largely responsible for their protective resilience 
(Kaplan et al., 2017; Liebert et al., 2013; Raichlen et al., 
2017).

In our modern era, a tremendous amount of investigation 
has been focused on the use of complex dietary and exercise 
interventions to mitigate metabolic disease (Obesity, 2020). 
Despite considerable public interest in contemporary hunt-
ing and gathering, the acute influence of intensive wilder-
ness hunting on metabolic health in the modern human is 
limited (Crittenden & Schnorr, 2017). While remote hunting 
expeditions in the 21st century do not replicate hunter-gath-
erer societies, abrupt changes in physical activity and nutri-
ent intake may foster beneficial adaptations. We are uniquely 
positioned to provide some investigative insight into these 
areas of interest, as numerous hunters pursue game in the 
unpredictable Alaskan environment with limited provisions 
and shelter (Walch et al., 2018).

In our original preliminary work (Coker et al., 2018), we 
described the total energy expenditure (TEE) and total energy 
intake (TEI) that led to negative energy balance during Alaska 
Backcountry Expeditionary Hunting (ABEH). The limited 
number of participants in the original study precluded our abil-
ity to evaluate changes in net energy balance, serum lipids, or 
variations in macronutrient intake, and did not include females. 
The objective of this study was to measure TEE, TEI, net en-
ergy balance, macronutrient intake, body composition, serum 
lipids, liver and metabolic panels, and intrahepatic lipid (IHL) 
in males and females during an 8–12 day ABEH immersion. We 
hypothesized that ABEH would promote beneficial changes in 
metabolic parameters (ie., body fat, serum lipids, and IHL) and 
maintain skeletal muscle despite negative energy balance and 
minimal protein intake in males and females.

2 |  METHODS

We recruited four men (age: 46 ± 7 year, BMI: 26 ± 1 kg/m2) 
and three women (age: 46 ± 11 year, BMI: 25 ± 3) for this study. 
After obtaining informed consent, all participants completed a 
comprehensive health history and were considered as healthy, 
nonsmoking participants. None of our participants were taking 
any medications nor were they symptomatic for cardiovascular, 
respiratory, neurological, or metabolic diseases. None had any 
chronic inflammatory conditions. All participants completed pre- 
and post-ABEH visits that included: (a) measurement of body 
weight, body composition via dual-energy x-ray absorptiometry 
scans (General Electric iDXA; Madison, WI), and molecular 
imaging/spectroscopy (Toshiba Excelart/Vantage 1.5  T MRI/
MRS, Canon, Õtawara, Tochigi, Japan) of muscle and liver, (b) 
blood sampling via LabCorp (1626, 30th Avenue, Fairbanks, 
AK), (c) measurement of TEE using the doubly labeled water 
(DLW) method (Schoeller, 1999), and d) assessment of TEI and 
macronutrient intake using written dietary and/or photographic 
records (Capling et al., 2017). All aspects of the study and related 
documentation were reviewed and approved by the University of 
Alaska Fairbanks (UAF) Institutional Review Board.

2.1 | Alaska backcountry hunting immersion

All testing and examinations of our research participants 
were completed in the Clinical Research and Imaging 

the Biomedical Learning and Student 
Training Program (UL1GM118991, 
TL4GM118992, or RL5GM118990) and 
award number P20GM130443 through 
the National Institute of General Medical 
Sciences of the National Institutes of 
Health.
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Facility pre- and post-ABEH immersion, and in the fall of 
2018. These sessions were closely coordinated with Pristine 
Ventures and Shadow Aviation (Fairbanks, AK), minimiz-
ing the logistical burden on the participants, organizers, and 
remote bush pilots, while allowing us to perform the test-
ing within 24 h of departure from and arrival in Fairbanks, 
AK. As our original manuscript indicated, hunters received 
basic instructions with regard to hunt preparation, meat 
preservation, and load carriage (Coker et al., 2018). We rec-
ognized the potential for shifts in background H2O isotope 
abundances in hunters originating from the contiguous states 
outside and those from Alaska. Therefore, subjects #1 and 
#2 were recruited from Alaska and the mid-western United 
States, respectively, and received dummy, or sham doses of 
DLW. This allowed for correction for background shifts in 
isotope abundance.

2.2 | Imaging measurements

Participants wore identical lightweight clothing or surgical 
scrubs during all body weight and imaging measurements. The 
participants were asked to lie motionless in the supine position 
during the iDXA measurements of body composition, includ-
ing android and gynoid fat distribution. Android fat distribution 
refers to adipose tissue largely deposited in the trunk and upper 
body, while gynoid fat distribution is located in the hips, breasts, 
and thighs (Brody, 1999). The hands and arms were placed in 
a parallel position without touching the body, and within the 
required scan area. Feet were stabilized and movement was kept 
to a minimum through the use of a Velcro strap that also assisted 
with proper placement of the feet and legs. Calibration of the 
iDXA was performed at least three times/week.

We measured the cross-sectional area of the upper thigh 
muscles (XT) and IHL using a Toshiba Excelart/Vantage 1.5T 
magnetic resonance imaging/magnetic resonance spectros-
copy (MRI/MRS) system (Canon, Ōtawara, Tochigi, Japan) 
as previously described (Coker et al., 2018). Acquisition of 
axial and coronal T1-weighted images was collected using a 
Field Echo sequence (TR = 172 172 msec, TE = 90 msec). 
Axial T2 images were acquired using a Fast Spin Echo se-
quence (TR = 3700 msec, TE = 90 msec). One technician 
selected seven of the axial T1-weighted images based on the 
identification of the largest clearly visible scan in the belly 
of the thigh muscle. Six progressive images were chosen by 
moving distally toward the patella. Subsequently, all seven 
XT images were analyzed by the same technician using 
OsiriX software (Pixmeo, Bernex; Hulmi et al., 2009). Raw 
data from the spectra for determination of IHL, including an 
un-suppressed water reference, were converted to ascii for-
mat using a custom script before analysis using the jMRUI 
software. All spectra were Fourier transformed, phased, 
and referenced (1.4 ppm for lipid spectra, 4.8 ppm for water 

reference). The signals were fit using the AMARES non-lin-
ear-least-squares algorithm within jMRUI. The results from 
both the lipid spectra and water reference spectra were then 
used to calculate a lipid-to-water ratio (Bennett et al., 2012).

2.3 | Isotopic methodology

A baseline urine sample was collected at 22:00  hr on the 
evening prior to departure into the remote backcountry. 
Immediately afterward, all participants received either an 
oral “sham” dose or an oral dose of DLW. Two of the seven 
participants originated from the contiguous United States, 
supporting the rationale for the need of a sham dose to would 
allow for adjustments of potential alterations in background 
enrichments of 18O and 2H (Schoeller et al., 1986). While in 
the field for 8–12 days, all participants collected at least three 
urine samples as previously described (Coker et al., 2018). 
This dosing and urine sampling protocol has been previously 
established (Coker et al., 2018; Schoeller et al., 1986).

Participants received detailed instructions for the col-
lection and placement of their own urine samples into ster-
ile, polypropylene, nonpyrogenic, RNase/DNase-free tubes 
(Corning, Inc.) to be wrapped in ParafilmTM (Bernis NA). All 
samples were kept according to directions, separated from 
other participants, in dry storage, and at an ambient tempera-
ture of 4° to 10°C. Upon the participants’ return to Fairbanks, 
AK, all samples were immediately frozen.

The analysis of isotopic abundance was completed at 
the Isotope Ratio Core Laboratory at the University of 
Wisconsin, Madison, WI (Hoyt et al., 1991). We fitted the 
absolute value of an exponential model to preclude any un-
desirable influence of variations in background abundance, 
as previously described (Coker et al., 2018). We then used 
the theoretical constructs established by Stroud et al. (1993), 
basing the extrapolated infinite time background estimate on 
average from the exponential fit of abundance versus time in 
the participants receiving the sham doses. Production of CO2 
was calculated as previously described and utilized a respi-
ratory exchange ratio of 0.78 for the calculation of total en-
ergy expenditure for the period in the field beginning with the 
first urine collected at the hunt site and ending upon return to 
Fairbanks, AK (Thorsen et al., 2011).

2.4 | Dietary intake

We requested that participants to keep a daily record of all food 
and drink intake, along with caloric content consumed during 
the ABEH. All participants collected these food diaries based 
on our verbal and written instructions and were collected im-
mediately upon the participants return from the ABEH. We also 
recorded the exact amount and type of food that each participant 
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took into the field. With the exception of animals harvested and 
ingested (also recorded) on the ABEH, there were no other 
sources of food available. The energy and macronutrients of 
moose and caribou were extracted from SELFNutritionData 
weblink (SELFNutritionData, 2020). This combined strategy 
of food inventories, in conjunction with written and photo-
graphic dietary records, allowed us to precisely determine the 
macronutrient and energy content of all foods consumed.

2.5 | Statistical analysis

We analyzed our data using a combination of Microsoft 
Excel, iDXA Encore, Osirix, and Prism 9 software. Since 
two participants received “sham” doses of DLW to control 
for shifts in background enrichment, data presented on TEE 
and TEI include three male and two female participants. All 
other data include seven total participants. We used paired t-
tests to evaluate alterations in pre-ABEH and post-ABEH 
data. Linear regression analysis was used to determine the 
relationship between TEE and lean tissue mass (LTM). 
Statistics were considered significant with a P-value of less 
than 0.05. Data are presented as means ± SD.

3 |  RESULTS

3.1 | ABEH overview

Three (#5, #6 and #7) of the seven participants were suc-
cessful in harvesting an animal (one caribou and two moose, 
respectively). Two (#3 and #4) participants were mountain 
hunting for sheep (SHP) and five participants (#1, #2, #5, #6, 
and #7) were “float-dragging” a raft through a remote river 
corridor for moose and caribou (FD) (Bartlett, 2014).

3.2 | Total energy expenditure

The average TEE was 17.4 ± 2.6 MJ/day with 19.1 ± 0.1 MJ/
day and 16.3  ±  2.4  MJ/day for SHP and FD hunters, re-
spectively. The average absolute TEE was 18.2 ± 2.0 MJ/
day and 16.2  ±  2.9  MJ/day for males and females, re-
spectively (Figure 1). When expressed relative to pre-
ABEH body composition measurements, TEE/LTM was 
similar in males (60.6  ±  4.3  MJ·kg LTM−1·day−1) and fe-
males (64.3  ±  5.8  MJ·kg LTM−1·day−1; Figure 1). There 
was a significant relationship between TEE and LTM 
(Y = 74.44*X − 817.9; p = 0.03; Figure 2).

3.3 | Total energy intake

The TEI was 7.7 ± 3.4 MJ/day with 5.4 ± 1.9 MJ/day and 
9.4  ±  4.0  MJ/day for SHP and FD hunters, respectively. 
Males and females consumed a TEE of 9.4 ± 4.2 MJ/day and 
5.8 ± 4.2 MJ/day, respectively. Based on an average TEE of 
16.3 MJ/day and a TEI of 7.7 MJ/day, the net energy balance 
was −9.7 MJ/day, or −2320 calories/day (Figure 1).

3.4 | Macronutrient intake

The average intake of protein, fat, and carbohydrates was 
84  ±  37  g/day, 77  ±  42  g/day, and 165  ±  91  g/day, re-
spectively (Figure 3). On the percentage of caloric intake, 
protein, fat, and carbohydrate was 20  ±  9%, 41  ±  22%, 
and 39  ±  22%, respectively. The average protein intake 
relative to body weight was 1.03 ± 0.40 g/kg body weight 
in the five participants whose TEE was 17.4  ±  2.1  MJ/
day and TEI was 7.7 ± 3.4 MJ/day. The average protein 
intake in all seven participants was 1.01  ±  0.11 grams/

F I G U R E  1  Total energy intake, total energy expenditure and net energy balance in participants #3, #4, #5, #6, #7 and their average values. 
Participants #1 and #2 received sham doses of DLW
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kg body weight; highlighting similar levels of protein in-
take among the two participants who received sham doses 
of DLW for determination of potential changes in back-
ground enrichment.

3.5 | Body weight and body composition

There were significant reductions in body weight 
(p = 0.01) and BMI (p = 0.01; Table 1). Total fat mass, 
percent fat, android fat, arm fat, and trunk fat were re-
duced. There were strong trends toward the reduction in 
leg fat (p = 0.06) and gynoid fat (p = 0.06). The android/
gynoid ratio was reduced (p = 0.005) along with decreased 
visceral fat mass (p  =  0.006), and visceral fat volume 
(p = 0.006); representing the most remarkable alterations 
in body fat (Table 2).

There were no significant changes in whole body LTM, 
arm LTM, leg LTM, android LTM, or gynoid LTM. A 
strong trend (p  =  0.12) toward an increase in trunk LTM 
was demonstrated. A significant increase in trunk lean mass 
(p = 0.04) and total LTM was noted in women (p = 0.01; 
Table 3). There was a strong trend (p  =  0.06) toward a 

relationship between protein intake and ABEH-induced 
changes in LTM (p  =  0.09; Figure 3). In fact, all partici-
pants gained between 0.2 and 1.4 kg of LTM except for one 
individual who consumed 0.5 g/kg of protein and lost 2.0 kg 
of LTM. (Figure 3). There were no significant changes in 
XT (Table 3).

No significant changes in arm, trunk, android, or total 
bone mineral content were indicated. On the other hand, 
increases in bone mineral content were detected in the leg 
(p = 0.04) and gynoid (p = 0.03) regions (Table 3).

When categorized by males and females, body mass, 
body mass index, fat mass, and whole body LTM was 
90 ± 4 kg and 72 ± 8 kg, 26 ± 1 kg/m2 and 25 ± 3 kg/m2, 
19 ± 3 kg, and 19 ± 4 kg, and 66 ± 3 kg and 49 ± 8 kg, 
respectively.

3.6 | Intrahepatic lipid

There was a significant reduction in MRI/MRS-derived IHL 
(p = 0.007; Figure 4). This reduction in IHL was consistent 
with our previous study (Kaplan et al., 2017), but these data 
now include females.

3.7 | Blood/Serum parameters

No significant changes were noted in the basic metabolic 
panel (i.e., glucose, blood urea nitrogen (BUN), creati-
nine, estimated glomerular filtration rate, BUN/creati-
nine, sodium, potassium, chloride, carbon dioxide, and 
calcium; Table 4). All values were within normal limits. 
With regard to the lipid panel, there were significant re-
ductions in total cholesterol (p  =  0.01), LDL-cholesterol 
(p = 0.004), VLDL-cholesterol (p = 0.02), and triglycer-
ides (p  =  0.02; Table 4). While HDL-cholesterol did not 
decrease (p = 0.18), there was a reduction in triglyceride/

F I G U R E  2  Relationship between total energy expenditure (TEE) 
and lean tissue mass (LTM) in all participants (p = 0.03)

F I G U R E  3  Average dietary intake of protein, fat and carbohydrate in grams/day in all participants
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HDL-cholesterol (p = 0.02). Significant reductions in total 
protein (p = 0.007), albumin (p = 0.01), and total bilirubin 
(p  =  0.01) were noted (Table 4). Overall, there were no 
changes in alanine aminotransferase, alkaline phosphatase, 
and aspartate aminotransferase, but each one was signifi-
cantly reduced in females (p = 0.004, 0.004, and 0.02, re-
spectively; Table 4).

4 |  DISCUSSION

The results of this study demonstrated high levels of TEE and 
modest TEI that consistently contributed to negative energy bal-
ance during the 8–12 day ABEH in healthy males and females. 
The short-term period of negative energy balance elicited re-
ductions in body weight and adipose tissue. With the percent-
age of dietary protein, fat, and carbohydrate intake at ~20%, 
40%, and 40%, respectively, LTM and XT were preserved in 
spite of the arduous physiological and field conditions. We also 

demonstrated rapid, significant reductions in serum lipids and 
IHL that met or exceeded dietary, exercise, and/or pharmaceu-
tical interventions over longer periods of time in individuals at 
a greater risk for metabolic diseases (Hays et al., 2008).

Exercise training interventions have demonstrated re-
ductions in body weight, adipose tissue, and visceral fat 
(Da Silva et al., 2020). In efforts to improve outcomes in 
a short period of time, high-intensity interval training has 
also been utilized successfully to promote beneficial al-
terations in body weight, especially when combined with 
resistance training (Stoner et al., 2016). Expedient alter-
ations in body composition in this particular study were 
likely linked to high levels of negative energy balance (i.e., 
−9.7 MJ/day) elicited by sustained elevations in physical 
activity (Strasser et al., 2007). That being said, long-term 
weight loss remains difficult to achieve for many individu-
als (Swift et al., 2014), and this may be due to the inability 
to maintain sufficient activity.

The minimum recommendations of 150 min/week of mod-
erate or 75 min/week of vigorous physical activity are gen-
erally insufficient to promote clinically significant weight 
loss (Donnelly et al., 2009). The exercise duration threshold 
seems to occur at ~225 min/week with interventions lasting 
at least 12  weeks or longer in obese individuals (Donnelly 
et al., 2009). The ABEH immersion provoked a swift decline 
in body weight and fat compared to much longer supervised 
training regimens. If we were to extrapolate the average neg-
ative energy balance of the entire ABEH immersion, it would 
be equivalent to ~80  MJ in only the hunters who received 
DLW. Theoretically, the negative energy balance would have 
contributed to the loss of ~2.5 kg of body weight. We mea-
sured a reduction in 1.5 kg of body weight and 1.7 kg of fat 

T A B L E  1  Clinical characteristics (n = 7)

Pre-ABEH Post-ABEH

Age 46 ± 7

Height (m) 1.8/0.2

Weight (kg) 81.8 ± 10.2 80.3 ± 9.7*

BMI (kg/m2) 25.7 ± 2.2 25.4 ± 2.3*

Note: Data are presented as Mean ± SD.
*Denotes significant difference between pre- and post-ABEH. 

T A B L E  2  Adipose parameters

Pre-ABEH Post-ABEH

Body fat (%) 24.9 ± 5.9 23.0 ± 6.5

Arm fat (%) 20.6 ± 6.3 19.6 ± 6.1*

Leg fat (%) 22.0 ± 7.8 21.2 ± 9.7^ 

Trunk fat (%) 26.7 ± 6.1 23.8 ± 7.2*

Android fat (%) 28.0 ± 7.2 24.2 ± 8.1*

Gynoid fat (%) 25.7 ± 7.7 24.4 ± 8.0*

Total fat (kg) 18.4 ± 3.6 16.7 ± 4.3*

Arm fat (kg) 1.0 ± 0.1 0.9 ± 0.1*

Leg fat (kg) 2.6 ± 0.8 2.5 ± 0.8^ 

Trunk fat (kg) 10.0 ± 2.6 8.7 ± 2.9*

Android fat (kg) 1.5 ± 0.4 1.2 ± 0.4*

Gynoid fat (kg) 2.9 ± 0.8 2.8 ± 0.9^ 

Visceral fat mass (kg) 0.61 ± 0.26 0.50 ± 0.21*

Visceral fat volume (cm2) 680 ± 271 535 ± 219*

*Denotes significant difference (p < 0.05) between pre- and post-ABEH. 
^Denotes trend toward a difference (p < 0.10) between pre- and post-ABEH. 
Data are presented as Mean ± SD. 

T A B L E  3  Musculoskeletal parameters

Pre-ABEH Post-ABEH

Total lean mass (kg) 59.0 ± 10.4 59.6 ± 10.1

Arm lean mass (kg) 7.84 ± 2.05 7.86 ± 1.96

Leg lean mass (kg) 20.0 ± 3.7 20.0 ± 3.8

Cross sectional area thigh (cm2) 148.6 ± 25.6 146.9 ± 21.6

Trunk lean mass (kg) 27.6 ± 4.5 28.1 ± 4.3^ 

Android lean mass (kg) 3.87 ± 0.73 3.94 ± 0.75*

Gynoid lean mass (kg) 8.95 ± 1.52 9.01 ± 1.50

Arm bone mineral content (kg) 0.50 ± 0.11 0.50 ± 0.11

Leg bone mineral content (kg) 1.22 ± 0.21 1.23 ± 0.22*

Trunk bone mineral content (kg) 0.92 ± 0.15 0.93 ± 0.14

Android bone mineral content (kg) 0.59 ± 0.14 0.59 ± 0.13

Gynoid bone mineral content (kg) 0.32 ± 0.06 0.33 ± 0.06*

Total bone mineral content (kg) 3.24 ± 0.49 3.25 ± 0.48

*Denotes significant difference (p < 0.05) between pre- and post-ABEH. 
^Denotes trend toward a difference (p < 0.10) between pre- and post-ABEH. 
Data are presented as Mean ± SD. 
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loss in these same individuals, with almost 80% of the fat re-
duction occurring in the trunk region of all seven participants. 
The ABEH immersion promoted a rapid reduction in trunk 
and visceral fat, potentially offering unique benefits in the pro-
tection against metabolic risk in a middle-aged cohort of par-
ticipants as recently outlined by Barbour-Tuck et al. (2019).

In our prior work, we were not able to adequately evalu-
ate ABEH-induced alterations in serum lipids (Coker et al., 
2018). We now describe consistent reductions in total choles-
terol, LDL-cholesterol, VLDL-cholesterol, triglycerides, and 
triglyceride/HDL-cholesterol in healthy females and males 
whose initial lipid levels were already within normal limits. 
The clinical significance of these data is based on the abun-
dant evidence that supports the link between elevated ath-
erogenic lipids and cardiovascular disease (MacMahon et al., 
2007). Due to the deleterious influence of elevated circulat-
ing lipids on cardiovascular health, studies have employed 
exercise training paradigms to improve lipid profiles with 

variable results (Pedersen & Saltin, 2006). In a recent semi-
nal review article by Leon and Sanchez (2001) that examined 
randomized controlled trials in individuals with a slightly 
higher BMI than our own cohort of participants, it was con-
cluded that the responsiveness of blood lipids to exercise 
training programs of 11 weeks to 1 year were inconsistent at 
best. In fact, only three of the 10 trials described a significant 
reduction in LDL-cholesterol or triglycerides.

A number of variables can affect serum lipids, such as the lack 
of laboratory standardization (Leon & Sanchez, 2001), genetic 
variations (Despres et al., 1988), and exercise training that does 
not result in significant weight loss (Wang & Xu, 2017). It has 
been proposed that for every kg of body weight loss, there will be 
a 0.8 mg/dl reduction in LDL-cholesterol (Goldberg et al., 2011; 
Kodama et al., 2007). Using this calculation, we would have 
estimated a 1.2 mg/dl reduction in LDL-cholesterol. Instead, we 
reported a 24.9 mg/dl reduction in LDL-cholesterol. Given the 
well-described sensitivity of HDL-cholesterol (Chapman et al., 
2011), it was somewhat surprising that HDL-cholesterol did 
not change. However, the triglyceride/HDL-cholesterol ratio, a 
strong predictor of all-cause mortality linked to cardiovascular 
disease (Hamaguchi et al., 2007) was reduced, making the rapid 
improvements in IHL all the more intriguing. It is very well ac-
cepted that the development of nonalcoholic fatty liver disease 
represents a hepatic manifestation of metabolic disease that has 
been linked to an increased risk of atherosclerotic cardiovascu-
lar disease (Donnelly et al., 2005). Excessive positive energy 
balance combined with (a) triglycerides derived from hepatic de 
novo lipogenesis, (b) fatty acids derived from stored fat, and (c) 
triglyceride rich lipoproteins, overwhelm normal lipid flux and 
hepatic function (Shojaee-Moradie et al., 2016). In the presence 
of a relatively well-balanced diet with respect to protein, fat, and 
carbohydrate intake, exercise may protect against these etiologi-
cal processes through a reduction in hepatic de novo lipogenesis 
affecting lipid flux via an increase in the VLDL1-triglyceride 
fractional catabolic rate (Abadi et al., 2009). The inherent move-
ment constancy of the 8- to 12-day ABEH immersion promoted 
improvements in serum lipids and IHL in generally healthy indi-
viduals. Based on the complex molecular regulatory factors that 
have independent effects on cardio-metabolic health (Ryu et al., 
2015), these results suggest the efficacious synergism between 
an overall reduction in sedentary time (Johnson et al., 2009), 
mild to intense exercise (Thoma et al., 2012), and weight loss 
(Coker & Wolfe, 2018).

The atrophy of skeletal muscle during weight loss has been 
studied extensively in a wide range of individuals due to its 
inextricable link to deleterious alterations in physical function 
and/or performance (Cava et al., 2017; Church et al., 2019; 
Palus et al., 2014; Tassone & Baker, 2017). Our ABEH im-
mersion resulted in negative energy balance largely due to 
the influence of sustained physical activity on TEE, coupled 
with the various barriers to eating enough to maintain energy 
balance. These challenges may manifest themselves through 

T A B L E  4  Blood parameters

Pre-ABEH Post-ABEH

Metabolic Panel

Glucose (mg/dl) 97.5 ± 19.1 89.8 ± 15.8

Blood urea nitrogen (mg/dl) 17.3 ± 3.7 15.5 ± 2.6

Creatinine (mg/dl) 1.0 ± 0.1 1.0 ± 0.1

Estimated glomerular filtration 
rate (mL/min/1.73)

73.2 ± 8.2 75.0 ± 11.5

Blood urea nitrogen/creatinine 17.2 ± 4.3 15.5 ± 2.8

Sodium (mmol/L) 140.0 ± 0.9 140.3 ± 1.8

Potassium (mmol/L) 4.2 ± 0.1 4.3 ± 0.2^ 

Chloride (mmol/L) 100.5 ± 2.0 101.5 ± 1.0^ 

Carbon dioxide (mmol/L) 23.7 ± 1.6 24.2 ± 1.8

Calcium (mg/dl) 9.6 ± 0.2 9.4 ± 0.2*

Lipid Panel

Triglyceride (mg/dl) 92.5 ± 40.8 57.8 ± 25.1*

Total cholesterol (mg/dl) 196.7 ± 31.4 153.2 ± 43.1*

LDL-cholesterol (mg/dl) 105.7 ± 33.0 80.8 ± 27.2*

VLDL-cholesterol (mg/dl) 18.7 ± 8.1 11.5 ± 5.1*

HDL-cholesterol (mg/dl) 72.3 ± 20.3 77.5 ± 30.8

Triglyceride/HDL-cholesterol 1.4 ± 0.9 0.9 ± 0.5*

Hepatic function panel

Total protein (g/dl) 7.1 ± 0.2 6.7 ± 0.2*

Albumin (g/dl) 4.6 ± 0.1 4.4 ± 0.2*

Bilirubin (g/dl) 0.45 ± 0.14 0.52 ± 0.16*

Alanine aminotransferase (IU/L) 20.7 ± 1.6 31.8 ± 8.2*

Alkaline phosphatase (IU/L) 50.2 ± 11.5 51.0 ± 7.5

Aspartate aminotransferase (IU/L) 38.0 ± 15.5 38.8 ± 12.6

*Denotes significant difference (p < 0.05) between pre- and post-ABEH. 
^Denotes trend toward a difference (p < 0.10) between pre- and post-ABEH. 
Data are presented as Mean ± SD. 
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inherent difficulties of nutrient access during intense move-
ment, additional load carriage, and/or insufficient time or 
energy to prepare food. Given the remote environment, self-re-
liance of participants, and difficult terrain embedded into the 
ABEH, these conditions may be somewhat similar to military 
training exercises, albeit not absolutely equivocal (Alemany 
et al., 2008). The level of TEE and TEI in our study was re-
markably analogous to previous investigations that described 
changes in body composition during military exercises of a 
similar duration (Margolis et al., 2014). Whereas LTM was 
reduced in both of these prior studies, a similar reduction was 
noted with one individual in the ABEH with low protein in-
take in this study. Muscle loss may also be influenced by sleep 
deprivation commonly experienced in actual military opera-
tions (O’Hara et al., 2014). On the other hand, studies in our 
laboratory have demonstrated the retention of LTM despite 
high levels of TEE further complicated by sleep deprivation 
under challenging environmental conditions (Johannsen et al., 
2018; Schalt et al., 2018), but their interpretation has been 
limited due to the lack of data on dietary macronutrient intake.

We report no reductions in LTM or MRI-derived skeletal 
muscle (i.e., XT) in this study, with an average protein intake 
of 1.0 ± 0.1 g/kg and average macronutrient intake slightly 
lower than the recommendations provided to individuals en-
gaged in a general fitness program (Hart et al., 2017; Kreider 
et al., 2010). In fact, LTM in the android region and bone 
mineral content in the leg and gynoid region were increased, 
potentially linked to the overload of movement constancy com-
bined with variable amounts of load carriage on posture and 
stability (Pasiakos & Margolis, 2017). One of our participants 
who was sheep hunting did experience the loss of total LTM 

(−2.4  kg), trunk LTM (−1.5  kg), leg LTM (−0.9), and XT 
(i.e., −15.7 cm2), with a corresponding lower dietary protein 
intake of 0.54 g/kg of body weight (Figure 3). Longer term 
participation in ABEH or similar scenarios could also even-
tually put LTM and XT at a greater risk (Tassone & Baker, 
2017). On the other hand, short-term exposure to ABEH may 
require strategies that provide the minimal amount of nutrient 
delivery needed to maintain skeletal muscle, instead of dietary 
recommendations more relevant in the context of supervised, 
periodized training (Fallon et al., 1999).

The high physiological stress of prolonged physical activ-
ity, further complicated by episodes of heavy load carriage, 
affects muscle and hepatic metabolism (Kupchak et al., 
2014). Thus, it was not entirely surprising that total protein, 
albumin, bilirubin, and alanine amino transferase were af-
fected by the ABEH immersion. Runners competing in the 
161 km Western States Endurance Run, a more acutely stress-
ful event that the ABEH, exhibited similar baseline total pro-
tein and albumin levels to our participants, and these values 
decreased similarly during the first half of the event (Nagel 
et al., 1990). The increase in bilirubin in this study was also 
consistent with ultra-marathon running and associated with 
hemolysis (Shin et al., 2016). Alanine transaminase was also 
increased, indicative of hepatic stress (Blonde et al., 2018). 
While none of the parameters exceeded or fell below normal 
limits, alterations in the parameters of the hepatic panel pro-
vide solid evidence of the elevated physiological stress that 
occurred during the ABEH (Shin et al., 2016).

We recognize the limitations of an unscripted event that 
lack internal validity with regard to control for environmental 
conditions, sleep, exercise intensity, and duration, and small 

F I G U R E  4  Relationship between average protein intake and change in lean tissue mass (LTM) in all participants (p = 0.09)
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differences in the lengths of the ABEH excursion itself. With 
the incredible time and resources (i.e., bush travel, logisti-
cal planning, satellite communication) required for a field 
study needing extensive remote support, we also realize that 
our small sample size reduced our statistical power. On the 
other hand, it would be fundamentally impossible to replicate 
these unscripted field-based activities in the form of a labo-
ratory-based study due to day to day alterations in weather, 
variable terrain, tasks at hand, and amount of movement 
constancy required throughout each day. Even if this type of 
study was attempted in the laboratory, it would be unlikely 
to capture the external validity of the data presented using 
our ABEH approach (Blonde et al., 2018). Making some sex-
based comparisons would be desirable. Future studies have 
already been planned to evaluate the potential for sex differ-
ences in the metabolic response to the ABEH scenario.

5 |  CONCLUSION

We have presented compelling evidence that promotes the ef-
ficacy of ABEH on improvements in biomarkers typically as-
sociated with an increased risk for metabolic disease in females 
and males. Even in individuals who were generally healthy, 
8–12 days of unscripted activity without any attempt to con-
trol or manipulate dietary intake was sufficient to promote 
rapid improvements in serum lipids and IHL. We recognize 
that the recommendations for protein intake (i.e., 1.4–2.0 g/
kg/day) and carbohydrate (i.e., 3–5 g/kg/day) provided by the 
International Society of Sports Nutrition may be considerably 
higher during the macrocycle of a training period or a com-
petitive scenario for an athlete (Carbone and Pasiakos, 2019; 
Hector & Phillips, 2018; Phillips et al., 2016). However, the 
practical reality of these dietary recommendations must be 
balanced against the need for agile operations over an 8- to 
12-day period at a relatively constant exercise intensity, es-
pecially when carrying all provisions in a backpack across 

difficult terrain or a raft being moved over many kilometers of 
a dry creek bed. We suggest that the minimal dietary protein 
of 0.8 g/kg/day under these types of unscripted and self-reliant 
conditions is just that; the absolute minimal amount of protein 
potentially required to maintain skeletal muscle in the context 
of an anabolic stimulus provided by physical activity (Devlin 
et al., 1990; Williams et al., 1996).
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